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Degree distribution: P(k)

Path length: h

Clustering coefficient: C

Connected components:    s 



¡ Degree distribution P(k): Probability that 
a randomly chosen node has degree k

Nk = # nodes with degree k
¡ Normalized histogram:

P(k) = Nk / N ➔ plot
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¡ A path is a sequence of nodes in which each 

node is linked to the next one

¡ Path can intersect itself 

and pass through the 

same edge multiple times

§ E.g.: ACBDCDEG
§ In a directed graph a path

can only follow the direction

of the “arrow”

 

Pn = {i0,i1,i2,...,in}

 

Pn = {(i0 ,i1),(i1,i2 ),(i2 ,i3 ),...,(in-1,in )}
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¡ Distance (shortest path, geodesic)
between a pair of nodes is defined as 
the number of edges along the 
shortest path connecting the nodes

§ *If the two nodes are not connected, the 
distance is usually defined as infinite

¡ In directed graphs paths need to 
follow the direction of the arrows

§ Consequence: Distance is 
not symmetric: hB,C ≠ hC, B
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¡ Diameter: The maximum (shortest path) 

distance between any pair of nodes in a graph

¡ Average path length for a connected graph 

(component) or a strongly connected 

(component of a) directed graph 

§ Many times we compute the average only over the 

connected pairs of nodes (that is, we ignore “infinite” 

length paths)
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¡ Clustering coefficient: 
§ What portion of i’s neighbors are connected?

§ Node i with degree ki
§ Ci Î [0,1]

§

¡ Average clustering coefficient:
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where ei is the number of edges 
between the neighbors of node i
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¡ Clustering coefficient: 
§ What portion of i’s neighbors are connected?

§ Node i with degree ki

§
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where ei is the number of edges 
between the neighbors of node i
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kB=2,  eB=1,  CB=2/2 = 1

kD=4,  eD=2,  CD=4/12 = 1/3

Avg. clustering: C=0.33



¡ Size of the largest connected component 
§ Largest set where any two vertices can be joined 

by a path

¡ Largest component = Giant component
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How to find connected components:
• Start from random node and perform 

Breadth First Search (BFS)

• Label the nodes BFS visited

• If all nodes are visited, the network is connected

• Otherwise find an unvisited node and repeat BFS
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Degree distribution: P(k)

Path length: h

Clustering coefficient: C

Connected components:    s 





MSN Messenger.
¡ 1 month activity
§ 245 million users logged in
§ 180 million users engaged in 

conversations
§ More than 30 billion 

conversations
§ More than 255 billion 

exchanged messages
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Network: 180M people, 1.3B edges 
1510/3/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



Contact Conversation
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Messaging as an 
undirected graph
• Edge (u,v) if users u and v

exchanged at least 1 msg
• N=180 million people
• E=1.3 billion edges
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Note: We plotted the 
same data as on the 
previous slide, just 
the axes are now 
logarithmic.
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1Ck: average Ci of nodes i of degree k:

Avg. clustering 
of the MSN:
C = 0.1140
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Number of links 
between pairs of 

nodes in the 
largest connected 

component

Avg. path length 6.6
90% of the nodes can be reached in < 8 hops

Steps #Nodes
0 1

1 10

2 78

3 3,96

4 8,648

5 3,299,252

6 28,395,849

7 79,059,497

8 52,995,778

9 10,321,008

10 1,955,007

11 518,410

12 149,945

13 44,616

14 13,740

15 4,476

16 1,542

17 536

18 167

19 71

20 29

21 16

22 10

23 3

24 2

25 3
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Degree distribution: 

Path length: 6.6

Clustering coefficient: 0.11

Connectivity: giant component

Heavily skewed
avg. degree= 14.4

Are these values “expected”? 
Are they “surprising”?

To answer this we need a null-model!



a. Undirected network
N=2,018 proteins as nodes
E=2,930 binding interactions as links. 

b. Degree distribution:
Skewed. Average degree  <k>=2.90
c. Diameter:
Avg. path length = 5.8
d. Clustering:
Avg. clustering = 0.12
Connectivity: 185 components
the largest component 1,647  
nodes (81% of nodes)
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¡ Erdös-Renyi Random Graphs [Erdös-Renyi, ‘60]
¡ Two variants:
§ Gn,p: undirected graph on n nodes and each 

edge (u,v) appears i.i.d. with probability p

§ Gn,m : undirected  graph with n nodes, and 
m uniformly at random picked edges
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What kind of networks do 
such models produce?



¡ n and p do not uniquely determine the graph!
§ The graph is a result of a random process

¡ We can have many different realizations given 
the same n and p
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n = 10 
p= 1/6
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Degree distribution: P(k)

Path length: h

Clustering coefficient: C

What are the values of 
these properties for Gnp?



¡ Fact: Degree distribution of Gnp is binomial.
¡ Let P(k) denote the fraction of nodes with 

degree k:
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Select k nodes 
out of n-1

Probability of 
having k edges

Probability of 
missing the rest of 
the n-1-k edges 
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(n−1)1/2)1( -= npk By the law of large numbers, as the network size 
increases, the distribution becomes increasingly 

narrow—we are increasingly confident that the degree 
of a node is in the vicinity of k.

P(
k)

Mean, variance of a binomial distribution
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Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree ! (that is we 
set " = ! ⋅ 1/'), then C decreases with the graph size n.
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ei = p
ki (ki −1)
2 Number of distinct pairs of 

neighbors of node i of degree kiEach pair is connected 
with prob. p

Where ei is the number 
of edges between i’s 
neighbors

¡ Remember:

¡ Edges in Gnp appear i.i.d. with prob. p

¡ So, expected E[ei] is:

¡ Then E[C]:
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Degree distribution: 

Clustering coefficient:    C=p=k/n

Path length: next!

Connectivity:
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¡ Graph G(V, E) has expansion α: if" S Í V: 
# of edges leaving S ³ α× min(|S|,|V\S|)

¡ Or equivalently:
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¡ Expansion is measure of robustness:
§ To disconnect l nodes, we need to cut ³ α× l edges

¡ Low expansion:

¡ High expansion:

¡ Social networks:
§ “Communities”
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¡ Fact: In a graph on n nodes with expansion α for all 

pairs of nodes there is a path of length O((log n)/α).
¡ Random graph Gnp:

For log n > np > c, diam(Gnp) = O(log n/ log (np))
§ Random graphs have good expansion so it takes a 

logarithmic number of steps for BFS to visit all nodes
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S nodes α·S edges

S’ nodes α·S’ edges

s



Erdös-Renyi Random Graph can grow very 
large but nodes will be just a few hops apart
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Here ! ⋅ # =constant
That is, avg deg % is const
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Degree distribution: 

Path length: O(log n)

Clustering coefficient:   C = p = k / n

Connected components: next!
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¡ Graph structure of Gnp as p changes:

¡ Emergence of a giant component:
avg. degree k=2E/n or p=k/(n-1)
§ k=1-ε: all components are of size Ω(log n)
§ k=1+ε: 1 component of size Ω(n), others have size Ω(log n)

§ Each node has at least one edge in expectation
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0 1

p=
1/(n-1)

Giant component 
appears

c/(n-1)
Avg. deg const. 
Lots of isolated 

nodes.

log(n)/(n-1)
Fewer isolated 

nodes.

2*log(n)/(n-1)
No isolated nodes.

Empty
graph

Complete
graph

Avg deg = 1



¡ Gnp, n=100,000, k=p(n-1) = 0.5 … 3
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Fraction of nodes in the 
largest component

p*(n-1)=1



Paul Erdos
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Paul Erdös
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Degree distribution: 

Avg. path length: 6.6      O(log n)

Avg. clustering coef.:   0.11        k / n

Largest Conn. Comp.:  99%
C  ≈ 8·10-8

h  ≈ 8.2

MSN        Gnp

GCC exists
when k>1.

k ≈ 14.

n=180M

ý

þ

ý

þ



¡ Are real networks like random graphs?
§ Giant connected component: J
§ Average path length: J
§ Clustering Coefficient: L
§ Degree Distribution: L

¡ Problems with the random networks model:
§ Degree distribution differs from that of real networks

§ Giant component in most real network does NOT 

emerge through a phase transition

§ No local structure – clustering coefficient is too low

¡ Most important: Are real networks random?
§ The answer is simply: NO!
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¡ If Gnp is wrong, why did we spend time on it?
§ It is the reference model for the rest of the class
§ It will help us calculate many quantities, that can 

then be compared to the real data
§ It will help us understand to what degree is a 

particular property the result of some random 
process
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So, while Gnp is WRONG, it will turn out 
to be extremly USEFUL!



¡ Goal: Generate a random graph with a 
given degree sequence k1, k2, … kN

¡ Configuration model:

¡ Useful as a “null” model of networks:
§ We can compare the real network G and a “random” 
G’ which has the same degree sequence as G
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Nodes with spokes
Randomly pair up

“mini”-n0des
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Resulting graph



Can we have high clustering while also having short paths?

Vs.

High clustering coefficient, 
High diameter

Low clustering coefficient
Low diameter



¡ What is the typical shortest path 
length between any two people?
§ Experiment on the global friendship 

network
§ Can’t measure, need to probe explicitly 

¡ Small-world experiment [Milgram ’67]
§ Picked 300 people in Omaha, Nebraska 

and Wichita, Kansas
§ Ask them to get a letter to a 

stock-broker in Boston by passing 
it through friends

¡ How many steps did it take?
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¡ 64 chains completed:
(i.e., 64 letters reached the target)

§ It took 6.2 steps on the 
average, thus 
“6 degrees of separation”

¡ Further observations:
§ People who owned stock

had shorter paths to the stockbroker 
than random people: 5.4 vs. 6.7

§ People from the Boston area have even 
closer paths: 4.4
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Milgram’s small world experiment

[Milgram, ’67]



¡ Assume each human is connected to 100 other people
Then:
§ Step 1: reach 100 people

§ Step 2: reach 100*100 = 10,000 people

§ Step 3: reach 100*100*100 = 1,000,000 people

§ Step 4: reach 100*100*100*100 = 100M people

§ In 5 steps we can reach 10 billion people
¡ What’s wrong here? We ignore clustering!

§ Not all edges point to new people
§ 92% of FB friendships happen through a friend-of-a-friend
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¡ MSN network has 7 orders of magnitude 
larger clustering than the corresponding Gnp!

¡ Other examples:
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h ... Average shortest path length
C ... Average clustering coefficient
“actual” … real network
“random” … random graph with same avg. degree

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61
Electrical power grid: N = 4,941 nodes, k = 2.67
Network of neurons: N = 282 nodes, k = 14

Network hactual hrandom Crandom

Film actors 3.65 2.99 0.00027
Power Grid 18.70 12.40 0.005
C. elegans 2.65 2.25 0.05
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¡ Consequence of expansion:
§ Short paths: O(log n)

§ This is the smallest diameter we can 
get if we have a constant degree.

§ But clustering is low!
¡ But networks have 

“local” structure:
§ Triadic closure:

Friend of a friend is my friend
§ High clustering but 

diameter is also high
¡ How can we have both?

Low diameter
Low clustering coefficient

High clustering coefficient
High diameter



¡ Could a network with high clustering also 
be a small world (log $ dimeter)?
§ How can we at the same time have 

high clustering and small diameter?

§ Clustering implies edge “locality”
§ Randomness enables “shortcuts”
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High clustering
High diameter

Low clustering
Low diameter



Small-World Model [Watts-Strogatz ‘98]
Two components to the model:

¡ (1) Start with a low-dimensional regular lattice
§ (In our case we are using a ring as a lattice)

§ Has high clustering coefficient

¡ Now introduce randomness (“shortcuts”)

¡ (2) Rewire: 
§ Add/remove edges to create 

shortcuts to join remote parts 

of the lattice

§ For each edge with prob. pmove 

the other end to a random node
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[Watts-Strogatz, ‘98]
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High clustering
Low diameter

Low clustering
Low diameter
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Rewiring allows us to “interpolate” between 
a regular lattice and a random graph

[Watts-Strogatz, ‘98]
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¡ Could a network with high clustering be at the 
same time a small world?
§ Yes! You don’t need more than a few random links

¡ The Watts Strogatz Model:
§ Provides insight on the interplay between clustering 

and the small-world 
§ Captures the structure of many realistic networks
§ Accounts for the high clustering of real networks
§ Does not lead to the correct degree distribution
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Which interesting graph 
properties do we observe 
that need explaining?
¡ Small-world model:
§ Diameter
§ Clustering coefficient

¡ Node degree distribution
§ What fraction of nodes has degree ! (as a function of !)?
§ Prediction from simple random graph models: 
p(!) = exponential function of !

§ Observation: Often a power-law: & ! ∝ !()
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Expected based on Gnp Found in data

! " ∝ "$%



¡ Take a network, plot a histogram of !(#) vs. #
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Flickr social 
network

n= 584,207, 
m=3,555,115

[Leskovec et al. KDD ‘08]

Plot: fraction of nodes 
with degree %:
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¡ Plot the same data on log-log scale:
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Flickr social 
network

n= 584,207, 
m=3,555,115

[Leskovec et al. KDD ‘08]

How to distinguish:
!(#) ∝ exp(−#) vs.
!(#) ∝ #*+ ?

Take logarithms: 
if , = .(/) = 0*1 then 
log , = −/

If , = /*+ then 
log , = −5 log(/)

So on log-log axis 
power-law looks like 
a straight line of 
slope −5 !

Slope  = −5 = 1.75
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¡ First observed in Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]
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Internet domain topology



¡ The World Wide Web [Broder et al., 2000]
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¡ Other Networks [Barabasi-Albert, 1999]
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Power-gridWeb graphActor collaborations



¡ Above a certain ! value, the power law is 
always higher than the exponential!

11/8/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 10

20 40 60 80 100

0.2

0.6

1

1)( -= cxxp

xcxp -=)(

5.0)( -= cxxp

x

p(
x)



¡ Power-law vs. Exponential 
on log-log and semi-log (log-lin) scales
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[Clauset-Shalizi-Newman 2007]
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¡ Power-law degree exponent is 
typically 2 < a < 3
§ Web graph:

§ ain = 2.1, aout = 2.4 [Broder et al. 00]

§ Autonomous systems:
§ a = 2.4 [Faloutsos3, 99]

§ Actor-collaborations:
§ a = 2.3 [Barabasi-Albert 00]

§ Citations to papers:
§ a » 3 [Redner 98]

§ Online social networks:
§ a » 2 [Leskovec et al. 07]
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¡ Definition:
Networks with a power-law tail in 
their degree distribution are called 
“scale-free networks”

¡ Where does the name scale-free come from?
§ Scale invariance: There is no characteristic scale

§ Scale invariance means laws do not change if scales of length, 
energy, or other variables, are multiplied by a common factor

§ Scale-free function: ! "# = "%!(#)
§ Power-law function: ! "# = "%#% = "%!(#)
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Log() or Exp() are not  scale free!
( )* = log )* = log ) + log * = log ) + ( *
( )* = exp )* = exp * 2 = ( * 2
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Many other quantities follow heavy-tailed distributions

[Clauset-Shalizi-Newman 2007]
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CMU grad-students at 
the G20 meeting in 

Pittsburgh in Sept 2009



Random network Scale-free (power-law) network
(Erdos-Renyi random graph)

Degree distribution is Binomial

Degree 
distribution is 
Power-law

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2711/8/18
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Gnp ?Model:



¡ New nodes are more likely to link to nodes that already 
have high degree

¡ Herbert Simon’s result:
§ Power-laws arise from “Rich get richer” (cumulative 

advantage)

¡ Examples
§ Citations [de Solla Price ‘65]: New citations to a paper are 

proportional to the number it already has

§ Herding: If a lot of people cite a paper, then it must be good, and 

therefore I should cite it too

§ Sociology: Matthew effect, http://en.wikipedia.org/wiki/Matthew_effect

§ “For whoever has will be given more, and they will have an abundance. 

Whoever does not have, even what they have will be taken from them.”

§ Eminent scientists often get more credit than a comparatively unknown 

researcher, even if their work is similar
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¡ Preferential attachment: 
[de Solla Price ‘65, Albert-Barabasi ’99, Mitzenmacher ‘03]

§ Nodes arrive in order 1,2,…,n
§ At step j, let di be the degree of node i < j
§ A new node j arrives and creates m out-links
§ Prob. of j linking to a previous node i is 

proportional to degree di of node i
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We analyze the following simple model:
¡ Nodes arrive in order 1,2,3, … , &
¡ When node ' is created it makes a 

single out-link to an earlier node ( chosen:
§ 1) With prob. ), ' links to ( chosen uniformly at 

random (from among all earlier nodes)
§ 2) With prob. * − ), node ' chooses ( uniformly at 

random & links to a random node l that i points to
§ This is same as saying: With prob. * − ), node ' links to 

node , with prob. proportional to -, (the in-degree of ,)
§ Our graph is directed: Every node has out-degree 1
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[Mitzenmacher, ‘03]

Node j



¡ Claim: The described model generates 
networks where the fraction of nodes with 
in-degree k scales as:

11/8/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 43

)11(
)( q

i kkdP
+-

µ=
where q=1-p

p-
+=
1
11a

So we get power-law
degree distribution
with exponent:



¡ Preferential attachment gives 
power-law in-degrees!

¡ Intuitively reasonable process
¡ Can tune model parameter p to get the 

observed exponent
§ On the web, P[node has in-degree d] ~ d-2.1

§ 2.1 = 1+1/(1-p) à p ~ 0.1
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¡ Preferential attachment is not so good at 
predicting network structure
§ Age-degree correlation

§ Node degree is proportional to its age

§ Solution: Node fitness (virtual degree)

§ Links among high degree nodes:
§ On the web nodes sometimes avoid linking to each other

¡ Further questions:
§ What is a reasonable model for how people 

sample network nodes and link to them?
§ Short random walks
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THE BARABÁSI-ALBERT MODEL 23

THE ORIGINS OF PREFERENTIAL
ATTACHMENT

SECTION 5.8

Given the key role preferential attachment plays in the evolution of 
real networks, we must ask, where does it come from? The question can be 
broken down to two narrower issues:

Why does Ȇ(k) depend on k?
Why is the dependence of Ȇ(k) linear in k?

In the past decade we witnessed the emergence of two philosophically 
different answers to these questions. The first views preferential attach-
ment as the interplay between random events and some structural prop-
erty of a network. These mechanisms do not require global knowledge of 
the network but rely on random events, hence we will call them local or 
random mechanisms. The second assumes that each new node or link bal-
ances conflicting needs, hence they are preceeded by a cost-benefit anal-
ysis. These models assume familiarity with the whole network and rely 
on optimization principles, prompting us to call them global or optimized 
mechanisms. In this section we discuss both approaches.

LOCAL MECHANISMS
Several network models do not have preferential attachment explic-

itely built into them, as we did in the case of the Barabási-Albert model. 
Rather, they generate preferential attachment. Next we discuss two such 
models, helping us to derive Ȇ(k) and understand its origins.

Link Selection Model
The link selection model offers perhaps the simplest example of a local 
mechanism capable of generating preferential attachment [16]. It is de-
fined as follows (Figure 5.13):

• Growth: At each time step we add a new node to the network.

• Link Selection: We select a link at random and connect the new node to 
one of the two nodes at the two ends of the selected link. 

Figure 5.13
Link Selection Model

(a)

(b)

(a) A new node first selects randomly a link 
from the network, shown in purple, and con-
nects with equal probability to one of two 
nodes at the ends of the selected link. 
(b) In this case the new node connected to the 
node at the right end of the link.

NEW NODE

¡ Link selection model -- perhaps the 
simplest example of a local or random 
mechanism capable of generating 
preferential attachment

¡ Growth: At each time step we add a new 
node to the network

¡ Link selection: We select a link at random 
and connect the new node to one of 
nodes at the two ends of the selected link

¡ This simple mechanism generates 
preferential attachment 
§ Why? Because node is picked with prob. 

proportional to the number of edges it has
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Copying model:
¡ (a) Random Connection: with prob. ! the new node links to 

random "
¡ (b) Copying: With prob. 1 − ! randomly choose an outgoing link 

of node " and connect the new node to the selected link's target

§ The new node “copies” one of the links of an earlier node
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Analysis of the copying model:
¡ (a) the probability of selecting a node is 1/N
¡ (b) is equivalent to selecting a node linked to a 

randomly selected link. The probability of selecting a 
degree-! node through the copying process of step (b) 
is !/2$ for undirected networks

¡ Again, the likelihood that the new node will connect to 
a degree-! node follows preferential attachment

Examples:
¡ Social networks: Copy your friend’s friends.
¡ Citation Networks: Copy references from papers we 

read
¡ Protein interaction networks: gene duplication 
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¡ Copying mechanism (directed network)
§ Select a node and an edge of this node
§ Attach to the endpoint of this edge

¡ Walking on a network (directed network)
§ The new node connects to a node, then to every first, 

second, … neighbor of this node
¡ Attaching to edges

§ Select an edge and attach to both endpoints of this edge
¡ Node duplication

§ Duplicate a node with all its edges
§ Randomly prune edges of new node
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Size of the biggest hub is of order O(N). Most nodes can 
be connected within two steps, thus the average path 
length will be independent of the network size n.

The avg. path length increases slower than logarithmically 
with n. In Gnp all nodes have comparable degree, thus 
most paths will have comparable length. In a scale-free 
network vast majority of the paths go through the few high 
degree hubs, reducing the distances between nodes. 

Some models produce ! = 3. This was first derived by 
Bollobas et al. for the network diameter in the context of  a 
dynamical model, but it holds for the average path length 
as well.

The second moment of the distribution is finite, thus in 
many ways the network behaves as a random network. 
Hence the average path length follows the result that we 
derived for the random network model earlier.Degree

exponent
Avg. path

length

Ultra
small
world

Small
world
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! = 1
Second moment $% diverges $% finite

Average $ diverges Average $ finite

Ultra small world behavior Small world

Behaves like a 
random network

The scale-free behavior is 
relevant

Regime full of anomalies…

web web
internet

actor

collaborationmetabolic

citation

! = 2 ! = 3
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Power-law distribution

¤ linear  scale n log-log 
scale

n high skew (asymmetry)
n straight line on a log-log plot
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Quiz Q:

¤ As the exponent α increases, the 
downward slope of the line on a log-log 
plot
¤ stays the same
¤ becomes milder
¤ becomes steeper



2  ingredients in generating power-law 
networks

¤nodes  appear  over  time  (growth)



2  ingredients in generating power-law 
networks

¤ nodes  prefer  to  attach   to  nodes  with  many  
connections   (preferential   attachment,   cumulative  
advantage)



try it yourself

http://web.stanford.edu/class/cs224w/NetLogo/RAndPrefAttachment.nlogo



Quiz Q:

¤ Relative to the random growth model, 
the degree distribution in the preferential 
attachment model
¤ resembles a power-law distribution less
¤ resembles a power-law distribution more



Fitting power-law distributions

¤ Most  common  and  not  very  accurate  method:
¤ Bin  the  different  values  of  x  and  create  a  frequency  
histogram

ln(x)

ln(#  of  times
x  occurred)

x  can  represent  various  quantities,  the  indegree  of  a  node,  the  magnitude  of  
an  earthquake,  the  frequency  of  a  word  in  text

ln(x)  is  the  natural
logarithm  of  x,
but  any  other  base  of  
the  logarithm  will  give  
the  same  exponent  
of  α because
log10(x)  =  ln(x)/ln(10)



Example on an artificially generated data set

¤Take  1  million  random  numbers  from  a  
distribution  with  α =  2.5

¤Can  be  generated  using  the  so-­called
‘transformation  method’

¤Generate  random  numbers  r  on  the  unit  interval
0≤r<1

¤then  x  =  (1-­r)−1/(α−1) is  a  random  power  law  
distributed  real  number  in  the  range  1  ≤  x <  ∞



Linear scale plot of straight bin of the data
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Log-log scale plot of simple binning of the data

n Same bins, but plotted on a log-log scale
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Here  we  have  0,  1  or  2  observations
of  values  of  x  when  x  >  500

here  we  have  tens  of  thousands  of  observations
when  x  <  10

Actually  don’t  see  all  the  zero
values  because  log(0)  =  ∞



Log-log scale plot of straight binning of the data

n Fitting a straight line to it via least squares regression 
will give values of the exponent α that are too low 
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What goes wrong with straightforward binning
¤Noise  in  the  tail  skews  the  regression  result
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First solution: logarithmic binning
¤ bin  data  into  exponentially  wider  bins:

¤ 1,  2,  4,    8,  16,  32,  …

¤ normalize  by  the  width  of  the  bin
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data
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evenly
spaced
datapoints

less  noise
in  the  tail
of  the
distribution

n disadvantage: binning smoothes out data but also loses 
information



Second solution: cumulative binning 

¤No  loss  of  information
¤ No  need   to  bin,  has  value  at  each  observed   value  
of  x

¤But  now  have  cumulative  distribution
¤ i.e.  how  many  of  the  values  of  x  are  at  least  X

¤ The  cumulative  probability   of  a  power  law  
probability   distribution   is  also  power   law  but  with  
an  exponent  α -­ 1

)1(

1
−−−

−
=∫ αα

α
xccx



Fitting via regression to the cumulative distribution

¤fitted  exponent  (2.43)  much  closer  to  actual  (2.5)
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Where to start fitting?

¤some  data  exhibit  a  power  law  only  in  the  tail

¤after  binning  or  taking  the  cumulative  distribution  
you  can  fit  to  the  tail

¤so  need  to  select  an  xmin  the  value  of  x  where  
you  think  the  power-­law  starts

¤certainly  xmin needs  to  be  greater  than  0,  
because  x−α is  infinite  at  x  =  0



Example: 

¤Distribution  of  citations  to  papers

¤power  law  is  evident  only  in  the  tail  (xmin >  
100  citations)

xmin

Source:MEJ Newman, ʼ’Power laws, Pareto distributions and Zipfʼ’s lawʼ’, Contemporary Physics 46, 323–351 (2005)



Maximum likelihood fitting – best
¤You  have  to  be  sure  you  have  a  power-­law  
distribution  (this  will  just  give  you  an  exponent  
but  not  a  goodness  of  fit)

1

1 min

ln1
−

=
⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

n

i

i

x
xnα

n xi are all your data points, and you have n of them
n for our data set we get α = 2.503 – pretty close!



Some exponents for real world data
xmin exponent α

frequency   of  use  of  words 1 2.20
number  of  citations   to  papers 100 3.04
number  of  hits  on  web  sites 1 2.40
copies  of  books  sold  in  the  US 2  000  000 3.51
telephone   calls  received 10 2.22
magnitude   of  earthquakes 3.8 3.04
diameter  of  moon  craters 0.01 3.14
intensity  of  solar  flares 200 1.83
intensity  of  wars 3 1.80
net  worth  of  Americans $600m 2.09
frequency   of  family  names 10  000 1.94
population   of  US  cities 40  000 2.30



Many real world networks are power law
exponent α
(in/out  degree)

film  actors 2.3
telephone   call  graph 2.1
email  networks 1.5/2.0
sexual  contacts 3.2
WWW 2.3/2.7
internet 2.5
peer-­to-­peer 2.1
metabolic  network 2.2
protein   interactions 2.4



Hey, not everything is a power law

¤number  of  sightings  of  591  bird  species  in  the  
North  American  Bird  survey  in  2003.

cumulative
distribution

n another example:
n size of wildfires (in acres)

Source:MEJ Newman, ʼ’Power laws, Pareto distributions and Zipfʼ’s lawʼ’, Contemporary Physics 46, 323–351 (2005)



Not every network is power law distributed

¤reciprocal,  frequent  email  communication

¤power  grid

¤Roget’s  thesaurus

¤company  directors…



Example on a real data set: number of AOL visitors to 
different websites back in 1997

simple  binning  on  a  linear
scale

simple  binning  on  a  log-­log  scale



trying to fit directly…
¤direct  fit  is  too  shallow:  α =  1.17…



Binning the data logarithmically helps

¤select  exponentially  wider  bins
¤ 1,  2,  4,  8,  16,  32,  ….



Or we can try fitting the cumulative distribution

¤ Shows  perhaps   2  separate   power-­law  regimes  that  
were  obscured   by  the  exponential   binning

¤ Power-­law  tail  may  be  closer  to  2.4



Another common distribution: power-law
with an exponential cutoff

¤p(x)  ~  x-­a e-­x/κ
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p(
x)

starts  out  as  a  power  law

ends  up  as  an  exponential

but  could  also  be  a  lognormal  or  double  exponential…



example: time between edge initiations

Q: Why is the 
cutoff 
present? 

Leskovec et al., KDD’08



Wrap up on power-laws

¤ Power-laws are cool and intriguing

¤ But make sure your data is actually 
power-law before boasting


