Network Effects and Cascading Behavior (1)

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu

Spreading Through Networks

- Spreading through networks:
 - Cascading behavior
 - Diffusion of innovations
 - Network effects
 - Epidemics
- Behaviors that cascade from node to node like an epidemic

Examples:

- Biological:
 - Diseases via contagion
- Technological:
 - Cascading failures
 - Spread of information
- Social:
 - Rumors, news, new technology
 - Viral marketing

Information Diffusion: Media

Twitter & Facebook post sharing

Lada Adamic shared a link via Erik Johnston. January 16, 2013

When life gives you an almost empty jar of nutella, add some ice cream... (and other useful tips)

50 Life Hacks to Simplify your World twistedsifter.com

wistedsifter.com

Life hacks are little ways to make our lives easier. These lowbudget tips and trick can help you organize and de-clutter space; prolong and preserve your products; or teach you...

Like · Comment · Share

Timeline Photos

Back to Album · I fucking love science's Photos · I fucking love science's Page

Previous - Next

Diffusion in Viral Marketing

Product adoption:

Senders and followers of recommendations

Spread of Diseases (e.g., Ebola)

Network Cascades

- Contagion that spreads over the edges of the network
- It creates a propagation tree, i.e., cascade

Terminology:

- <u>Stuff that spreads:</u> Contagion
- <u>"Infection" event:</u> Adoption, infection, activation
- <u>We have:</u> Infected/active nodes, adopters

How Do We Model Diffusion?

Decision based models (today!):

- Models of product adoption, decision making
 - A node observes decisions of its neighbors and makes its own decision
- Example:
 - You join demonstrations if k of your friends do so too

Probabilistic models (on Tuesday):

Models of influence or disease spreading

- An infected node tries to "push" the contagion to an uninfected node
- Example:
 - You "catch" a disease with some prob. from each active neighbor in the network

Decision Based Model of Diffusion

[Morris 2000]

Game Theoretic Model of Cascades

Based on 2 player coordination game

- 2 players each chooses technology A or B
- Each person can only adopt one "behavior", A or B
- You gain more payoff if your friend has adopted the same behavior as you

Local view of the network of node **v**

Example: VHS vs. BetaMax

Example: BlueRay vs. HD DVD

The Model for Two Nodes

Payoff matrix:

- If both v and w adopt behavior A, they each get payoff a > 0
- If v and w adopt behavior B, they reach get payoff b > 0
- If v and w adopt the opposite behaviors, they each get 0
- In some large network:
 - Each node v is playing a copy of the game with each of its neighbors
 - Payoff: sum of node payoffs per game

Calculation of Node v

Threshold: v chooses A if = qa+h

> p... frac. v's nbrs. with A q... payoff threshold

Let v have d neighbors

Assume fraction **p** of **v**'s neighbors adopt **A**

• $Payoff_{v} = a \cdot p \cdot d$ if v chooses B $= b \cdot (1-p) \cdot d$ Thus: v chooses A if: p > q

if v chooses A

10/30/18

Scenario:

- Graph where everyone starts with all B
- Small set S of early adopters of A
 - Hard-wire S they keep using A no matter what payoffs tell them to do
- Assume payoffs are set in such a way that nodes say:
 If more than q=50% of my friends take A I'll also take A.

This means: **a** = **b**-ε (ε>0, small positive constant) and then **q**=**1/2**

Application: Modeling protest recruitment on social networks

<u>The Dynamics of Protest Recruitment through an Online Network</u> Bailon et al. Nature Scientific Reports, 2011

The Spanish 'Indignados' Movement

- Anti-austerity protests in Spain May 15-22,
 2011 as a response to the financial crisis
- Twitter was used to organize and mobilize users to participate in the protest

Data collected using hashtags

Researchers identified 70 hashtags that were used by the protesters

Dataset

70 hashtags were crawled for 1 month period

Number of tweets: 581,750

- Relevant users: Any user who tweeted any relevant hashtag and its followers and followees
 - Number of users: 87,569

Created two undirected follower networks:

- 1. Full network: with all Twitter follow links
- 2. Symmetric network with only the reciprocal follow links $(i \rightarrow j \text{ and } j \rightarrow i)$
 - This network represents "strong" connections only.

Definitions

- User activation time: Moment when user starts tweeting protest messages
- k_{in} = The total number of neighbors when a user became active
- k_a = Number of active neighbors when a user became active
- Activation threshold = k_a/k_{in}
 - The fraction of active neighbors at the time when a user becomes active

Recruitment & Activation Threshold

- If $k_a/k_{in} \approx 0$, then the user joins the movement when very few neighbors are active \Rightarrow no social pressure
- If $k_a/k_{in} \approx 1$, then the user joins the movement after most of its neighbors are active \Rightarrow high social pressure Already

Distribution of activation thresholds

 Mostly uniform distribution of activation threshold in both networks, except for two local peaks

0.5 activation threshold users: Many users who join after half their neighbors do.

Effect of neighbor activation time

Hypothesis: If several neighbors become active in a short time period, then a user is more likely to become active
Method: Calculate the burstiness of active neighbors as

 $\Delta k_a / k_a = (k_a^{t+1} - k_a^{t}) / k_a^{t+1}$

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Information cascades

- No cascades are given in the data
- So cascades were identified as follows:
 - If a user tweets a message at time t and one of its followers tweets a message in (t, t+ Δ t), then they form a cascade.
 - E.g., $1 \rightarrow 2 \rightarrow 3$ below form a cascade:

Size of information cascades

Size = number of nodes in the cascade

Most cascades are small:

Who starts successful cascades?

- Are starters of successful cascades more central in the network?
- Method: k-core decomposition
 - k-core: every node in the graph has at least degree k
 - Method: repeatedly remove all nodes with degree less than k
 - Higher k-core number of a node means it is more central

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Who starts the successful cascades?

- K-core decomposition of follow network
 - Red nodes start successful cascades
 - Red nodes have higher k-core values
 - So, successful cascades starters are central and connected to equally well connected users

Successful cascade starters are central (higher k-core number)

Summary: Cascades on Twitter

- Uniform activation threshold for users, with two local peaks
- Most cascades are short
- Successful cascades are started by central (more core) users

Models of Cascading Behavior

So far:

Decision Based Models

- Utility based
- Deterministic

 "Node" centric: A node observes decisions of its neighbors and makes its own decision

Next: Extending decision based models to multiple contagions

Extending the Model: Allow People to Adopt A and B

Extending the model

So far:

- Behaviors A and B compete
- Can only get utility from neighbors of same behavior: A-A get a, B-B get b, A-B get 0

For example:

- Using Skype vs. WhatsApp
 - Can only talk using the same software
- Having a VHS vs. BetaMax player
 - Can only share tapes with people using the same type of tape

But one can buy 2 players or install 2 programs

Cascades & Compatibility

So far:

- Behaviors A and B compete
- Can only get utility from neighbors of same behavior: A-A get a, B-B get b, A-B get 0
- Let's add an extra strategy "AB"
 - AB-A : gets a
 - AB-B : gets b
 - AB-AB : gets max(a, b)
 - Also: Some cost c for the effort of maintaining both strategies (summed over all interactions)
 - Note: a given node can receive a from one neighbor and b from another by playing AB, which is why it could be worth the cost c

Cascades & Compatibility: Model

- Every node in an infinite network starts with B
- Then a finite set S initially adopts A
- Run the model for *t=1,2,3,...*
 - Each node selects behavior that will optimize payoff (given what its neighbors did in at time *t-1*)

Example: Path Graph (1)

- Path graph: Start with Bs, a > b (A is better)
- One node switches to A what happens?
 - With just A, B: A spreads if a > b
 - With A, B, AB: Does A spread?
- Example: a=3, b=2, c=1

Example: Path Graph (2)

Example: a=5, b=3, c=1

What about in a general case?

- Let's solve the model in a general case:
 - Infinite path, start with all Bs
 - Payoffs for w: A:a, B:1, AB:a+1-c
- For what pairs (c,a) does A spread?
 - We need to analyze two cases for node w: Based on the values of a and c, what would w do?

Infinite path, start with Bs

- Payoffs for w: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Infinite path, start with Bs

- Payoffs for w: A:a, B:1, AB:a+1-c
- What does node w in A-w-B do?

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

Same reward structure as before but now payoffs for w change: A:a, B:1+1, AB:a+1-c

AB

- Notice: Now also AB spreads
- What does node w in AB-w-B do?

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

B

Same reward structure as before but now payoffs for w change: A:a, B:1+1, AB:a+1-c

AB

- Notice: Now also AB spreads
- What does node w in AB-w-B do?

Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu

B

Joining the two pictures:

Lesson

B is the default throughout the network until new/better A comes along. What happens?

- Infiltration: If B is too compatible then people will take on both and then drop the worse one (B)
- Direct conquest: If A makes itself not compatible – people on the border must choose. They pick the better one (A)
- Buffer zone: If you choose an optimal level then you keep a static "buffer" between A and B

Models of Cascading Behavior

So far:

Decision Based Models

- Utility based
- Deterministic

- "Node" centric: A node observes decisions of its neighbors and makes its own decision
- Require us to know too much about the data
- Next: Probabilistic Models
 - Lets you do things by observing data
 - We lose "why people do things"

