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Probabilistic Contagion and
Models of Influence (continued)




Epidemics vs Cascade Spreading

In decision-based models nodes make
decisions based on pay-off benefits of
adopting one strategy or the other

In epidemic spreading:
Lack of decision making
Process of contagion is complex and unobservable

In some cases it involves (or can be modeled as)
randomness
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Example with k=3

Low contagion probability:

The disease dies out o
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High contagion probability:
The disease spreads
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Probabilistic Spreading Models

Epidemic Model based on Random Trees

(a variant of a branching processes)
Roo’; node,
A patient meets d new people patient 0

Start of epidemic
With probability g > 0 she infects each
of them
Q: For which values of d and ¢q

does the epidemic run forever?

Run forever: lim P a n?d? at depth h] >0
h—> oo is infected

d subtrees

Die out: lim P “ n?d? at depth h] =0
h—> o is infected
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Probabilistic Spreading Models

p, = prob. a node at depth h is infected
We need: Aim p, =7 (basedongandd)

We are reasoning about a behavior at the root of the tree. Once we
get a level out, we are left with identical problem of depth h — 1.

Need recurrence for p,,
; E‘EE d subtrees

pp=1-(1-gq" Ph—1)cf
We iterate:

No infectgd node
fx) =1—(1—gq-x)¢ x=f(1)

at depth h from the root
X2=f(x1)

lim p;, = result of iterating
Starting at the root: x = 1 (since p; = 1) X5=f(X,)

h— oo
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Fixed Point: f(x) =1 — (1 — gx)¢

X ... prob. a node
y=x=1 at level h-1 is infected.
We start at x=1
because p,=1.
f(x) ... prob. a node
at level h is infected
— q ... infection prob.
y f(X) d ... degree

f(x)

Fixed point:

fx) =x
This means that ™

prob. there is an
infected node at depth

h is constant (>0)

Going to the first

fixed point We iterate:
x1=f(1)
Xo=f(X1)
X3=f(x2)
X 1

If we want to epidemic to die out, then iterating f (x)
must go to zero. So, [ (x) must be below y = x.
What'’s the shape of f(x)?
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Fixed Point: f(x) =1 — (1 — gx)?

y=x=1 X ... prob. a node
at level h-1 is infected.
We start at x=1
because p,=1.
f(x) ... prob. a node

y = f(x) at level h is infected
q ... infection prob.
d ... degree

Going to the first

fixed point
X 1
What do we know about the shape of f(x)?
f(O) — O f(x) is monotone: If g'(y)>0 for all y then g(y) is monotone.

f(l) — 1 — (1 _ q)d < 1 In our case, 0=x,q<1, d>1 so f'(x)>0 so f(x) is monotone.

f’(x) non-increasing: since term (1-gx)d-' in f'(x) is

f (X) =q- d(l )d 1 decreasing as x decreases.

0)=q-d
AR f (x) is monotone non-increasing on [0, 1]'

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu




Fixed Point: When is this zero?

f(x) y=X

Reproductive
number R, =
q-d.

There is an
L v = f(x) epidemic if

R,>1

1 X

For the epidemic to die out
we need f(x) to be below y = x!
So: f'(0)=q-d<1

limp, =0 when q-d <1

h—-oo

g - d = expected # of people that get infected
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Important Points

Reproductive number Ry, = q - d:

It determines if the disease will spread or die out.
There is an epidemicif R, = 1

Only R, matters:

Ry, = 1: epidemic never dies and the number of
infected people increases exponentially

R, < 1: Epidemic dies out exponentially quickly
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Measures to Limit the Spreading

When R, is close 1, slightly changing q or d can
result in epidemics dying out or happening

Quarantining people/nodes [reducing d]

Encouraging better sanitary practices reduces germs
spreading [reducing q]

HIV has an R, between 2 and 5
Measles has an R, between 12 and 18

Ebola has an Ry between 1.5 and 2
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Application: Social cascades on Flickr
and estimating R, from real data

. Cha et al. ACM WOSN 2008



http://www.ccs.neu.edu/home/amislove/publications/Cascades-WOSN.pdf

Flickr social network:
Users are connected to other users via friend links

A user can “like/favorite” a photo

Data:

100 days of photo likes

Number of users: 2 million
34,734,221 likes on 11,267,320 photos
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Cascades on Flickr

Users can be exposed to a photo via social
influence (cascade) or external links
Did a particular like spread through social links?

No, if a user likes a photo and if none of his friends
have previously liked the photo

Yes, if a user likes a photo after at least one of her
friends liked the photo = Social cascade

Example social cascade:
A—>BandA>C—>E

Time=0

Time =1
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How to estimate R, from real data?

Recall: R, = q * d

Estimate of R, :

Estimating q: Given an infected node count the
proportion of its neighbors subsequently infected and

average d ... avg degree
2 d; ...degree of node i
avg(d;) J

(avg d;)?

t Correction factor due to skewed
degree distribution of the network

Then: Ry = q *xd *

Empirical R:
Given start node of a cascade, count the fraction of
directly infected nodes and proclaim that to be R,
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R, correlation across all photos

Data from top 1,000 photo cascades
Each + is one cascade

200

corrcoef = 0.9765
150

100 |

Estimate of RO

N
o

0 50 100 150 200
Empirical reproduction number Ro
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Discussion

The basic reproduction number of popular
photos is between 1 and 190

This is much higher than very infectious
diseases like measles, indicating that social
networks are efficient transmission media and
online content can be very infectious.
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Epidemic models




Spreading Models of Viruses

Virus Propagation: 2 Parameters:
(Virus) Birth rate B:

probability that an infected neighbor attacks
(Virus) Death rate 6:

Probability that an infected node heals

Infected

10/30/18



More Generally: S+E+I+R Models

General scheme for epidemic models:
Each node can go through phases:

Transition probs. are governed by the model parameters

recruitment e?it e;it e;it
‘ S > E > | - R ]
exit

7 j S...susceptible
E...exposed
|...infected

+ R...recovered

exit Z...immune
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SIR Model

SIR model: Node goes through phases
| 1)

Models chickenpox or plague:
Once you heal, you can never get infected again
Assuming perfect mixing (The network is a

complete graph) the e
model dynamics are: o w0 T RO
dS dR -§330' . N
E = _/J)SI d_ = 61 qéz (1)

t Sw
dl = 4.
A [)7 S I _ 6 I = sz “ ......... .
dl’ u] 10 20 tImSé 40 80 1]
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SIS Model

Susceptible-Infective-Susceptible (SIS) model
Cured nodes immediately become susceptible
Virus “strength”:s = /0

Node state transition diagram:

Infected by neighbor
with prob. 3

Susceptible Infective

Cured with
prob. o
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SIS Model

S0 e , . . . Models flu:

450 ) 1 Susceptib!e node
é 400 F .’. w....... becomes mfected
e For LS 1 The node then heals
S o L : and become
& =0t . : susceptible again
; 200 D : Assuming perfect
180 S(t) : mixing (a complete
100 + ::‘ R POORUOROPPRR | graph):
50 M}: dS

"5 0 20 30 10 50 B0 - = S] + é]
time dt ﬂ
— = [ST — 0Ol
dt p
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Question: Epidemic threshold 7

SIS Model:

Epidemic threshold of an arbitrary

graph G is T, such that:
If virus “strength” s = /0 <t the epidemic can
not happen (it eventually dies out)

Given a graph what is its epidemic threshold?
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[Wang et al. 2003]

Epidemic Threshold in SIS Model

Fact: We have no epidemic if:

Epidemic threshold

(Virus) Death Y /

rate J
Blo<t=1/1,,
/ f
I
(Virus) Birth r{te largest eigenvalue

of adj. matrix A of G

> A, o alone captures the property of the graph!
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Experiments (AS graph)

[Wang et al. 2003]

Autonomous Systems Graph
500 -

B= 0.001

400 -

300 -

200

100 +

Number of Infected Nodes

0: === 0.05 0.06 0.07
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10,900 nodes and
31,180 edges

s=p/o >t
(above threshold)

(below threshold)
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Experiments

Does it matter how many people are
initially infected?

10 410 10
o |\ o |\ ” —
= 7\ 29\ o3
8 g1\ s |~ 7
- N ° 2N\ 5o
g 1k A\ E 1 \\ é L/ )
0 B , 0 T O________,/ | | |
i Simulation epochs s ’ Simulation epochs b ° Smulation ggochs 190
(a) Below the threshold, (b) At the threshold, (¢) Above the threshold,

s=0.912 s=1.003 s=1.1
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[Gomes et al., 2014]

Modeling Ebola with SEIR

TURKEY

o]

MURUCCU
LEBANON
' UNITED ARAB
o EMIRATES
§ SAUDIARABIA
SENEGAL

GAMBIA \v Y
GUINEA S

SIERRA LEONE gk

LIBERIA UTE GHANA NIGERIA o S
TOP PASSENGER FLOWS: D'IVOIRE CAMEROON
Number of passengers (weekly)

@ 15003000 o
® 3001500 SOUTHAFRICA

[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, ‘14]
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Example: Ebola

> > o

Transition Transition rate
A

(S,E) = (S-1, E+1) (3;SI + BySH+53pSF)/N
(E.I) = (E-1, 14-1) vk
(ILLH) — (I-1, H4-1) b1
(H.F) — (H-1, F+1) “ano2H
(F,R) — (F-1, R+1) vl
(LR) — (I-1, R+1) vi(1 = 01)(1 = 6))1
(LF) — (I-1, F+1) o (1 — 4 )yal \_ .
(H,R) — (H-1, R+1) vin(1 — 62)H i

S: susceptible individuals, E: exposed individuals, I: infectious cases in the community,
H: hospitalized cases, F: dead but not yet buried, R: individuals no longer transmitting the disease

[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, ‘14]
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[Gomes et al., 2014]

Example: Ebola, R =1.5-2.0

T 1 T

Calibration Region

Projection Region

[
o
[

Total number of deaths since July 1%
=
o

Read an article about how to estimate R, of ebola.
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Application: Rumor spread
modeling using SEIZ model




SEIZ model: Extension of SIS model

N\ @
SEIZ s—».—».

Susceptible S Twitter accounts

Infected . Believe news / rumor, (1) post a tweet

Exposed . Be exposed but not yet believe

Skeptics ‘ Skeptics, do not tweet

I Disease | Twitter \
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Recap: SIS model

) :

dio] =S =-08SI+al
dt

7 .

] _ i _ 351 —al
dt

S =S(t).I=1I(t
i = rate of contact between 2 individuals

a = rate of recovery

Disease Applications:

— Influenza
— Common Cold

Twitter Application Reasoning:

— An individual either believes a rumor (1),

— or 1s susceptible to believing the rumor (S)
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Details of the SEIZ model

Notation: [

Probability of (S — 1) }

given contact with adopters

S = Susceptible

| = Infected ’ E-I contact rate
S-I contact rate

E = Exposed
Z = Skeptics

(l-p)

Probability of (S —E)

given contact with adopt

S
<7 i ol (1_[) Probability of (S — E)
J-4£ contact rate _ :
N~ given contact with skeptics
/

R |
S bhS
it \ \ ﬂ
L
& 5 R

1| ! Probability of (S — Z)

- 1 — p)BS< | bS = — pl ! .

B Lgivcn contact with skeptics
11 /

T POy + ot g
d|. Z

)
1t \
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Dataset

Tweets collected from eight stories: Four rumors and four real
REAL EVENTS RUMORS

o Boston Marathon Explosion. 04-15-2013 © Obama injured. 04-23-2013
o Pope Resignation. 02-11-2013 o Doomsday rumor. 12-21-2012
o Venezuela's refinery explosion. 08-25-2012 o Fidel Castro’ s coming death. 10-15-2012

o Michelle Obama at the 2013 Oscars. 02-24-2013 o Riots and shooting in Mexico. 09-05-2012

Boston Marathon Bombing News

"BOMB"
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Method: Fitting SEIZ model to data

SEIZ model is fit to each cascade to minimize the
difference |I(t) - tweets(t)|:

tweets(t) = number of rumor tweets

[(t) = the estimated number of rumor tweets by the model
Use grid-search and use the parameters with
minimum error is selected

SEIZ model
Y minimize
Parameter [I(t)-tweets(t)|
Iteration €
Optimal
Parameter Set
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Fitting to “"Boston Marathon Bombing”

. “)i SIS Model Fit to Tweet Data v “)< SEIZ Model Fit to Tweet Data
6 6
Tweet Data + Tweet Data
_ || =it _ || =it
- | LR S G L i S S 5
4 4

-

Error.0.058204

Error:0.0098981
Mean Deviation:15007.9378

I (Cummulated Tweets)
[ (Cummulated Tweets)

Mean Deviation:2715.4471

() LomwmmmerrTTie 00 o 3 | 3
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (h) Time (h)

SIS Model | SEIZ Model

J

Error = norm( I — tweets ) / norm( tweets )

SEIZ model better models the real data, especially at initial points
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Fitting to "Pope resignation” data

< 10 SIS Model Fit to Tweet Data x 10" SEIZ Model Fit to Tweet Data
: d _
N :

‘o

. + Tweet Data
- Fit

« Tweet Data
_l:|| .........

»d
-d

o
2

Error:0.018567
Mean Deviation:222.0176

rNo

Error:0.078202
Mean Deviation:1450.4418

[ (Cummulated Tweets)
[ (Cummulated Tweets)

0.5 : 0.5
R " /
() eeooes | | i = 3
0 10 20 30 40 50 60 0 10 20 A ﬂ‘) l 40 50 60
Time (h) Time (h)
| SIS Model | SEIZ Model |

| SEIZ model better models the real data, especially at initial points |




Rumor detection with SEIZ model
By SEIZ model parameters

Notation:
S = Susceptible

| = Infected
E = Exposed
Z = Skeptics

All parameters
N , learned by
ew (1—p)B+ (1 —-10)b model fitting to
metric: Rsr = D+ ¢ real .data (flrom
previous slides)

Rsi, a kind of flux ratio, the ratio of effects entering E to those leaving E.
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Rumor detection by R,

Rsi value for eight stories

28.31
24.66
25
20
15
10
3 3.58
- 0.34 0.25 0.2 0.18 0.02
0
Boston Pope Amuay Michelle Obama Doomsday Castro Riot

Parameters obtained by fitting SEIZ model

efficiently identifies rumors vs. news
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Independent Cascade Model




Independent Cascade Model

Initially some nodes S are active
Each edge (u,v) has probability (weight) p,,

When node u becomes active/infected:

It activates each out-neighbor v with prob. p,,
Activations spread through the network!
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Independent Cascade Modal

Independent cascade model ,

is simple but requires

many parameters!
Estimating them from

data is very hard
[Goyal et al. 2010]

Solution: Make all edges have the same
weight (which brings us back to the SIR model)

Simple, but too simple
Can we do something better?
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Exposures and Adoptions

From exposures to adoptions

Exposure: Node’s neighbor exposes the
node to the contagion

Adoption: The node acts on the contagion

g &2
R—R
2 R
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Exposure Curves

EXposure curve:

Probability of adopting new
behavior depends on the total number
of friends who have already adopted

What'’s the dependence?

'

® ... adopters

Prob. of adoption
Prob. of adoption

k = number of friends adopting k = number of friends adopting
Critical mass:

“Probabilistic” spreading:

Viruses, Information

Decision making
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Exposure Curves

From exposures to adoptions

Exposure: Node’s neighbor exposes the node to
information

Adoption: The node acts on the information
Examples of different adoption curves:

Prob(Infection)

# exposures

10/30/18

Probability of
infection ever

Increases

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Nodes build
resistance




[Leskovec et al.,, TWEB '07]

Diffusion in Viral Marketing

Senders and followers of recommendations
receive discounts on products

% e o
0 : { 4
10% credit 10% off /; (/
~~ 3 [~ \d";‘ :“s

/ T A\

Data: Incentivized Viral Marketing program

16 million recommendations
4 million people, 500k products
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[Leskovec et al.,, TWEB '07]

Exposure Curve: Validation

o]0

c

‘n

M

-

d

>

o

S i
Z < =
E

(0]

i®)

O

(a1

o
[T

0.09

0.08

0.07 I
0.06 1L TITT

0.05 TII]I““HHIN Il H
0.04 :~** l
0.03

0.02

0.01

0 10 20 30 40
# recommendations received

DVD recommendations
(8.2 million observations)
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[Backstrom

et al. KDD ‘06]

Exposure Curve: LiveJournal

Group memberships spread over the

network:

circles represent
existing group members

squares may join

How does prob. of joining
a group depend on the
number of friends already
in the group?

N\

N,

0.

—

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu
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[Backstrom et al., KDD '06]

Exposure Curve: LiveJournal

LiveJournal group membership

0.025

. HWHMW\
= ot ! m l L
5 7

_Q_ 001 | jﬁ

e ,{"'

D_ 0.005 *

Tk (number of frlends in the group)
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Exposure Curve: Information

Twitter [Romero et al. ‘11]
Aug ‘09 to Jan "10, 3B tweets, 60M users

0.025
0.02
0.015f

o

0.01

0.005

O0 5 10 15 20 25 30

K
Avg. exposure curve for the top 500 hashtags

What are the most important aspects of the
shape of exposure curves?

Curve reaches peak fast, decreases after!

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 52



Modeling the Shape of the Curve

0.025¢

Persistence of P is the

ratio of the area under

the curve Pand the area o
of the rectangle of height
max(P), width max(D(P))

0_

D(P) is the domain of P AL L

Persistence measures the - S -
decay of exposure curves

0.02

0.01

_plk)
|

Stickiness of P is max(P)

Stickiness is the probability of KR
usage at the most effective exposure
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Exposure Curve: Persistence

Category Examples
° ° Celebrity myj, brazilwantsjb, regis, iwantpeterfacinelli

IVI a n u a I Iy I d e nt Ify 8 Music thisiswar, mj, musicmonday, pandora
Games mafiawars, spymaster, mw2, zyngapirates

b d t : : t h Political tcot, glennbeck, obama, her

ro a ca eg o r I e S W I Idiom cantlivewithout, dontyouhate, musicmonday
. Sports golf, yankees, nhl, cricket

at I e a St 20 H TS I n e a c h Movies/TV lost, glennbeck, bones, newmoon

Technology || digg. iphone, jquery, photoshop

074 . . . , . . . .
7T | 1 e ldioms and Music
| | have lower persistence
o than that of a random
Q el | subset of hashtags of
2 . L S S S the same size
‘D oeef 1 e Politics and Sports
2 have higher persistence
oe4r 1 than that of a random
subset of hashtags of
" V4 | the same size
True Rnd. subset
0.6 y : . ! . ! : :
Folical idloms  Music Technology Movies  Sports  Games  Gelebriy
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Exposure Curve: Stickiness

0.032

0.03 g -
0.028 .
0.026 .

0.024 | ) 4 -

Stickiness

0.022 - -1

0.02 —

0.018 | ‘ -

0.016

1 I 1 I 1 1 1
Political Idioms Music Technology Movies Sports Games Celebrity

Technology and Movies have lower stickiness than
that of a random subset of hashtags

Music has higher stickiness than that of a random
subset of hashtags (of the same size)

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 55



[KDD '12]

Network & External Exposures

R A ffocts.
R 12
R R
A
Two sources of exposures
[Myers et al., KDD, 2012]

Exposures from the network
External exposures
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Putting it all together

External Influence Infected Neighbors

)

Internal Exposures

Event Profile

7\'€Xf (t)

P(Exposure)

Exposure Curve

N

Exposures

'

nfection
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Model Inference Task

External Influence Infected Neighbors

Event Profile

Given: © kext(t)
Network G \/

Pe

[Internal Exposures |

P(Exposure

Time Exposure Curve
A set of node adoption [Exema Exp}m\i %(\ 0

times (u, t) single piece of info o
Goal: Infer
External event profile:

Aeyi(t) ... # external exposures over time

Infection

Adoption curve:

e
N

P(Infection)

|
P2
Exposures
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) [KDD ‘12]
Experiment

In social networks people post
links to interesting articles
You hear about an article from a friend

You read the article and then post it
Data from Twitter

Complete data from Jan 2011:
3 billion tweets

Trace the emergence of URLs
Label each URL by its topic
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Results: Different Topics

[KDD '12]

Adoption of URLs across Twitter:

k at

Duration % Ext.
max P(k) max P(k) (hours) Exposures

Politics (25) 0.0007 +/- 0.0001 | 4.59 +/-0.76 | |51.24 §/- 16.66 | 47.38 /- 6.12
World (824) 0.0013 +/- 0.0000 [2.97 H-0.10 | | 43.54 }+/-2.94 [26.07 +/- 1.19
Entertain. (117) 0.0015 +/-0.0002 | 3.52 +/-0.28 | 89.89 +/- 16.13

Sports (24) 0.0010 +/-0.0003 | 4.76 +/-0.83 | 87.85 +/-38.03

Health (81) 0.0016 +/- 0.0002 | 3.25 +/-0.30 | 100.09 +/- 17.57

Tech. (226) 0.0013 +/-0.0001 [} 3.00 +4- 0.16 83.05 +/- 8.73

Business (298) 0.0015 +/- 0.0001 | 3.18 +/-0.16 | 49 .61 |F/- 514 | 2227 +/-1.79
Science (106) 0.0012 +/-0.0002 | 4.06 +/-0.30 | 135.28 +/-16.19 | 20.53 +/-2.78
Travel (16) 0.0005 +/- 0.0001 I 2.33 H-0.29 | 151.73 +/-39.70 | 39.99 +/- 6.60
Art (32) 0.0006 +/- 0.0001 | 5.26 +/-0.66 | 188.55 +/-48.17 | 27.54 +/- 5.30
Edu. (31) 0.0009 +/- 0.0001 | 3.77 +/-0.51 | 130.53 +/-38.63 | 21.45 +/- 6.40

More in Myers et al., KDD, 2012
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Recap of this lecture

Basic reproductive number R,

General epidemic models

10/30/18

SIR, SIS, SEIZ
Independent cascade model
Applications to rumor spread

Exposure curves
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