Link Analysis: PageRank

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224W.stanford.edu

Web as a Graph

Structure of the Web

- Today we will talk about how does the Web graph look like:

- 1) We will take a real system: the Web
- 2) We will represent it as a directed graph
- 3) We will use the language of graph theory
- Strongly Connected Components

- 4) We will design a computational experiment:
- Find In- and Out-components of a given node \boldsymbol{v}
- 5) We will learn something about the structure of the Web: BOWTIE!

The Web as a Graph

Q: What does the Web "look like" at
a global level?

- Web as a graph:
- Nodes = web pages
- Edges = hyperlinks
- Side issue: What is a node?
- Dynamic pages created on the fly
- "dark matter" - inaccessible database generated pages

The Web as a Graph

The Web as a Graph

- In early days of the Web links were navigational
- Today many links are transactional (used not to navigate from page to page, but to post, comment, like, buy, ...)

The Web as a Directed Graph

Other Information Networks

Citations
References in an Encyclopedia

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a directed graph [Broder et al. 2000]:

- Given node \boldsymbol{v}, what can v reach?
- What other nodes can reach \boldsymbol{v} ?

For example:
$\ln (A)=\{A, B, C, E, G\}$
$\operatorname{Out}(A)=\{A, B, C, D, F\}$

Reasoning about Directed Graphs

- Two types of directed graphs:
- Strongly connected:
- Any node can reach any node via a directed path

$$
\operatorname{In}(A)=O u t(A)=\{A, B, C, D, E\}
$$

- Directed Acyclic Graph (DAG):
- Has no cycles: if \boldsymbol{u} can reach \boldsymbol{v}, then \boldsymbol{v} cannot reach \boldsymbol{u}

- Any directed graph (the Web) can be expressed in terms of these two types!
- Is the Web a big strongly connected graph or a DAG?

Strongly Connected Component

- A Strongly Connected Component (SCC) is a set of nodes \boldsymbol{S} so that:
- Every pair of nodes in \boldsymbol{S} can reach each other
- There is no larger set containing S with this property

Strongly connected components of the graph: $\{A, B, C, G\},\{D\},\{E\},\{F\}$

Strongly Connected Component

- Fact: Every directed graph is a DAG on its SCCs
- (1) SCCs partition the nodes of G
- That is, each node is in exactly one SCC
- (2) If we build a graph \boldsymbol{G} ' whose nodes are SCCs, and with an edge between nodes of \boldsymbol{G}^{\prime} if there is an edge between corresponding SCCs in \boldsymbol{G}, then $\boldsymbol{G}^{\text {' }}$ is a DAG

(1) Strongly connected components of graph G: $\{A, B, C, G\},\{D\},\{E\},\{F\}$
(2) G^{\prime} is a DAG:

Structure of the Web

- Broder et al.: Altavista web crawl (Oct '99)
- Web crawl is based on a large set of starting points accumulated over time from various sources, including voluntary submissions.
- 203 million URLS and 1.5 billion links

Goal: Take a large snapshot of the Web and try to understand how its SCCs "fit together" as a DAG

Graph Structure of the Web

- Computational issue:
- Want to find a SCC containing node \boldsymbol{v} ?
- Observation:

- Out(v) ... nodes that can be reached from v (w/BFS)
- SCC containing \boldsymbol{v} is: $\operatorname{Out}(v) \cap \operatorname{In}(v)$
$=\operatorname{Out}(v, G) \bigcap \operatorname{Out}\left(v, G^{\prime}\right), \quad$ where G^{\prime} is G with all edge directions flipped

$\operatorname{Out}(\mathrm{A}) \cap \ln (\mathrm{A})=\mathrm{SCC}$

- Example:

- $\operatorname{Out}(A)=\{A, B, D, E, F, G, H\}$
- $\operatorname{In}(\mathrm{A})=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$
- So, $\operatorname{SCC}(\mathrm{A})=\operatorname{Out}(\mathrm{A}) \cap \operatorname{In}(\mathrm{A})=\{\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}\}$

Graph Structure of the Web

- There is a single giant SCC
- That is, there won't be two SCCs
- Why only 1 big SCC? Heuristic argument:
- Assume two equally big SCCs.
- It just takes 1 page from one SCC to link to the other SCC.
- If the two SCCs have millions of pages the likelihood of this not happening is very very small.

Structure of the Web

- Directed version of the Web graph:
- Altavista crawl from October 1999
- 203 million URLs, 1.5 billion links

Computation:

- Compute $I N(v)$ and OUT(v) by starting at random nodes.
- Observation: The BFS either visits many nodes or very few

x-axis: rank
y-axis: number of reached nodes

Structure of the Web

Result: Based on IN and OUT of a random node v :

- Out(v) ≈ 100 million (50% nodes)
- $\operatorname{In}(v) \approx 100$ million (50\% nodes)
- Largest SCC: 56 million ($\mathbf{2 8 \%}$ nodes)

x-axis: rank
y-axis: number of reached nodes
- What does this tell us about the conceptual picture of the Web graph?

Bowtie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]

How to Organize the Web PageRank
(aka the Google Algorithm)

How to Organize the Web?

-How to organize the Web?

- First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

- Second try: Web Search

- Information Retrieval attempts to find relevant docs in a small and trusted set
- Newspaper articles, Patents, etc.

\square But: Web is huge, full of untrusted documents, random things, web spam, etc.
\square So we need a good way to rank webpages!

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
- Insight: Trustworthy pages may point to each other!
(2) What is the "best" answer to query "newspaper"?
- No single right answer
- Insight: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important"

 www.joe-schmoe.com vs. www.stanford.edu- We already know:

There is large diversity in the web-graph node connectivity.

- So, let's rank the pages using the web graph link structure!

Link Analysis Algorithms

\square We will cover the following Link Analysis

 approaches to computing importance of nodes in a graph:- Hubs and Authorities (HITS)
- Page Rank
-Topic Specific (Personalized) Page Rank<- another time

Sidenote: Various notions of node centrality: Node u
\square Degree centrality = degree of u

- Betweenness centrality = \#shortest paths passing through u
\square Closeness centrality = avg. length of shortest paths from u to all other nodes of the network
- Eigenvector centrality = like PageRank

Hubs and Authorities

Link Analysis

- Goal (back to the newspaper example):
- Don't just find newspapers. Find "experts" - pages that link in a coordinated way to good newspapers
- Idea: Links as votes
- Page is more important if it has more links

I In-coming links? Out-going links?

- Hubs and Authorities

Each page has 2 scores:
\square Quality as an expert (hub):

- Total sum of votes of pages pointed to
- Quality as an content (authority):
- Total sum of votes of experts
- Principle of repeated improvement

Hubs and Authorities

Interesting pages fall into two classes:

1. Authorities are pages containing useful information

- Newspaper home pages
- Course home pages
- Home pages of auto manufacturers

2. Hubs are pages that link to authorities

- List of newspapers
- Course bulletin
- List of U.S. auto manufacturers

Counting in-links: Authority

Each page starts with hub score 1 Authorities collect their votes
(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and the authority score)

Expert Quality: Hub

(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and authority score)

Reweighting

(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and authority score)

Mutually Recursive Definition

- A good hub links to many good authorities

- A good authority is linked from many good hubs
- Note a self-reinforcing recursive definition
- Model using two scores for each node:
- Hub score and Authority score
- Represented as vectors \boldsymbol{h} and \boldsymbol{a}, where the i-th element is the hub/authority score of the i-th node

Hubs and Authorities

- Each page i has 2 scores:

- Authority score: $\boldsymbol{a}_{\boldsymbol{i}}$
- Hub score: $\boldsymbol{h}_{\boldsymbol{i}}$

Convergence criteria:

$$
\begin{aligned}
& \sum_{i}\left(h_{i}^{(t)}-h_{i}^{(t+1)}\right)^{2}<\varepsilon \\
& \sum_{i}\left(a_{i}^{(t)}-a_{i}^{(t+1)}\right)^{2}<\varepsilon
\end{aligned}
$$

HITS algorithm:

-Initialize: $a_{j}^{(0)}=1 / \sqrt{\mathrm{n}}, \mathrm{h}_{\mathrm{j}}^{(0)}=1 / \sqrt{\mathrm{n}}$
-Then keep iterating until convergence:

- $\forall i$: Authority: $a_{i}^{(t+1)}=\sum_{j \rightarrow i} h_{j}^{(t)}$
- $\forall i: \mathrm{Hub}: h_{i}^{(t+1)}=\sum_{i \rightarrow j} a_{j}^{(t)}$
- $\forall i$: Normalize:

$$
\sum_{i}\left(a_{i}^{(t+1)}\right)^{2}=1, \sum_{j}\left(h_{j}^{(t+1)}\right)^{2}=1
$$

Hubs and Authorities

- Hits in the vector notation:

\square Vector $a=\left(\boldsymbol{a}_{1} \ldots, \boldsymbol{a}_{n}\right), \quad \boldsymbol{h}=\left(\boldsymbol{h}_{\mathbf{1}} \ldots, \boldsymbol{h}_{\boldsymbol{n}}\right)$
\square Adjacency matrix $\boldsymbol{A}(n \times n): \boldsymbol{A}_{\boldsymbol{i j}}=\mathbf{1}$ if $\boldsymbol{i} \rightarrow \boldsymbol{j}$
\square Can rewrite $h_{i}=\sum_{i \rightarrow j} a_{j}$ as $h_{i}=\sum_{j} A_{i j} \cdot a_{j}$
\square So: $h=A \cdot a$ And similarly: $a=A^{T} \cdot h$
-Repeat until convergence:
$\boldsymbol{\square} h^{(t+1)}=A \cdot a^{(t)}$
$\square a^{(t+1)}=A^{T} \cdot h^{(t)}$
\square Normalize $a^{(t+1)}$ and $h^{(t+1)}$

Hubs and Authorities

\square What is $a=A^{T} \cdot h$?

- Then: $a=\underbrace{A^{T} \cdot \underbrace{(A \cdot a)}_{\text {new } h}}_{\text {new } \boldsymbol{a}}$
- a is updated (in 2 steps):

$$
a=A^{T}(A a)=\left(A^{T} A\right) a
$$

$\square \boldsymbol{h}$ is updated (in 2 steps)

$$
h=A\left(A^{T} h\right)=\left(A A^{T}\right) h
$$

- Thus, in $2 \boldsymbol{k}$ steps:

$$
\begin{aligned}
& a=\left(A^{T} \cdot A\right)^{k} \cdot a \\
& h=\left(A \cdot A^{T}\right)^{k} \cdot h
\end{aligned}
$$

Repeated matrix powering

Hubs and Authorities

- Definition: Eigenvectors \& Eigenvalues

- Let $\boldsymbol{R} \cdot \boldsymbol{x}=\boldsymbol{\lambda} \cdot \boldsymbol{x}$ for some scalar $\boldsymbol{\lambda}$, vector \boldsymbol{x}, matrix \boldsymbol{R}
\square Then x is an eigenvector, and λ is its eigenvalue
- The steady state (HITS has converged):

ㅁ $A^{T} \cdot \boldsymbol{A} \cdot \boldsymbol{a}=\boldsymbol{c}^{\prime} \cdot \boldsymbol{a}$
■ $\boldsymbol{A} \cdot \boldsymbol{A}^{T} \cdot \boldsymbol{h}=\boldsymbol{c}^{\prime \prime} \cdot \boldsymbol{h}$

- So, authority \boldsymbol{a} is eigenvector of $\boldsymbol{A}^{T} A$ (associated with the largest eigenvalue) Similarly: hub \boldsymbol{h} is eigenvector of $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$

PageRank

Links as Votes

- Still the same idea: Links as votes

\square Page is more important if it has more links

- In-coming links? Out-going links?
- Think of in-links as votes:
- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link
- Are all in-links equal?
- Links from important pages count more
- Recursive question!

PageRank: The "Flow" Model

- A "vote" from an important page is worth more:
- Each link's vote is proportional to the importance of its source page
- If page i with importance r_{i} has d_{i} out-links, each link gets r_{i} / d_{i} votes

$$
r_{j}=r_{i} / 3+r_{k} / 4
$$

- Page j's own importance r_{j} is the sum of the votes on its inlinks

PageRank: The "Flow" Model

- A page is important if it is pointed to by other important pages
- Define a "rank" r_{j} for node \boldsymbol{j}

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of node i

"Flow" equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{a}} / \mathbf{2} \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / \mathbf{2}
\end{aligned}
$$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
- Let page \boldsymbol{j} have $\boldsymbol{d}_{\boldsymbol{j}}$ out-links
- If $j \rightarrow i$, then $M_{i j}=\frac{1}{d_{j}}$
- \boldsymbol{M} is a column stochastic matrix
- Columns sum to 1

- Rank vector r : An entry per page

M

- $\boldsymbol{r}_{\boldsymbol{i}}$ is the importance score of page \boldsymbol{i}
- $\sum_{i} r_{i}=1$
- The flow equations can be written

$$
\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r} \quad r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}
$$

Random Walk Interpretation

- Imagine a random web surfer:
- At any time \boldsymbol{t}, surfer is on some page i
- At time $\boldsymbol{t}+\mathbf{1}$, the surfer follows an out-link from \boldsymbol{i} uniformly at random
- Ends up on some page \boldsymbol{j} linked from \boldsymbol{i}

- Process repeats indefinitely
- Let:
- $\boldsymbol{p}(\boldsymbol{t})$... vector whose $i^{\text {th }}$ coordinate is the prob. that the surfer is at page i at time t
- So, $\boldsymbol{p}(\boldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time $t+1$?
- Follows a link uniformly at random

$$
\boldsymbol{p}(\boldsymbol{t}+\mathbf{1})=\boldsymbol{M} \cdot \boldsymbol{p}(\boldsymbol{t}) \quad \quad p(t+1)=\mathrm{M} \cdot p(t)
$$

- Suppose the random walk reaches a state

$$
p(t+1)=M \cdot p(t)=p(t)
$$

then $\boldsymbol{p}(t)$ is stationary distribution of a random walk

- Our original rank vector \boldsymbol{r} satisfies $\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}$
- So, r is a stationary distribution for the random walk

PageRank: How to solve?

PageRank: How to solve?

Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks

- Assign each node an initial page rank
- Repeat until convergence $\left(\Sigma_{i}\left|r_{i}^{(t+1)}-r_{i}^{(t)}\right|<\varepsilon\right)$
- Calculate the page rank of each node

$$
\begin{gathered}
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}} \\
d_{i} \ldots . \text { out-degree of node } i
\end{gathered}
$$

PageRank: How to solve?

- Power Iteration:
- Set $r_{j} \leftarrow 1 / N$
$=1: r_{j}^{\prime} \leftarrow \sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r \leftarrow r^{\prime}$
- If $\left|r-r^{\prime}\right|>\varepsilon$: goto 1

	y		a
m			
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
	0	$1 / 2$	0

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{y}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{a}} / \mathbf{2} \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / \mathbf{2}
\end{aligned}
$$

- Example:

$$
\left(\begin{array}{l}
\left(\begin{array}{l}
\mathrm{r}_{\mathrm{y}} \\
\mathrm{r}_{\mathrm{a}} \\
\mathrm{r}_{\mathrm{m}}
\end{array}\right)=\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3 \\
\\
\\
\text { Iteration } 0,1,2, \ldots
\end{array}
\end{array}\right.
$$

PageRank: How to solve?

- Power Iteration:
- Set $r_{j} \leftarrow 1 / N$
$=1: r_{j}^{\prime} \leftarrow \sum_{i \rightarrow j} \frac{r_{i}}{d_{i}}$
- 2: $r \leftarrow r^{\prime}$
- If $\left|r-r^{\prime}\right|>\varepsilon$: goto 1

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	1
m	0	$1 / 2$	0

$$
\begin{aligned}
& r_{y}=r_{y} / \mathbf{2}+\mathbf{r}_{\mathrm{a}} / \mathbf{2} \\
& \mathbf{r}_{\mathrm{a}}=\mathbf{r}_{\mathrm{y}} / \mathbf{2}+\mathbf{r}_{\mathrm{m}} \\
& \mathbf{r}_{\mathrm{m}}=\mathbf{r}_{\mathrm{a}} / \mathbf{2}
\end{aligned}
$$

- Example:
\(\left(\begin{array}{l}r_{y}

r_{a}

r_{m}\end{array}\right)=\)| $1 / 3$ | $1 / 3$ | $5 / 12$ | $9 / 24$ | | $6 / 15$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $1 / 3$ | $3 / 6$ | $1 / 3$ | $11 / 24$ | \ldots | $6 / 15$ |
| $1 / 3$ | $1 / 6$ | $3 / 12$ | $1 / 6$ | | $3 / 15$ |

Iteration 0, 1, 2, ...

PageRank: Three Questions

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}} \underset{\text { equivaranty }}{\text { or }} \quad r=M r
$$

- Does this converge?
- Does it converge to what we want?
- Are the results reasonable?

RageRank: Problems

Two problems:

- (1) Some pages are dead ends (have no out-links)
- Such pages cause importance to "leak out"

- (2) Spider traps
(all out-links are within the group)
- Eventually spider traps absorb all importance

Does this converge to what we want?

- The "Spider trap" problem:

- Example:

\[

\]

Does it converge to what we want?

- The "Dead end" problem:

- Example:

Iteration:	$\mathbf{0}$,	$\mathbf{1 ,}$	$\mathbf{2 ,}$	$\mathbf{3 . . .}$		
r_{a}						
r_{b}					$=$	1
:---						

Solution to Spider Traps

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- β, jump to a random page
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Solution to Dead Ends

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly

	y	a	m
y	$1 / 2$	$1 / 2$	0
a	$1 / 2$	0	0
m	0	$1 / 2$	0

	y	a	m
y	$1 / 2$	$1 / 2$	$1 / 3$
a	$1 / 2$	0	$1 / 3$
m	0	$1 / 2$	$1 / 3$

Final PageRank Equation

- Google's solution: At each step, random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, '98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{n} \underbrace{}_{\substack{\text { di...out-degree } \\ \text { of node } i}}
$$

The above formulation assumes that \boldsymbol{M} has no dead ends. We can either preprocess matrix \boldsymbol{M} (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends. See P. Berkhin, A Survey on PageRank Computing, Internet Mathematics, 2005.

The PageRank Algorithm

- Input: Graph \boldsymbol{G} and parameter $\boldsymbol{\beta}$
- Directed graph \boldsymbol{G} with spider traps and dead ends
- Parameter β
- Output: PageRank vector r
- Set: $r_{j}^{(0)}=\frac{1}{N}, \quad t=1$
- do:
$-\forall j: \boldsymbol{r}^{\prime}{ }_{j}^{(t)}=\sum_{i \rightarrow j} \boldsymbol{\beta} \frac{\boldsymbol{r}_{i}^{(t-1)}}{d_{i}}$
$\boldsymbol{r}_{\boldsymbol{j}}^{(\boldsymbol{t})}=\mathbf{0}$ if in-deg. of \boldsymbol{j} is $\mathbf{0}$
- Now re-insert the leaked PageRank:

$$
\forall j: r_{j}^{(t)}={r_{j}^{\prime}}_{j}^{(t)}+\frac{1-S}{N} \text { where: } S=\sum_{j} r_{j}^{\prime(t)}
$$

- $t=t+1$

Example

Node size proportional to the PageRank score

Random Walk with Restarts and Personalized PageRank

Example Application: Graph Search

- Given:

Conferences-to-authors graph

- Goal:

Proximity on graphs

- Q: What is most related conference to ICDM?

Random Walk with Restarts

Personalized PageRank

- Goal: Evaluate pages not just by popularity but by how close they are to the topic
- Teleporting can go to:
- Any page with equal probability
- PageRank (we used this so far)
- A topic-specific set of "relevant" pages
- Topic-specific (personalized) PageRank (S ...teleport set)

$$
\begin{aligned}
M_{i j}^{\prime} & =\beta M_{i j}+(1-\beta) /|S| \quad \text { if } i \in S \\
& =\beta M_{i j} \quad \text { otherwise }
\end{aligned}
$$

- A single page/node (|S|=1),
- Random Walk with Restarts

PageRank: Applications

- Graphs and web search:
- Ranks nodes by "importance"
- Personalized PageRank:

Random Walk with Restarts

$S=\{4\}$
Notice: Nearby nodes have higher scores (are more red)

	Node 4
Node 1	0.13
Node 2	0.10
Node 3	0.13
Node 4	$/$
Node 5	0.13
Node 6	0.05
Node 7	0.05
Node 8	0.08
Node 9	0.04
Node 10	0.03
Node 11	0.04
Node 12	0.02

Ranking vector

Most related conferences to ICDM

DMKD

Personalized PageRank

Q: Which conferences

Graph of CS conferences
are closest to KDD \& ICDM?

A: Personalized
PageRank with teleport set $S=\{K D D$, ICDM\}

