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Nodes with different structural roles
(connector node, bridge node, etc.)

Nodes belonging to the same 
cluster/community





¡ Roles are “functions” of nodes in a network:
§ Roles of species in ecosystems
§ Roles of individuals in companies

¡ Roles are measured by structural behaviors:
§ Centers of stars
§ Members of cliques
§ Peripheral nodes, etc.
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centers of stars
members of cliques
peripheral nodes
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Network Science 
Co-authorship network
[Newman 2006]



¡ Role: A collection of nodes which have similar 
positions in a network:
¡ Roles are based on the similarity of ties among subsets of 

nodes

§ Different from community (or cohesive subgroup)
§ Group is formed based on adjacency,  proximity or 

reachability
§ This is typically adopted in current data mining

Nodes with the same role need not be in direct, 
or even indirect interaction with each other
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¡ Roles:
§ A group of nodes with similar structural properties

¡ Communities:
§ A group of nodes that are well-connected to each other

¡ Roles and communities are complementary

¡ Consider the social network of a CS Dept:
§ Roles: Faculty, Staff, Students

§ Communities: AI Lab, Info Lab, Theory Lab
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¡ Structural equivalence: Nodes ! and " are 
structurally equivalent if they have the same 
relationships to all other nodes [Lorrain & White 
1971]
§ Structurally equivalent nodes are likely to be similar in 

other ways – i.e., friendships in social networks
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¡ Nodes ! and " are structurally equivalent:
§ For all the other nodes #, node ! has tie to # iff node "

has tie to #

¡ Example:

¡ E.g., nodes 3 and 4 are structurally equivalent

1 2

3 4

5

Adjacency matrix

1 2 3 4 5

1 - 0 1 1 0

2 0 - 1 1 0

3 0 0 - 0 1

4 0 0 0 - 1

5 0 0 0 0 -
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Task Example Application
Role query Identify individuals with similar behavior to a known 

target

Role outliers Identify individuals with unusual behavior

Role dynamics Identify unusual changes in behavior

Identity resolution Identify/de-anonymize, individuals in a new network

Role transfer Use knowledge of one network to make predictions in 
another

Network comparison Compute similarity of networks, determine 
compatibility for knowledge transfer
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¡ RolX: Automatic discovery 
of nodes’ structural roles in 
networks 
[Henderson, et al. 2011b]

§ Unsupervised learning approach
§ No prior knowledge required
§ Assigns a mixed-membership of 

roles to each node
§ Scales linearly in #(edges)
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Role Discovery

üAutomated discovery

üBehavioral roles

üRoles generalize
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Node × Node 
Adjacency Matrix

Recursive 
Feature 
Extraction

Node × Feature 
Matrix

Role 
Extraction

Node × Role 
Matrix

Role × Feature 
Matrix

Example: degree, mean 
weight, # of edges in 
ego-network, mean 
clustering coefficient of 
neighbors, etc.

Input

Output



¡ Recursive feature extraction [Henderson, et al. 2011a] turns 
network connectivity into structural features

¡ Neighborhood features: What is a node’s connectivity pattern?
¡ Recursive features: To what kinds of nodes is a node connected?
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ReFeX 

Local Egonet Recursive 

Neighborhood 

Regional 

1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#

N
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es
 

Recursive 
feature 

extraction



¡ Idea: Aggregate features of a node and use them to 
generate new recursive features 

¡ Base set of a node’s neighborhood features:
§ Local features: All measures of the node degree:

§ If network is directed, include in- and out-degree, total degree
§ If network is weighted, include weighted feature versions

§ Egonetwork features: Computed on the node’s egonet:
§ Egonet includes the node, its neighbors, and any edges in the 

induced subgraph on these nodes 
§ #(within-egonet edges), 

#(edges entering/leaving egonet)
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Egonet for red node



¡ Start with the base set of node features
¡ Use the set of current node features to generate 

additional features:
§ Two types of aggregate functions: means and sums 

§ E.g., mean value of “unweighted degree” feature among all 
neighbors of a node 

§ Compute means and sums over all current features, including other 
recursive features

§ Repeat
¡ The number of possible recursive 

features grows exponentially with 
each recursive iteration:
§ Reduce the number of features using a 

pruning technique:
§ Look for pairs of features that are highly correlated
§ Eliminate one of the features whenever two features are correlated 

above a user-defined threshold 
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Features 
1411# 0# 1# 2# 1# 0# 0# 0# 1# 1# 0# 1# 0# 0# 1# 1# 2# 2#
1410# 0# 1# 1# 1# 0# 1# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
338# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 1# 0# 0# 0#
339# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
1415# 0# 1# 1# 2# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 1# 1# 1#
941# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1414# 0# 1# 1# 1# 0# 1# 0# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
942# 0# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
1413# 0# 1# 1# 1# 0# 1# 1# 0# 0# 0# 0# 0# 1# 1# 0# 1# 1#
1412# 0# 0# 0# 0# 0# 0# 0# 1# 2# 0# 1# 1# 0# 0# 1# 2# 0#
940# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 1# 0# 1# 1# 1#
1419# 0# 0# 1# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 1#
945# 0# 1# 4# 3# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 1# 3# 1#
332# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1418# 0# 0# 1# 0# 0# 0# 0# 1# 0# 0# 0# 1# 2# 0# 1# 0# 1#
946# 0# 1# 1# 0# 0# 1# 0# 1# 0# 0# 0# 1# 4# 0# 1# 1# 2#
333# 0# 0# 0# 0# 1# 0# 1# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0#
1417# 0# 1# 1# 1# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 1# 1# 1#
943# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
330# 1# 3# 2# 0# 1# 2# 2# 0# 2# 2# 2# 0# 3# 1# 0# 2# 5#
1416# 0# 1# 1# 1# 1# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 1# 1#
944# 0# 1# 4# 2# 0# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 3# 1#
331# 0# 3# 2# 1# 0# 1# 0# 0# 2# 0# 2# 0# 2# 0# 1# 2# 5#
949# 0# 0# 0# 0# 2# 0# 0# 1# 0# 1# 0# 1# 0# 0# 0# 0# 0#
336# 0# 0# 0# 0# 2# 0# 0# 1# 1# 1# 1# 1# 0# 0# 0# 1# 0#
337# 1# 1# 1# 0# 0# 1# 2# 0# 1# 1# 1# 0# 1# 1# 1# 1# 1#
947# 1# 0# 0# 0# 2# 0# 1# 0# 0# 2# 0# 1# 0# 1# 0# 0# 0#
334# 0# 0# 0# 1# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0#
948# 0# 0# 0# 0# 0# 1# 0# 1# 1# 0# 1# 1# 1# 0# 1# 1# 0#
335# 0# 0# 0# 1# 0# 0# 0# 0# 0# 0# 0# 0# 0# 0# 1# 0# 0#
531# 1# 0# 0# 0# 1# 0# 2# 0# 0# 2# 0# 0# 0# 2# 0# 0# 0#
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1) Can compare nodes 
based on their structural 
similarity
2) Can cluster nodes to 
identify different 
structural roles

Input

Output

e.g, RolX uses a clustering technique 
called non-negative matrix factorization



¡ Task: Cluster nodes based on their structural 
similarity

¡ Two networks:
§ Network science co-authorship network: 

§ Nodes: Network scientists; Edges: The number of co-authored papers
§ Political books co-purchasing network:

§ Nodes: Political books on Amazon; Edges: Frequent co-purchasing of 
books by the same buyers

¡ Setup: For each network:
§ Use RolX to assign each node a distribution over the 

set of discovered, structural roles
§ Determine similarity between nodes by comparing 

their role distributions
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Making sense of roles: 
¡ Blue circle: Tightly knit, nodes that participate in tightly-coupled groups
¡ Red diamond: Bridge nodes, that connect groups of nodes 
¡ Gray rectangle: Main-stream, most of nodes, neither a clique, nor a chain 
¡ Green triangle: Pathy, nodes that belong to elongated clusters

10/11/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 20

(a) (b)

Figure 7: IP tra�c classes are well-separated in
the RolX “role space” with as few as 3 roles. (a)
Ternary plot showing the degree of membership of
each DNS, P2P, and Web host in each of three roles.
(b) Pseudo-density plot obtained by adding uniform
noise to (a) to reveal overlapping points.
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(b) Graduate Student vs. Rest

Figure 8: RolX (in blue) e↵ectively generalizes be-
havior across time (higher is better). Figure shows
results of across-network transfer learning on the
Reality Mining Device dataset with RolX . Notice
that RolX almost always performs well on the two
di↵erent learning tasks with an average accuracy of
83% and 76%, respectively.

coupled groups. Examples are Andrei Broder and Chris-
tos Faloutsos.

• red diamond : bridge nodes, that connect groups of
(typically, ’main-stream’) nodes. Examples of bridges
are Albert-Laszlo Barabasi and Mark Newman.

(a) Role-colored Visualization of the Network

(b) Role A�nity Heat Map

Figure 9: RolX e↵ectively discovers roles in the
Network Science Co-authorship Graph. (a) Author
network RolX discovered four roles, like the het-
erophilous bridges (red diamond), as well as the ho-
mophilous “pathy” nodes (green triangle) (b) A�n-
ity matrix (red is high score, blue is low) - strong
homophily for roles #1 and #4.

• gray rectangle: main-stream, the vast majority of nodes
- neither on a clique, nor a chain. Examples are John
Hopcroft and Jon Kleinberg.

• green triangle: pathy, nodes that belong to elongated
clusters. For example, Lada Adamic and Bernardo
Huberman.

RolX ’s roles allow us to find similar nodes by compar-
ing their role distributions. Figure 10 depicts node sim-
ilarity for three (target) authors for the Network Science
Co-authorship Graph: Mark Newman, F. Robert, and J.
Rinzel. The primary roles for these three authors are dif-
ferent. Mark Newman’s primary role is a broker (a prolific
author); F. Robert’s primary role places him in a tight-knit
group (an author with homophilous neighborhood), and J.
Rinzel’s primary role places him in the periphery (an au-
thor with homophilous but “pathy” neighborhood). In each
node-similarity picture, the target author is colored in yel-
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network RolX discovered four roles, like the het-
erophilous bridges (red diamond), as well as the ho-
mophilous “pathy” nodes (green triangle) (b) A�n-
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• gray rectangle: main-stream, the vast majority of nodes
- neither on a clique, nor a chain. Examples are John
Hopcroft and Jon Kleinberg.

• green triangle: pathy, nodes that belong to elongated
clusters. For example, Lada Adamic and Bernardo
Huberman.

RolX ’s roles allow us to find similar nodes by compar-
ing their role distributions. Figure 10 depicts node sim-
ilarity for three (target) authors for the Network Science
Co-authorship Graph: Mark Newman, F. Robert, and J.
Rinzel. The primary roles for these three authors are dif-
ferent. Mark Newman’s primary role is a broker (a prolific
author); F. Robert’s primary role places him in a tight-knit
group (an author with homophilous neighborhood), and J.
Rinzel’s primary role places him in the periphery (an au-
thor with homophilous but “pathy” neighborhood). In each
node-similarity picture, the target author is colored in yel-

Role-colored graph: each node is colored by 
the primary role that RolX finds

Role affinity heat-map
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¡ We often think of networks “looking” 
like this:

¡ What led to such a conceptual picture?
10/11/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 23



¡ How does information flow through the network?
§ What structurally distinct roles do nodes play?
§ What roles do different links (“short” vs. “long”) play?

¡ How do people find out about new jobs?
§ Mark Granovetter, part of his PhD in 1960s
§ People find the information through personal contacts

¡ But: Contacts were often acquaintances
rather than close friends
§ This is surprising: One would expect your friends to help 

you out more than casual acquaintances
¡ Why is it that acquaintances are most helpful?
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¡ Two perspectives on friendships:
§ Structural: Friendships span different parts of the 

network
§ Interpersonal: Friendship between two people is 

either strong or weak
¡ Structural role: Triadic Closure
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[Granovetter ‘73]

a

b c

If two people in a 
network have a friend in 
common, then there is 
an increased likelihood 
they will become friends 
themselves.

Which edge is more 
likely, a-b or a-c?



¡ Granovetter makes a connection between 
social and structural role of an edge

¡ First point: Structure
§ Structurally embedded edges are also socially strong
§ Long-range edges spanning different parts of the 

network are socially weak
¡ Second point: Information
§ Long-range edges allow you to gather information 

from different parts of the network and get a job
§ Structurally embedded edges are 

heavily redundant in terms of 
information access
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¡ Triadic closure == High clustering coefficient
Reasons for triadic closure:
¡ If ! and " have a friend # in common, then:
§ ! is more likely to meet "

§ (since they both spend time with #)
§ ! and " trust each other 

§ (since they have a friend in common)
§ # has incentive to bring ! and " together 

§ (since it is hard for # to maintain two disjoint relationships)
¡ Empirical study by Bearman and Moody: 
§ Teenage girls with low clustering coefficient are 

more likely to contemplate suicide
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¡ For many years Granovetter’s theory was not 
tested

¡ But, today we have large who-talks-to-whom 
graphs:
§ Email, Messenger, Cell phones, Facebook

¡ Onnela et al. 2007: 
§ Cell-phone network of 20% of country’s population
§ Edge strength: # phone calls
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¡ Edge overlap:

!"# =
|&(()⋂& + |
|&(()⋃& + |

§ &(() … a set 
of neighbors 
of node (

¡ Overlap = -
when an edge is 
a local bridge
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¡ Cell-phone network
¡ Observation:
§ Highly used links 

have high overlap!

¡ Legend:
§ True: The data
§ Permuted strengths: Keep 

the network structure 
but randomly reassign 
edge strengths
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¡ Real edge strengths in mobile call graph
§ Strong ties are more embedded (have higher overlap)
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¡ Same network, same set of edge strengths
but now strengths are randomly shuffled
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¡ Removing links by strength (#calls) 
§ Low to high
§ High to low
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¡ Removing links based on overlap
§ Low to high
§ High to low
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Closing the loop

I We often think of (social) networks as having the following structure

Long-range, weak ties 

Embedded, strong ties 

I Conceptual picture supported by Granovetter’s strength of weak ties
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¡ Granovetter’s theory 
suggest that networks 
are composed of 
tightly connected 
sets of nodes

¡ Network communities:
§ Sets of nodes with lots of internal connections and 

few external ones (to the rest of the network).
10/11/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 37

Communities, clusters, 
groups, modules



¡ How to automatically 
find such densely 
connected groups of 
nodes?

¡ Ideally such automatically 
detected clusters would 
then correspond to real 
groups

¡ For example:

38

Communities, clusters, 
groups, modules
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Zachary’s karate club

I Social interactions among members of a karate club in the 70s2

a1

a2

a3

a4
a5

a6

a7

a8

a9

a10

a11

a12
a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23a24
a25

a26

a27

a28
a29

a30

a31

a32

a33
a34

Fig. 1.2 Zachary’s ‘karate club’ network. Subgroups, centered around actors 1 and 34, are indi-
cated by the coloring and shape of their nodes, using blue squares and red circles, respectively.
Links between actors within the same subgroup are colored similar to their nodes, while links
between actors of different subgroups are shown in yellow.

I Zachary witnessed the club split in two during his study

⇒ Toy network, yet canonical for community detection algorithms

⇒ Offers “ground truth” community membership (a rare luxury)
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Section 2 Zachary’s Karate Club

Citation history 
of the Zachary’s Karate club paper

W.W. Zachary, J. Anthropol. Res. 33:452-473 (1977).
A.-L. Barabási, Network Science: Communities.



Section 2 Zachary Karate Club Club

The first scientist at any conference on networks 
who uses Zachary's karate club as an example is 
inducted into the Zachary Karate Club Club, and 
awarded a prize.

Chris Moore (9 May 2013).
Mason Porter (NetSci, June 2013).
Yong-Year Ahn (Oxford University, July 2013)
Marián Boguñá (ECCS, September 2013).
Mark Newman (Netsci, June 2014)

http://networkkarate.tumblr.com/)



Political blogs

I The political blogosphere for the US 2004 presidential election

I Community structure of liberal and conservative blogs is apparent

⇒ People have a stronger tendency to interact with “equals”
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Electrical power grid

I Split power network into areas with minimum inter-area interactions

I Applications:
I Decide control areas for distributed power system state estimation
I Parallel computation of power flow
I Controlled islanding to prevent spreading of blackouts
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High-school students

I Network of social interactions among high-school students

I Strong assortative mixing, with race as latent characteristic
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Physicists working on Network Science

I Coauthorship network of physicists publishing networks’ research

I Tightly-knit subgroups are evident from the network structure
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College football

I Vertices are NCAA football teams, edges are games during Fall’00

I Communities are the NCAA conferences and independent teams
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Facebook friendships

I Facebook egonet with 744 vertices and 30K edges

I Asked “ego” to identify social circles to which friends belong

⇒ Company, high-school, basketball club, squash club, family
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Find micro-markets by partitioning the 
“query-to-advertiser” graph in web search:

advertiser

qu
er
y

4010/11/18 Jure Leskovec, Stanford CS224W: Analysis of Networks
Nodes: advertisers and queries/keywords; Edges: Advertiser advertising on a keyword.
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Nodes: Proteins
Edges: Interactions

Can we identify 
functional modules?

Jure Leskovec, Stanford CS224W: Analysis of Networks10/11/18
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Functional modules

Nodes: Proteins
Edges: Interactions

Jure Leskovec, Stanford CS224W: Analysis of Networks10/11/18



Why look for community structure?

Sawmill network: source Exploratory Social Network Analysis with Pajek

Key, H = hispanic, E = english
P = planing, M = milling, Y = yard

¤ The management at the sawmill was having difficulty persuading the workers 
to adopt a new plan, even though everyone would benefit. In particular the 
Hispanic workers (H) were reluctant to agree. The management called in a 
sociologist who mapped out who talked to whom regularly. Then they 
suggested that the management talk to Juan and have him talk to the 
Hispanic workers. It was a success, promptly everyone was on board with the 
new plan. Why?



Why do it: gain understanding

¤Gain understanding of networks
¤ Discover communities of practice
¤ Measure isolation of groups
¤ Understand opinion dynamics / adoption



Why do it: 
visualize

¤Communities 
help to 
“aggregate” 
network 
data



Unveiling network communities

I Nodes in real-world networks organize into communities

Ex: families, clubs, political organizations, proteins by function, . . .

I Community (a.k.a. group, cluster, module) members are:

⇒ Well connected among themselves

⇒ Relatively well separated from the rest

I Exhibit high cohesiveness w.r.t. the underlying relational patterns

I Q: How can we automatically identify such cohesive subgroups?
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Community detection and graph partitioning

I Community detection is a challenging clustering problem

C1) No consensus on the structural definition of community
C2) Node subset selection often intractable
C3) Lack of ground-truth for validation

I Useful for exploratory analysis of network data

Ex: clues about social interactions, content-related web pages

Graph partitioning

Split V into given number of non-overlapping groups of given sizes

I Criterion: number of edges between groups is minimized (more soon)

Ex: task-processor assignment for load balancing

I Number and sizes of groups unspecified in community detection

⇒ Identify the natural fault lines along which a network separates
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Graph partitioning is hard

I Ex: Graph bisection problem, i.e., partition V into two groups
I Suppose the groups V1 and V2 are non-overlapping
I Suppose groups have equal size, i.e., |V1| = |V2| = Nv/2
I Minimize edges running between vertices in different groups

I Simple problem to describe, but hard to solve

Number of ways to partition V :

(
Nv

Nv/2

)
≈ 2Nv

√
Nv

⇒ Used Stirling’s formula Nv ! ≈
√
2πNv (Nv/e)

Nv

⇒ Exhaustive search intractable beyond toy small-sized networks

I No smart (i.e., polynomial time) algorithm, NP-hard problem

⇒ Seek good heuristics, e.g., relaxations of natural criteria
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Strength of weak ties motivation

I Local bridges connect weakly interacting parts of the network

I Q: What about removing those to reveal communities?

I Challenges
I Multiple local bridges. Some better that others? Which one first?
I There might be no local bridge, yet an apparent natural division
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Edge betweenness centrality

I Idea: high edge betweenness centrality to identify weak ties
I High cBe(e) edges carry large traffic volume over shortest paths
I Position at the interface between tightly-knit groups

I Ex: cell-phone network with colored edge strength and betwenness

Edge strength Edge betweenness 
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Girvan-Newman’s method

I Girvan-Newmann’s method extremely simple conceptually

⇒ Find and remove “spanning links” between cohesive subgroups

I Algorithm: Repeat until there are no edges left

⇒ Calculate the betweenness centrality cBe(e) of all edges

⇒ Remove edge(s) with highest cBe(e)

I Connected components are the communities identified
I Divisive method: network falls apart into pieces as we go
I Nested partition: larger communities potentially host denser groups
I Recompute edge betweenness in O(NvNe)-time per step

I M. Girvan and M. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, pp. 7821-7826, 2002
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Example: The algorithm in action

Original graph Step 1 

Step 2 Step 3 

Nested graph decomposition 
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Scientific collaboration network

I Ex: Coauthorship network of scientists at the Santa Fe Institute

I Communities found can be traced to different disciplines
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Hierarchical clustering

I Greedy approach to iteratively modify successive candidate partitions
I Agglomerative: successive coarsening of partitions through merging
I Divisive: successive refinement of partitions through splitting

I Per step, partitions are modified in a way that minimizes a cost
I Measures of (dis)similarity xij between pairs of vertices vi and vj
I Ex: Euclidean distance dissimilarity

xij =

√∑
k 6=i,j

(Aik − Ajk)2

I Method returns an entire hierarchy of nested partitions of the graph

⇒ Can range fully from {{v1}, . . . , {vNv }} to V
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Agglomerative clustering

I An agglomerative hierarchical clustering algorithm proceeds as follows

S1: Choose a dissimilarity metric and compute it for all vertex pairs

S2: Assign each vertex to a group of its own

S3: Merge the pair of groups with smallest dissimilarity

S4: Compute the dissimilarity between the new group and all others

S5: Repeat from S3 until all vertices belong to a single group

I Need to define group dissimilarity from pairwise vertex counterparts
I Single linkage: group dissimilarity xSL

Gi ,Gj
follows single most dissimilar pair

xSL
Gi ,Gj

= max
u∈Gi ,v∈Gj

xuv

I Complete linkage: every vertex pair highly dissimilar to have high xCL
Gi ,Gj

xCL
Gi ,Gj

= min
u∈Gi ,v∈Gj

xuv
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Dendrogram

I Hierarchical partitions often represented with a dendrogram

I Shows groups found in the network at all algorithmic steps

⇒ Split the network at different resolutions

I Ex: Girvan-Newman’s algorithm for the Zachary’s karate club

I Q: Which of the divisions is the most useful/optimal in some sense?

I A: Need to define metrics of graph clustering quality
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Modularity

I Size of communities typically unknown ⇒ Identify automatically

I Modularity measures how well a network is partitioned in communities
I Intuition: density of edges in communities higher than expected

I Consider a graph G and a partition into groups s ∈ S . Modularity:

Q(G ,S) ∝
∑
s∈S

[(# of edges within group s)− E [# of such edges]]

I Formally, after normalization such that Q(G ,S) ∈ [−1, 1]

Q(G ,S) =
1

2Ne

∑
s∈S

∑
i,j∈s

[
Aij −

didj
2Ne

]
⇒ Null model: randomize edges, preserving degree distribution
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Expected connectivity among nodes

I Null model: randomize edges preserving degree distribution in G

⇒ Random variable Aij := I {(i , j) ∈ E}
⇒ Expectation is E [Aij ] = P ((i , j) ∈ E )

I Suppose node i has degree di , node j has degree dj
⇒ Degree is “# of spokes” per node, 2Ne spokes in G

j i ? 
ik 

I Probability spoke ik connected to j is
dj

2Ne−1 ≈ dj
2Ne

, hence

P ((i , j) ∈ E ) = P

(
di⋃

ik=1

{spoke ik connected to j}

)

=

di∑
ik=1

P (spoke ik connected to j) =
didj
2Ne
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Assessing clustering quality

I Can evaluate the modularity of each partition in a dendrogram

⇒ Maximum value gives the “best” community structure

I Ex: Girvan-Newman’s algorithm for the Zachary’s karate club

Q 

I Q: Why not optimize Q(G ,S) directly over possible partitions S?
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¡ Modularity of partitioning S of graph G:
§ Q µ ∑sÎ S [ (# edges within group s) –

(expected # edges within group s) ]

§ ! ", $ = &
'(∑*∈$ ∑,∈* ∑-∈* .,- −

0,0-
'(

¡ Modularity values take range [−1,1]
§ It is positive if the number of edges within 

groups exceeds the expected number
§ Q greater than 0.3-0.7 means significant 

community structure
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Aij = 1 if i®j, 
0 elseNormalizing const.: -1<Q<1



Modularity
¤ Consider edges that fall within a community or 

between a community and the rest of the network

¤ Define modularity:

),(
22

1
wv

vw

wv
vw cc

m
kkA

m
Q δ∑ ⎥

⎦

⎤
⎢
⎣

⎡
−=

probability of an edge 
between
two vertices is proportional to 
their degrees

if vertices are in the 
same community

adjacency matrix

n For a random network, Q = 0
n the number of edges within a community is no different 

from what you would expect
Finding community structure in very large networks
Authors: Aaron Clauset, M. E. J. Newman, Cristopher Moore 2004
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Equivalently modularity can be written as:

10/11/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 50

is an indicator function

Idea: We can identify communities by 
maximizing modularity
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¡ Greedy algorithm for community detection
§ O(n log n) run time

¡ Supports weighted graphs
¡ Provides hierarchical partitions

¡ Widely utilized to study large networks because:
§ Fast

§ Rapid convergence properties

§ High modularity output (i.e., “better communities”)

“Fast unfolding of communities in large networks” Blondel et al. (2008)



¡ Louvain algorithm greedily maximizes modularity
¡ Each pass is made of 2 phases:
§ Phase 1: Modularity is optimized by allowing only 

local changes of communities
§ Phase 2: The identified communities are aggregated

in order to build a new network of communities
§ Goto Phase 1
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The passes are repeated 
iteratively until no increase of 

modularity is possible!



¡ Put each node in a graph into a distinct 
community (one node per community)

¡ For each node i, the algorithm performs two 
calculations: 
§ Compute the modularity gain (∆") when putting 

node # into the community of some neighbor $
§ Move # to a community of node $ that yields the 

largest gain ∆"

¡ The loop runs until no movement yields a gain
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What is !" if we move node # to community $?

§ where:
§ Σ'(… sum of link weights between nodes in )
§ Σ*+*… sum of all link weights of nodes in )
§ ,','(… sum of link weights between node . and )
§ ,'… sum of all link weights (i.e., degree) of node .

¡ Also need to derive Δ0 1 → . of taking 
node . out of community 1.

¡ And then: Δ0 = Δ0 . → ) + Δ0 1 → .
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Δ0 . → )

Σ'(:

Σ*+*:



¡ The partitions obtained in the first phase are 
contracted into super-nodes, and the network 
is created accordingly
§ Super-nodes are connected if there is at least one 

edge between nodes of the corresponding 
partitions

§ The weight of the edge between the two super-
nodes is the sum of the weights from all edges 
between their corresponding partitions

¡ The loop runs until the community 
configuration does not change anymore
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Fast unfolding of communities in large networks 6

Figure 3. Graphical representation of the network of communities extracted from a
Belgian mobile phone network. About 2M customers are represented on this network.
The size of a node is proportional to the number of individuals in the corresponding
community and its colour on a red-green scale represents the main language spoken
in the community (red for French and green for Dutch). Only the communities
composed of more than 100 customers have been plotted. Notice the intermediate
community of mixed colours between the two main language clusters. A zoom at
higher resolution reveals that it is made of several sub-communities with less apparent
language separation.

is very low. These communities may possibly be merged in the later passes, after blocks

of nodes have been aggregated. However, our algorithm provides a decomposition of
the network into communities for different levels of organization. For instance, when

applied on the clique network proposed in [23], the cliques are indeed merged in the final

partition but they are distinct after the first pass (see Figure 2). This result suggests

that the intermediate solutions found by our algorithm may also be meaningful and that

the uncovered hierarchical structure may allow the end-user to zoom in the network and

to observe its structure with the desired resolution.

¡ 2M nodes
¡ Red nodes: 

French speakers
¡ Green nodes: 

Dutch speakers


