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Web as a Graph




Structure of the Web

Today we will talk about how does the
Web graph look like:

1) We will take a real system: the Web

2) We will represent it as a directed graph

3) We will use the language of graph theory
Strongly Connected Components

4) We will design a computational Out(y)
experiment:

Find In- and Out-components of a given node v ﬂ a
5) We will learn something about the 0“
structure of the Web: BOWTIE! o v O
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The Web as a Graph

Q: What does the Web “look like” at
a global level? . .
Web as a graph: = S

Nodes = web pages TR e
Edges = hyperlinks = - ey
Side issue: What is a node? e Al

Dynamic pages created on the fly

“dark matter” —inaccessible
database generated pages
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The Web as a Graph
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The Web as a Graph

| teach a
class on
Networks. CS224W:
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In early days of the Web links were navigational
Today many links are transactional (used not to navigate
from page to page, but to post, comment, like, buy, ...)
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The Web as a Directed Graph

I'm applying to
coliege

I'm a student
at Univ. of X

USNews
College
Rankings
| teach at
Univ. of X

USNews
Featured

Colleges

Networks
class blog

Blog post about
college rankings
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Other Information Networ
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What Does the Web Look Like?

How is the Web linked?
What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:

Given node v, what can v reach?

What other nodes can reach v?

E

B F

D Cc G
For example:

In(v) = {w|wcan reach v/, In(A) = {A,B,C,E,G}
Out(v) = {w | v can reach w} Out(A)={A,B,C,D,F}
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Reasoning about Directed Graphs

Two types of directed graphs:
Strongly connected:

Any node can reach any node

via a directed path 5 <
In(4)=Out(4)={A,B,C,D,E}
Directed Acyclic Graph (DAG): E B

Has no cycles: if u can reach v,
then v cannot reach u

Any directed graph (the Web) can be
expressed in terms of these two types!

Is the Web a blg strongly connected graph or a DAG?
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Strongly Connected Component

A Strongly Connected Component (SCC)
is a set of nodes § so that:
Every pair of nodes in § can reach each other

There is no larger set containing § with this
property

Strongly connected
components of the graph:
{AB,C,G}, {D}, {E}, {F}
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Strongly Connected Component

10/2/18

Fact: Every directed graph is a DAG on its SCCs
(1) SCCs partition the nodes of G

That is, each node is in exactly one SCC

(2) If we build a graph G’ whose nodes are SCCs, and
with an edge between nodes of G’ if there is an edge
between corresponding SCCs in G, then G’ is a DAG

(1) Strongly connected components of
graph G: {A,B,C,G}, {D}, {E}, {F}
(2) G’ is a DAG:

{E}
{F}

{A,B,C,G}

’
{D} G
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Structure of the Web

Broder et al.: Altavista web crawl (Oct '99)

Web crawl is based on a large set of starting points accumulated
over time from various sources, including voluntary submissions.

203 million URLS and 1.5 billion links
Goal: Take a large snapshot of the Web and try to

understand how its SCCs “fit together” as a DAG

/ N
\\
| 0 ’/ ’ | Tomkins,

Ny . o , | b7\ W | e“s‘;‘, Broder, and
10/2/18 a\k > ) ’( | \ \' { Kumar .




Graph Structure of the Web

Computational issue: v
Want to find a SCC containing node v? m
Observation: i)

Out(v) ... nodes that can be reached from v (w/ BFS)
SCC containing v is: Out(v) N In(v)
— OMt(\/, G) N OMt(V,G ,), where G’is G with all edge directions flipped

In(v)

\'}
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Out(A) N In(A) =SCC

Example:

Out(A) = {A, B, D, E, F, G, H
In(A) = {A, B, C, D, E}
So, SCC(A) = Out(A) N In(A) = {A, B, D, E}
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Graph Structure of the Web

There is a single giant SCC

That is, there won’t be two SCCs
Why only 1 big SCC? Heuristic argument:
Assume two equally big SCCs.

It just takes 1 page from one SCC to link to
the other SCC.

If the two SCCs have millions of pages the likelihood
of this not happening is very very small.

o—>9
o— 9

Giant SCCa Giant SCC2
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Structure of the Web

Directed version of the Web graph:

Altavista crawl from October 1999
203 million URLs, 1.5 billion links

ComPUtation: Reachability using outlinks

Compute ]N(V) and OUT(V) E 1e+89 | Outlink reachability — _
g le+0s - |

by starting at random nodes. ¢ t=+27 )
g le+86 _

Observation: The BFS either 2| :

visits many nodes or ;100 | 1
= 169 o

very few : o)

1 1 1 ] ] ]

a8 a.2 .4 8.6 8.8 1
frac. of starting nodes
x-axis: rank
y-axis: number of reached nodes
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Structure of the Web

Reachability using outlinks
T T T T

Result: Based on IN and OUT gl e T

@
¢ le+d?

of a random node v: o

« 100086
o

Out(v) = 100 million (50% nodes) § !
In(v) = 100 million (50% nodes) RO
Largest SCC: 56 million (28% nodes) x-axis: rank

y-axis: number of
reached nodes

(b)

What does this tell us about the
conceptual picture of the Web graph?
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Bowtie Structure of the Web

Tendrils
/44 Million

nodes -

IN

____._',

44 Million nodes 56 Million nodes 44 Million nodes

D *‘—‘\-———E Disconnected components

203 million pages, 1.5 billion links [Broder et al. 2000]
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How to Organize the Web

PageRank
(aka the Google Algorithm)




How o Organize the Web?

® o @YJ;HOO!@ I

Ao WAz vameo  aco

OHow to organize the Web? | —=sw=tsre -

l—ll_l ope

Ay ® News (on)
Huniae, Photegngly, Ankierwy, . Wod [Xorat], Duddy, Cwmeat Ity

LR and By -
vy, S, Saiiml, Tams, Fports [Xaral] Gamer, Toomd, Awad, .

O First tfry: Human curated ;:--f:@- ;wej;-ﬁ-_e
Web directories : ; :
O Yahoo, DMQO/Z, LookSmart

OSecondiry: Web Search

Arts
Movies, Television, Music. Investing..  Intemet, Software, Hardware ..
) ) Games Health Home

Video Games, RPGs, Gambling... Fitness, Medicine, Altemative... Family, Consumers, Cooking...
n o rm q I o n e rl e v q G e I I I S O Kids and Teens News Recreatio

Asts, School Time, TeenLife.. Media, Newspapers, Weather... Travel, Food, Outdoors, Humor...
o ° Reference Regional Science

Maps, Education, Librasies US, Canada, UK, Europe. Biology, Psy ¢, Physics

Shopping Society Sports

Clothing, People, Religion, Issues Baseball, Soccer, Basketball

World

Ca fiol, Francais, Itali 2. N vecianit, Svensk:

and trusted set
O Newspaper arficles, Patents, efc.

O But: Web is huge, full of untrusted documents,
random things, web spam, etc.

O So we need a good way to rank webpages!
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Web Search: 2 Challenges

2 challenges of web search:

0(1) Web contains many sources of information
Who to “trust”?

O Insight: Trustworthy pages may point to each other!

0(2) Whatis the “best” answer to query
“newspaper”?
O No single right answer

O Insight: Pages that actually know about newspapers
might all be pointing to many newspapers



Ranking Nodes on the Graph

0 All web pages are not equally “important”
WWW.j0oe-schmoe.com vs. www.stanford.edu

O We already know:
There is large diversity
INn the web-graph
node connectivity.

O So, let’'srank the pages
using the web graph
link structure!




Link Analysis Algorithms

O We will cover the following Link Analysis
approaches to computing importance of
nodesin a graph:

O Hubs and Authorities (HITS)
O Page Rank

O-foepte-Specitic{Personalized}-Page Renrk-<- another

time

Sidenote: Various notions of node centrality: Node u
O Degree cenirality = degree of u

O Betweenness centrality = #shortest paths passing
through u

O Closeness centrality = avg. length of shortest paths
from u to all other nodes of the network

O Eigenvector centrality = like PageRank



Hubs and Authorities
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Link Analysis

0 Goal (back to the newspaperexample):

O Don'tjust find newspapers. Find “experts” — pages that
ink In a coordinated way 1o good newspapers

O Ildea: Links as votes
O Page is more important if it has more links
O In-coming linksg Out-going linkse

O Hubs and Authorities
Each page has 2 scores: Ebay: 3
O Quality as an expert (hub):

NYT: 10

. Yahoo: 3
O Total sum of votes of pages pointed to
O Quality as an content (authority): CNN: 8
O Total sum of votes of experts WSJ: 9

O Principle of repeated improvement .



Hubs and Authorities

Interesting pages fall into two classes:

1. Authorities are pages confaining
useful information @
O Newspaper home pages wo— @ o o

O Course home pages
O Home pages of auto manufacturers e

c
O o

2. Hubs are pages that link fo authorities

O List of newspapers
O Course bulletin NYT: 10

O List of U.S. auto manufacturers Eboy:?
Yahoo: 3

CNN: 8
WSJ: 9

8



Counting in-links: Authority

~ <
® o

~
| @ Each page starts with hub score 1
@ Authorities collect their votes

(Note this is idealized example. In reality graph is not bipartite and
each page has both a hub and the authority score)
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Expert Quality: Hub

: @ 2 votes
% 2 votes
1

> 4 votes
(3)

& T
3 votes

o 1 vote

| @ 3 votes Hubs collect authority scores
@ 3 votes

(Note this is idealized example. In reality graph is not bipartite and
each page has both a hub and authority score) .
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Reweighting

@ new score: 19
0‘
A‘% new score: 19
(11

N

7 -
% new score: 31

R\ E o
new score: 24

e new score: 5

@ new score: 15
@ new score: 12

(Note this is idealized example. In reality graph is not bipartite and
each page has both a hub and authority score) .
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Mutually Recursive Definition

O A good hub links to many good authorities

O A good authority is linked from many good
hubs

O Note a self-reinforcing recursive definition

O Model using two scores for each node:
O Hub score and Authority score

O Represented as vectors h and a, where the i-th
element is the hub/authority score of the I-th nhode



Hubs and Authorities

Convergence criteria:

OEach page i has 2 scores: z (10 _hgm))z j
O Authority score: a; -
O Hub score: h; Z (af - a§t+1))2 <e
HITS algorithm:

O Inifialize: aj(o) = 1/+/n, hj(o) =1/y/n

O Then keep iterating until convergence:

O vi: Authority: i = ¥, h"

0 vi: Hub: A0 = 3, a®

O Vvi: Normalize:

5 (ai(t+1))2 _ 1 Z]_ (hj§t+1))2 .



Hubs and Authorities @

O Hits in the vector notation:
O Vecfora = (ay..,a,), h = (hy..,h,)
O Adjacency matrix A (n xn): A; =1 if i—j

O Can rewrite h; = Zi—>j a; as h; = Z]Al] © A

OSo: h=A4-a Andsimilarly: a =A" - h

O Repeat until convergence:
OARED = 4. 40
] a(t+1) — AT -h(t)
O Normalize a*Y and at+D)



Hubs and Authorities @

OWhatisa = AT - h?

OThen: a=A4"-(A-a)
;Y_I
new h ,

Dais update?:ft’ig 2 steps):
a=A"(4a)=(A"A4) a
O/ is updated (in 2 steps)
h=AATh)=AA)h
K Thus, in 2k steps:

a= (AT -A)F-a

h=(4-ATYE - R Repeated matrix powerl




Hubs and Authorities

O Definition: Eigenvectors & Eigenvalues

OleftR-x=4-x
for some scalar 4, vector x, maftrix R
O Then x is an eigenvector, and A s its eigenvalue

O The steady state (HITS has converged):

Note constants c¢’,c”

OAT A a=c " a don’t matter as we
T o normalize them out
OA-A"-h=c"-h every step of HITS

= So, authority a is eigenvector of ATA
(associated with the largest eigenvalue)

Similarly: hub h is eigenvector of 44T



PageRank




Links as Votes

O Still the same idea: Links as votes
O Page is more important if it has more links
O In-coming linksg Out-going linkse

O Think of in-links as votes:

O www.stanford.edu has 23,400 in-links
O www.joe-schmoe.com has 1 in-link

O Are all in-links equal?
O Links from important pages count more
O Recursive question!



PageRank: The “"Flow"” Model

A “vote” from an important

page is worth more:
Each link’s vote is proportional 73 f1,/4
to the importance of its source J

\r/i
page X ri/3 f
If page i with importance r; has
d. out-links, each link gets r; / d.

ri=r/3+r/4
votes

Page j's own importance r; is
the sum of the votes on its in-
links
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PageRank: The “"Flow"” Model

A page is important if it is
pointed to by other important r/2
pages

Define a “rank” r; for node j

_Z_

l—)]
d; ... out-degree of node i “Flow" equations:
ry =r,/2+r,/2
r, =r,/2+r,
You might wonder: Let’s just use Gaussian elimination Iy ="r,/2

to solve this system of linear equations. Bad idea (G is too large!)
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PageRank: Matrix Formulation

Stochastic adjacency matrix M
Let page j have d; out-links

Ifj — i, then M;; =% %{]

M is a column stochastic matrix // e
Columns sumto 1 1/3 I_|]
Rank vector r: An entry per page M
r; is the importance score of page i
2T =1
The flow equations can be written
]/;.
r=M-r ry=

=] di
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Random Walk Interpretation

Imagine a random web surfer:
At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random y o= Z g
J

Ends up on some page j linked from i = dou (D)

Process repeats indefinitely
Let:

p(t) ... vector whose it coordinate is the
prob. that the surfer is at page i attime ¢t

So, p(t) is a probability distribution over pages
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The Stationary Distribution

Where is the surfer at time 7+1? /K

Follows a link uniformly at random
p(t+1)= M- p(t) p(t+1)=M-p(t)
Suppose the random walk reaches a state
p(t+1)= M- p(t) = p(t)
then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

So, 1 is a stationary distribution for
the random walk
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PageRank: How to solve?




PageRank: How to solve?

Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks

Assigh each node an initial page rank
Repeat until convergence (Z; | r{#) - ()] < g)

Calculate the page rank of each node

(¢)

(t+1) 7;
rj - Z d

I— ] 1

d; .... out-degree of node i

10/2/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 32



PageRank: How to solve?

Power Iteration: > O
y| Vs 0
Setr; « 1/N vl o | 1
m| 0 | % | 0
1: ‘r — ZH] 2
ry =ry/2+r,/2
2:r <1 r, =r,/2+r,
If |r —7'| > €:goto 1 I =T, /2
Example:
’ry\ 1/3
I, | = 1/3
(T 1/3

lteration O, 1, 2, ...
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PageRank: How to solve?

Power lteration:
Setr; « 1/N

1:7; (_Zl_)J di

2:r <« 7'

If |r —71’| > €:goto 1

Example:
1, 1/3  1/3  5/12 9/24
r, | = 13 3/6 13 11/24
Ly 1/3  1/6 3/12 1/6

lteration O, 1, 2, ...
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y a m
y| Vs 0
al 0 1
m| O %! 0

ry =ry/2+r,/2

r, =r,/2+r,
r,=1r,/2

6/15

6/15
3/15

34




PageRank: Three Questions

(¢)

(t+1) r.
r] R Z lCl equi\?;Iently I/' — Mr

I— ] 1

Does this converge?
Does it converge to what we want?

Are the results reasonable?
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RageRank: Problems

Two problems:
(1) Some pages are
dead ends (have no out-links)

Such pages cause
importance to “leak out”

(2) Spider traps
(all out-links are within the group)

Eventually spider traps absorb all importance
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Does this converge to what we want?

The “Spider trap” problem:

(+1) "
[+ . i
0—0° -
=] 1
Example:

Iteration: O, 1, 2,

r, 1 I 0 ‘ 0

| |

I, 0 Il
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Does it converge to what we want?

The “Dead end” problem:

(t+1) "
[+ . i
e 0 rj _Z d
=] 1
Example:
Iteration: O, 1, 2,
r, | I 0
|
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Solution to Spider Traps

The Google solution for spider traps: At each
time step, the random surfer has two options

With prob. g, follow a link at random
With prob. 1-£, jump to a random page

Common values for # are in the range 0.8 to 0.9
Surfer will teleport out of spider trap within a

few time steps
= éf‘i@
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Solution to Dead Ends

Teleports: Follow random teleport links with
probability 1.0 from dead-ends

Adjust matrix accordingly

o >£&

y a m y a m
yl 2| %2 | O y| %2 | 2 | %
ol 0 | 0 | 0 |
m| 0 | %2 | O m| 0 | 2 | '
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Final PageRank Equation

Google’s solution: At each step, random
surfer has two options:

With probability S, follow a link at random

With probability I-f, jump to some random page
PageRank equation [Brin-Page, ‘98]

Y Bt (1)
”". — — — —
J . . dl n di ... out-degreg

l—] of node i

The above formulation assumes that M has no dead ends. We can
either preprocess matrix M (bad!) or explicitly follow random teleport
links with probability 1.0 from dead-ends. See P. Berkhin, A Survey
on PageRank Computing, Internet Mathematics, 2005.
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The PageRank Algorithm

Input: Graph G and parameter

Directed graph G with spider traps and dead ends

Parameter [

Output: PageRank vector r

Set: '” ==, t=1
J N

do:
=D

.t rp
vji: 7)) = B

’() = 0 ifin- deg of jis 0
Now re -insert the leaked PageRank:

vj: ,.(t) ,<t) - where: 5 = 37" (®)

t=t+1
while 3; [ — "1

¢, Sta n] rd CS224W: Ala Iy of Networks, http://cs224w.stanford.edu 43
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Example

Node size proportional to the PageRank score
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Random Walk with Restarts
and Personalized PageRank




Example Application: Graph Search

10/2/18

Given:
Conferences-to-authors
graph
Goal:
Proximity on graphs
Q: What is most related
conference to ICDM?

Conference

ure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stan

for

d.edu

Q.

AN Ning Zhong

R. Ramakrishnan

Author



Random Walk with Restarts




Personalized PageRank

Goal: Evaluate pages not just by popularity
but by how close they are to the topic
Teleporting can go to:
Any page with equal probability
PageRank (we used this so far)
A topic-specific set of “relevant” pages
Topic-specific (personalized) PageRank (S ...teleport set)
M, =BM;+(1-B)/|S| ifies
=B M otherwise
A single page/node (|S| = 1),
Random Walk with Restarts
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PageRank: Applications

Graphs and web search:

Ranks nodes by “importance”
Personalized PageRank:

Ranks proximity of nodes
to the teleportset §

Proximity on graphs:
Q: What is most related
conference to ICDM?
Random Walks with Restarts

Teleport back to the starting node: Conference Author
$ = { single node }

it Ning Zhong

('R, Ramakrishnan
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Random Walk with Restarts

Node 4
0.04 0.03 Node 1 0.13
0.10 @ @ Node 2 0.10
Node 3 0.13
0.13 0.08 0.02 Node 4 /
0.13 9 @ Node 5 0.13
0_04 Node 6 0.05
Node 7 0.05
( 0_05 Node 8 0.08
Node 9 0.04
0.13 Node 10 0.03
\ Node 11 0.04
0.05 Node 12 0.02

S={4}
Notice: Nearby nodes have higher
scores (are more red)

Ranking vector
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Most related conferences to ICDM
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Personalized PageRank

10/2/18

Graph of CS conferences

Q: Which conferences
are closest to KDD &
ICDM?

A: Personalized
PageRank with

teleport set S={KDD,
ICDM}

tworks, http://cs224w.stanford.edu



