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¡ Today we will talk about how does the 
Web graph look like:
§ 1) We will take a real system: the Web
§ 2) We will represent it as a directed graph
§ 3) We will use the language of graph theory

§ Strongly Connected Components
§ 4) We will design a computational 

experiment:
§ Find In- and Out-components of a given node v

§ 5) We will learn something about the 
structure of the Web: BOWTIE!
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Q: What does the Web “look like” at 
a global level?
¡ Web as a graph:
§ Nodes = web pages

§ Edges = hyperlinks

§ Side issue: What is a node?

§ Dynamic pages created on the fly

§ “dark matter” – inaccessible 

database generated pages
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¡ In early days of the Web links were navigational
¡ Today many links are transactional (used not to navigate 

from page to page, but to post, comment, like, buy, …)
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¡ How is the Web linked?
¡ What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:
§ Given node v, what can v reach? 
§ What other nodes can reach v?
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In(v) = {w | w can reach v} 
Out(v) = {w | v can reach w}
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For example:
In(A) = {A,B,C,E,G}
Out(A)={A,B,C,D,F}



¡ Two types of directed graphs:
§ Strongly connected:

§ Any node can reach any node
via a directed path
In(A)=Out(A)={A,B,C,D,E}

§ Directed Acyclic Graph (DAG):
§ Has no cycles: if u can reach v, 

then v cannot reach u

¡ Any directed graph (the Web) can be 
expressed in terms of these two types!
§ Is the Web a big strongly connected graph or a DAG?
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¡ A Strongly Connected Component (SCC) 
is a set of nodes S so that:
§ Every pair of nodes in S can reach each other
§ There is no larger set containing S with this 

property
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Strongly connected 
components of the graph: 
{A,B,C,G}, {D}, {E}, {F}



¡ Fact: Every directed graph is a DAG on its SCCs
§ (1) SCCs partition the nodes of G

§ That is, each node is in exactly one SCC

§ (2) If we build a graph G’ whose nodes are SCCs, and 
with an edge between nodes of G’ if there is an edge 
between corresponding SCCs in G, then G’ is a DAG
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¡ Broder et al.: Altavista web crawl (Oct ’99)
§ Web crawl is based on a large set of starting points accumulated 

over time from various sources, including voluntary submissions.

§ 203 million URLS and 1.5 billion links

Goal: Take a large snapshot of the Web and try to 
understand how its SCCs “fit together” as a DAG
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¡ Computational issue:
§ Want to find a SCC containing node v?

¡ Observation:
§ Out(v) … nodes that can be reached from v (w/ BFS)
§ SCC containing v is: Out(v) ∩ In(v) 

= Out(v,G) ∩ Out(v,G’),   where G’ is G with all edge directions flipped
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¡ Example:

§ Out(A) = {A, B, D, E, F, G, H}
§ In(A) = {A, B, C, D, E}
§ So, SCC(A) = Out(A) ∩ In(A) = {A, B, D, E}
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¡ There is a single giant SCC
§ That is, there won’t be two SCCs

¡ Why only 1 big SCC? Heuristic argument:
§ Assume two equally big SCCs.
§ It just takes 1 page from one SCC to link to 

the other SCC.
§ If the two SCCs have millions of pages the likelihood 

of this not happening is very very small.
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this set has fewer than 90 nodes; in extreme cases it
has a few hundred thousand), or it would ‘explode’
to cover about 100 million nodes (but never the
entire 186 million). Further, for a fraction of the
starting nodes, both the forward and the backward
BFS runs would ‘explode’, each covering about 100
million nodes (though not the same 100 million in
the two runs). As we show below, these are the
starting points that lie in the SCC.
The cumulative distributions of the nodes covered

in these BFS runs are summarized in Fig. 7. They re-
veal that the true structure of the Web graph must be
somewhat subtler than a ‘small world’ phenomenon
in which a browser can pass from any Web page
to any other with a few clicks. We explicate this
structure in Section 3.

2.2.5. Zipf distributions vs power law distributions
The Zipf distribution is an inverse polynomial

function of ranks rather than magnitudes; for exam-
ple, if only in-degrees 1, 4, and 5 occurred then a
power law would be inversely polynomial in those
values, whereas a Zipf distribution would be in-
versely polynomial in the ranks of those values: i.e.,
inversely polynomial in 1, 2, and 3. The in-degree
distribution in our data shows a striking fit with a
Zipf (more so than the power law) distribution; Fig. 8
shows the in-degrees of pages from the May 1999
crawl plotted against both ranks and magnitudes
(corresponding to the Zipf and power law cases).
The plot against ranks is virtually a straight line in
the log–log plot, without the flare-out noticeable in
the plot against magnitudes.

3. Interpretation and further work

Let us now put together the results of the connected
component experiments with the results of the ran-
dom-start BFS experiments. Given that the set SCC

Fig. 7. Cumulative distribution on the number of nodes reached
when BFS is started from a random node: (a) follows in-links, (b)
follows out-links, and (c) follows both in- and out-links. Notice
that there are two distinct regions of growth, one at the beginning
and an ‘explosion’ in 50% of the start nodes in the case of in-
and out-links, and for 90% of the nodes in the undirected case.
These experiments form the basis of our structural analysis.

contains only 56 million of the 186 million nodes in
our giant weak component, we use the BFS runs to
estimate the positions of the remaining nodes. The

¡ Directed version of the Web graph:
§ Altavista crawl from October 1999

§ 203 million URLs, 1.5 billion links

Computation:
§ Compute IN(v) and OUT(v)

by starting at random nodes.

§ Observation: The BFS either
visits many nodes or 
very few

10/2/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 19

x-axis: rank
y-axis: number of reached nodes



Result: Based on IN and OUT
of a random node v:
§ Out(v) ≈ 100 million  (50% nodes)

§ In(v) ≈ 100 million  (50% nodes)

§ Largest SCC: 56 million (28% nodes)

¡ What does this tell us about the 
conceptual picture of the Web graph?
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203 million pages, 1.5 billion links [Broder et al. 2000]
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Fig. 9. Connectivity of the Web: one can pass from any node of IN through SCC to any node of OUT. Hanging off IN and OUT are
TENDRILS containing nodes that are reachable from portions of IN, or that can reach portions of OUT, without passage through SCC. It
is possible for a TENDRIL hanging off from IN to be hooked into a TENDRIL leading into OUT, forming a TUBE: i.e., a passage from
a portion of IN to a portion of OUT without touching SCC.

regions have, if we explore in the direction ‘away’
from the center? The results are shown below in the
row labeled ‘exploring outward – all nodes’.
Similarly, we know that if we explore in-links

from a node in OUT, or out-links from a node in
IN, we will encounter about 100 million other nodes
in the BFS. Nonetheless, it is reasonable to ask:
how many other nodes will we encounter? That is,
starting from OUT (or IN), and following in-links
(or out-links), how many nodes of TENDRILS and
OUT (or IN) will we encounter? The results are
shown below in the row labeled ‘exploring inwards
– unexpected nodes’. Note that the numbers in the
table represent averages over our sample nodes.

Starting point OUT IN

Exploring outwards – all nodes 3093 171
Exploring inwards – unexpected nodes 3367 173

As the table shows, OUT tends to encounter larger

neighborhoods. For example, the second largest
strong component in the graph has size approxi-
mately 150 thousand, and two nodes of OUT en-
counter neighborhoods a few nodes larger than this,
suggesting that this component lies within OUT. In
fact, considering that (for instance) almost every cor-
porate Website not appearing in SCC will appear in
OUT, it is no surprise that the neighborhood sizes
are larger.

3.3. SCC

Our sample contains 136 nodes from the SCC.
To determine other properties of SCC, we require
a useful property of IN and OUT: each contains a
few long paths such that, once the BFS proceeds
beyond a certain depth, only a few paths are being
explored, and the last path is much longer than any
of the others. We can therefore explore the radius
at which the BFS completes, confident that the last





How to Organize the Web?

¤How to organize the Web?
¤First try: Human curated

Web directories
¤ Yahoo, DMOZ, LookSmart

¤Second try: Web Search
¤ Information Retrieval attempts to 

find relevant docs in a small 
and trusted set
¤ Newspaper articles, Patents, etc.

¤ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.

¤ So we need a good way to rank webpages!
2
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Web Search: 2 Challenges

2 challenges of web search:

¤(1) Web contains many sources of information
Who to “trust”?
¤ Insight: Trustworthy pages may point to each other!

¤(2) What is the “best” answer to query 
“newspaper”?
¤ No single right answer
¤ Insight: Pages that actually know about newspapers 

might all be pointing to many newspapers
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Ranking Nodes on the Graph

¤All web pages are not equally “important”
www.joe-schmoe.com vs. www.stanford.edu

¤We already know:
There is large diversity 
in the web-graph 
node connectivity.

¤So, let’s rank the pages 
using the web graph
link structure!

vs.
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Link Analysis Algorithms
¤We will cover the following Link Analysis 

approaches to computing importance of 
nodes in a graph:
¤ Hubs and Authorities (HITS)
¤ Page Rank
¤ Topic-Specific (Personalized) Page Rank <- another 

time

Sidenote: Various notions of node centrality: Node 𝒖
¤ Degree centrality = degree of 𝑢
¤ Betweenness centrality = #shortest paths passing 

through 𝑢
¤ Closeness centrality = avg. length of shortest paths 

from 𝑢 to all other nodes of the network
¤ Eigenvector centrality = like PageRank
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Hubs and Authorities
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Link Analysis

¤Goal (back to the newspaper example):
¤ Don’t just find newspapers. Find “experts” – pages that 

link in a coordinated way to good newspapers

¤ Idea: Links as votes
¤ Page is more important if it has more links

¤ In-coming links? Out-going links?

¤Hubs and Authorities
Each page has 2 scores:
¤ Quality as an expert (hub):

¤ Total sum of votes of pages pointed to
¤ Quality as an content (authority):

¤ Total sum of votes of experts
¤ Principle of repeated improvement

NYT:  10

Ebay:  3

Yahoo:  3

CNN:  8

WSJ:  9
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Hubs and Authorities

Interesting pages fall into two classes:
1. Authorities are pages containing 

useful information
¤ Newspaper home pages
¤ Course home pages
¤ Home pages of auto manufacturers

2. Hubs are pages that link to authorities
¤ List of newspapers
¤ Course bulletin
¤ List of U.S. auto manufacturers

NYT: 10
Ebay: 3
Yahoo: 3
CNN: 8
WSJ: 9
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Counting in-links: Authority

Each  page  starts  with  hub  score  1
Authorities  collect  their  votes

(Note  this  is  idealized  example.  In  reality  graph  is  not  bipartite  and  
each  page  has  both  a hub  and  the  authority  score)

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Expert Quality: Hub

Hubs  collect  authority  scores

(Note  this  is  idealized  example.  In  reality  graph  is  not  bipartite  and  
each  page  has  both  a hub  and  authority  score)
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Reweighting

Authorities  collect  hub  scores

(Note  this  is  idealized  example.  In  reality  graph  is  not  bipartite  and  
each  page  has  both  a hub  and  authority  score)

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu
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Mutually Recursive Definition

¤A good hub links to many good authorities

¤A good authority is linked from many good 
hubs

¤ Note a self-reinforcing recursive definition

¤Model using two scores for each node:
¤ Hub score and Authority score
¤ Represented as vectors 𝒉 and 𝒂, where the i-th

element is the hub/authority score of the i-th node
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Hubs and Authorities

¤Each page 𝒊 has 2 scores:
¤ Authority score: 𝒂𝒊
¤ Hub score: 𝒉𝒊

HITS algorithm:

¤ Initialize: 𝑎'
()) = 1/ n, 	   h2

()) = 1/ n

¤Then keep iterating until convergence:
¤ ∀𝒊:	  Authority: 𝑎5

(678) = ∑ ℎ'
(6)

'→5

¤ ∀𝒊:	  Hub: ℎ5
(678) = ∑ 𝑎'

(6)
5→'

¤ ∀𝒊: Normalize:
∑ 𝑎5

678 <
5 = 1, ∑ ℎ'

678 <
' = 1

[Kleinberg ‘98]

= ℎ5
6 − ℎ5

678 <

5
< 𝜀

= 𝑎5
6 − 𝑎5

678 <

5
< 𝜀

Convergence  criteria:
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Hubs and Authorities

¤Hits in the vector notation:
¤ Vector 𝒂	   = 	   (𝒂𝟏 … , 𝒂𝒏), 	  	  𝒉	   = 	   (𝒉𝟏… , 𝒉𝒏)
¤ Adjacency matrix 𝑨 (n x n):  𝑨𝒊𝒋 = 𝟏 if  𝒊�𝒋

¤Can rewrite 𝒉𝒊 = ∑ 𝒂𝒋𝒊→𝒋 as 𝒉𝒊 = ∑ 𝑨𝒊𝒋 ⋅ 𝒂𝒋𝒋

¤So: 𝒉 = 𝑨 ⋅ 𝒂 And similarly: 𝒂 = 𝑨𝑻 ⋅ 𝒉

¤Repeat until convergence:
¤ ℎ(678) = 𝐴 ⋅ 𝑎(6)

¤ 𝑎(678) = 𝐴I ⋅ ℎ(6)

¤ Normalize 𝑎(678) and ℎ(678)

[Kleinberg ‘98]Details!
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Hubs and Authorities

¤What is 𝒂 = 𝑨𝑻 ⋅ 𝒉?
¤ Then: 𝒂 = 𝑨𝑻 ⋅ (𝑨 ⋅ 𝒂)

¤𝒂 is updated (in 2 steps):
𝑎 = 𝐴I(𝐴	  𝑎) = (𝐴I𝐴)	  𝑎

¤h is updated (in 2 steps)
ℎ = 𝐴	  (𝐴Iℎ) = (𝐴	  𝐴I)	  ℎ

¤ Thus, in 𝟐𝒌 steps: 
	  𝑎 = 𝐴I ⋅ 𝐴 L ⋅ 𝑎

ℎ = 𝐴 ⋅ 𝐴I L ⋅ ℎ

new 𝒉
new 𝒂

Repeated matrix powering

Details!
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Hubs and Authorities

¤ Definition: Eigenvectors & Eigenvalues

¤ Let 𝑹 ⋅ 𝒙 = 𝝀 ⋅ 𝒙
for some scalar 𝝀, vector 𝒙, matrix 𝑹
¤ Then 𝒙 is an eigenvector, and 𝝀 is its eigenvalue

¤ The steady state (HITS has converged):
¤ 𝑨𝑻 ⋅ 𝑨 ⋅ 𝒂 = 𝒄′ ⋅ 𝒂
¤ 𝑨 ⋅ 𝑨𝑻 ⋅ 𝒉 = 𝒄RR ⋅ 𝒉

¡ So, authority 𝒂 is eigenvector of 𝑨𝑻𝑨
(associated with the largest eigenvalue)
Similarly: hub 𝒉 is eigenvector of 𝑨𝑨𝑻
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PageRank

17



Links as Votes

¤Still the same idea: Links as votes
¤ Page is more important if it has more links

¤ In-coming links? Out-going links?

¤ Think of in-links as votes:
¤ www.stanford.edu has 23,400 in-links
¤ www.joe-schmoe.com has 1 in-link

¤Are all in-links equal?
¤ Links from important pages count more
¤ Recursive question! 
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¡ A “vote” from an important 
page is worth more:
§ Each link’s vote is proportional 

to the importance of its source 
page

§ If page i with importance ri has 
di out-links, each link gets ri / di
votes

§ Page j’s own importance rj is 
the sum of the votes on its in-
links

rj = ri/3 + rk/4

j

ki

rj/3

rj/3rj/3

ri/3 rk/4
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¡ A page is important if it is 
pointed to by other important 
pages

¡ Define a “rank” rj for node j

å
®

=
ji

i
j

rr
id

y

ma
ra/2

ry/2
ra/2

rm

ry/2

“Flow” equations:
ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2

!" … out-degree of node "
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You might wonder: Let’s just use Gaussian elimination
to solve this system of linear equations. Bad idea (G is too large!)



¡ Stochastic adjacency matrix !
§ Let page " have #" out-links

§ If " → %, then  !%" = '
#"

§ ! is a column stochastic matrix
§ Columns sum to 1

¡ Rank vector (: An entry per page

§ (% is the importance score of page %
§ ∑% (% = '

¡ The flow equations can be written 
( = ! ⋅ ( å

®

=
ji

i
j

rr
id

i

j

M

1/3
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¡ Imagine a random web surfer:
§ At any time !, surfer is on some page "
§ At time ! + $, the surfer follows an 

out-link from % uniformly at random
§ Ends up on some page & linked from %
§ Process repeats indefinitely

¡ Let:
¡ '(!) … vector whose "th coordinate is the 

prob. that the surfer is at page " at time *
§ So, '(!) is a probability distribution over pages

å
®

=
ji

i
j

rr
(i)dout

j

i1 i2 i3
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¡ Where is the surfer at time t+1?
§ Follows a link uniformly at random
! " + $ = & ⋅ !(")

¡ Suppose the random walk reaches a state 
! " + $ = & ⋅ !(") = !(")
then !(*) is stationary distribution of a random walk

¡ Our original rank vector + satisfies  + = & ⋅ +
§ So, + is a stationary distribution for 

the random walk

)(M)1( tptp ×=+
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Given a web graph with n nodes, where the 
nodes are pages and edges are hyperlinks
¡ Assign each node an initial page rank

¡ Repeat until convergence (Si |ri
(t+1) – ri

(t)| < e)

§ Calculate the page rank of each node

å
®

+ =
ji

t
it

j
rr
i

)(
)1(

d

!" …. out-degree of node "
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¡ Power Iteration:
§ Set !" ← 1/N
§ 1: !′" ← ∑'→" )*+*
§ 2: ! ← !′
§ If |! − !’| > 0: goto 1

¡ Example:
ry 1/3 1/3 5/12 9/24 6/15
ra = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m
y ½ ½ 0
a ½ 0 1
m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2
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¡ Does this converge?

¡ Does it converge to what we want?

¡ Are the results reasonable?

å
®

+ =
ji

t
it

j
rr
i

)(
)1(

d Mrr =or
equivalently
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Two problems:
¡ (1) Some pages are 

dead ends (have no out-links)
§ Such pages cause 

importance to “leak out”

¡ (2) Spider traps
(all out-links are within the group)
§ Eventually spider traps absorb all importance
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¡ The “Spider trap” problem:

¡ Example:

ra 1 0 0 0
rb 0 1 1 1=

ba

Iteration:  0,        1,        2,        3…
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¡ The “Dead end” problem:

¡ Example:

ra 1 0 0 0
rb 0 1 0 0=

ba å
®

+ =
ji

t
it

j
rr
i

)(
)1(

d
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¡ The Google solution for spider traps: At each 
time step, the random surfer has two options
§ With prob. b, follow a link at random

§ With prob. 1-b, jump to a random page

§ Common values for b are in the range 0.8 to 0.9
¡ Surfer will teleport out of spider trap within a 

few time steps

y

a m

y

a m
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¡ Teleports: Follow random teleport links with 
probability 1.0 from dead-ends
§ Adjust matrix accordingly

y

a m
y a m

y ½ ½ ⅓
a ½ 0 ⅓
m 0 ½ ⅓

y a m
y ½ ½ 0
a ½ 0 0
m 0 ½ 0

y

a m
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¡ Google’s solution: At each step, random 
surfer has two options:
§ With probability b,  follow a link at random

§ With probability 1-b, jump to some random page

¡ PageRank equation [Brin-Page, ‘98]

!" =$
%→"

' !%
(%
+ (1 − ') 1. di … out-degree 

of node i

The above formulation assumes that / has no dead ends. We can 
either preprocess matrix / (bad!) or explicitly follow random teleport 
links with probability 1.0 from dead-ends. See P. Berkhin, A Survey 
on PageRank Computing, Internet Mathematics, 2005.
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¡ Input: Graph ! and parameter "
§ Directed graph ! with spider traps and dead ends
§ Parameter #

¡ Output: PageRank vector $
§ Set: %& ' = )

* , , = 1
§ do:

§ ∀/: $′2
(4) = ∑7→2 "

$7
(49:)

;7
$′2
(4) = < if in-deg. of 2 is 0

§ Now re-insert the leaked PageRank:
∀2: $24 = $=24 + :?@

A
§ 4 = 4 + :

§ while ∑& %&
(B) − %&

(B?)) > E

where: F = ∑& %′&
(B)

10/2/18 43Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu



10/2/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 44

Node size proportional to the PageRank score





¡ Given: 
Conferences-to-authors

graph

¡ Goal:
Proximity on graphs

§ Q: What is most related 

conference to ICDM?
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ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author



1

4

3

2

5
6

7

9
10

8

11

12
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¡ Goal: Evaluate pages not just by popularity 
but by how close they are to the topic

¡ Teleporting can go to:
§ Any page with equal probability

§ PageRank (we used this so far)
§ A topic-specific set of “relevant” pages

§ Topic-specific (personalized) PageRank

!’#$ = &!#$ + () − &)/|.| if # ∈ .
= &!#$ otherwise

§ A single page/node (|S| = 1), 
§ Random Walk with Restarts

(S ...teleport set)

10/2/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 48



¡ Graphs and web search:
§ Ranks nodes by “importance”

¡ Personalized PageRank:
§ Ranks proximity of nodes 

to the teleport set !
¡ Proximity on graphs:
§ Q: What is most related 

conference to ICDM?
§ Random Walks with Restarts

§ Teleport back to the starting node:
S = { single node }

ICDM

KDD

SDM

Philip S. Yu

IJCAI

NIPS

AAAI M. Jordan

Ning Zhong

R. Ramakrishnan

…

…

… …

Conference Author
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Node 4
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10
Node 11
Node 12

0.13
0.10
0.13

/
0.13
0.05
0.05
0.08
0.04
0.03
0.04
0.02

1

4

3

2

5 6

7

9 10

8
11

120.13
0.10

0.13

0.13

0.05

0.05

0.08

0.04

0.02

0.04

0.03

Ranking vector 
S={4}
Notice: Nearby nodes have higher 
scores (are more red)
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ICDM

KDD

SDM

ECML

PKDD

PAKDD

CIKM

DMKD

SIGMOD

ICML

ICDE

0.009

0.011

0.008
0.007

0.005

0.005

0.005
0.004

0.004

0.004



A: Personalized 
PageRank with 
teleport set S={KDD, 
ICDM}

Q: Which conferences
are closest to KDD & 
ICDM? 

I

K

Graph of CS conferences
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