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¡ In decision-based models nodes make 
decisions based on pay-off benefits of 
adopting one strategy or the other

¡ In epidemic spreading:
§ Lack of decision making
§ Process of contagion is complex and unobservable

§ In some cases it involves (or can be modeled as) 
randomness
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Recap
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¡ Epidemic Model based on Random Trees
§ (a variant of a branching processes)
§ A patient meets d new people
§ With probability q > 0 she infects each 

of them
¡ Q: For which values of d and q

does the epidemic run forever?

§ Run forever:  lim$→&'
( )*+, (- +,.-/ /

01 0)2,3-,+ > 5

§ Die out:          lim$→&'
( )*+, (- +,.-/ /

01 0)2,3-,+ = 5
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Root node,
“patient 0”

Start of epidemic

d subtrees



¡ !" = prob. a node at depth " is infected
¡ We need: lim

&→(
)& = ? (based on , and -)

§ We are reasoning about a behavior at the root of the tree. Once we 
get a level out, we are left with identical problem of depth ℎ − 1.

¡ Need recurrence for !"
)& = 1 − 1 − , ⋅ )&23 4

¡ 567
"→(

!" = result of iterating
f x = 1 − 1 − , ⋅ : 4

§ Starting at the root: : = 1 (since )3 = 1)
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No infected node
at depth h from the root

d subtrees

We iterate:
x1=f(1)
x2=f(x1)
x3=f(x2)



If we want to epidemic to die out, then iterating !(#)
must go to zero. So, !(#) must be below & = #.
¡ What’s the shape of (())?
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x

f(x)

1

y=x=1

Going to the first 
fixed point

y = f x

x … prob. a node
at level h-1 is infected. 
We start at x=1 
because p1=1.
f(x) … prob. a node
at level h is infected
q … infection prob.
d … degree

Fixed point:
!(#) = #

This means that
prob. there is an 
infected node at depth 
ℎ is constant (>0)

We iterate:
x1=f(1)
x2=f(x1)
x3=f(x2)
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x

f(x)

1

y=x=1

• ! 0 = 0
• ! 1 = 1 − 1 − & ' < 1
• !) * = & ⋅ , 1 − &* '-.
• !) 0 = & ⋅ , /′(2) is monotone non-increasing on [0,1]!

What do we know about the shape of /(2)?

Going to the first 
fixed point

f(x) is monotone: If g’(y)>0 for all y then g(y) is monotone.
In our case, 0≤x,q≤1, d>1 so f’(x)>0 so f(x) is monotone.
f’(x) non-increasing: since term (1-qx)d-1 in f’(x) is 
decreasing as x decreases.

y = f x

x … prob. a node
at level h-1 is infected. 
We start at x=1 
because p1=1.
f(x) … prob. a node
at level h is infected
q … infection prob.
d … degree
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x

f(x)

1

y=x

y = f x

For the epidemic to die out 
we need %(') to be below ) = '!

So: %* + = , ⋅ . < 0
lim4→6 74 = 0 9ℎ;< , ⋅ . < 0

, ⋅ . = expected # of people that get infected

Reproductive
number =+ =

, ⋅ .:
There is an 
epidemic if 
=+³ 0



¡ Reproductive number !" = $ ⋅ &:
§ It determines if the disease will spread or die out.

¡ There is an epidemic if !" ≥ )

¡ Only R0 matters:
§ !" ≥ ): epidemic never dies and the number of 

infected people increases exponentially
§ !" < ): Epidemic dies out exponentially quickly
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¡ When R0 is close 1, slightly changing ! or " can 
result in epidemics dying out or happening
§ Quarantining people/nodes [reducing "]
§ Encouraging better sanitary practices reduces germs 

spreading [reducing !]
§ HIV has an R0 between 2 and 5

§ Measles has an R0 between 12 and 18

§ Ebola has an R0 between 1.5 and 2
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Characterizing social cascades in Flickr. Cha et al. ACM WOSN 2008

http://www.ccs.neu.edu/home/amislove/publications/Cascades-WOSN.pdf


¡ Flickr social network:
§ Users are connected to other users via friend links
§ A user can “like/favorite” a photo

¡ Data: 
§ 100 days of photo likes
§ Number of users: 2 million 
§ 34,734,221 likes on 11,267,320 photos
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¡ Users can be exposed to a photo via social 
influence (cascade) or external links 

¡ Did a particular like spread through social links? 
§ No, if a user likes a photo and if none of his friends 

have previously liked the photo 
§ Yes, if a user likes a photo after at least one of her 

friends liked the photo à Social cascade
¡ Example social cascade: 

A à B and A àC à E
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¡ Recall: !0 = $ ∗ &

¡ Estimate of !0 : 
§ Estimating ': Given an infected node count the 

proportion of its neighbors subsequently infected and 
average

§ Then: !( = $ ∗ & ∗ )*+(-./)
)*+ -. /

¡ Empirical !0: 
§ Given start node of a cascade, count the fraction of 

directly infected nodes and proclaim that to be !0
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& … avg degree
&1 …degree of node 2

Correction factor due to skewed 
degree distribution of the network



¡ Data from top 1,000 photo cascades
¡ Each + is one cascade
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¡ The basic reproduction number of popular 
photos is between 1 and 190

¡ This is much higher than very infectious 
diseases like measles, indicating that social 
networks are efficient transmission media and 
online content can be very infectious. 
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Virus Propagation: 2 Parameters:
¡ (Virus) Birth rate β: 
§ probability that an infected neighbor attacks

¡ (Virus) Death rate δ:
§ Probability that an infected node heals

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 19

Infected

Healthy

NN1

N3

N2
Prob. β

Prob. β

Prob. δ



¡ General scheme for epidemic models:
§ Each node can go through phases:

§ Transition probs. are governed by the model parameters
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S…susceptible
E…exposed
I…infected
R…recovered
Z…immune

20



¡ SIR model: Node goes through phases

§ Models chickenpox or plague: 
§ Once you heal, you can never get infected again

¡ Assuming perfect mixing (The network is a 
complete graph) the 
model dynamics are:
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¡ Susceptible-Infective-Susceptible (SIS) model 
¡ Cured nodes immediately become susceptible
¡ Virus “strength”: ! = # / %
¡ Node state transition diagram:
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Susceptible Infective

Infected by neighbor 
with prob. β

Cured with 
prob. δ



¡ Models flu:
§ Susceptible node 

becomes infected
§ The node then heals 

and become 
susceptible again

¡ Assuming perfect 
mixing (a complete 
graph):
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¡ SIS Model: 
Epidemic threshold of an arbitrary 
graph G is τ, such that:
§ If virus “strength” s = β / δ < τ the epidemic can 

not happen (it eventually dies out)

¡ Given a graph what is its epidemic threshold?
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¡ Fact: We have no epidemic if:
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β/δ < τ = 1/ λ1,A

► λ1,A alone captures the property of the graph!

(Virus) Birth rate

(Virus) Death 
rate

Epidemic threshold

largest eigenvalue
of adj. matrix A of G

[Wang et al. 2003]
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Autonomous Systems Graph



¡ Does it matter how many people are 
initially infected?
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[Gomes et al., 2014]

[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, ‘14]
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S: susceptible individuals, E: exposed individuals, I: infectious cases in the community, 
H: hospitalized cases, F: dead but not yet buried, R: individuals no longer transmitting the disease
[Gomes et al., Assessing the International Spreading Risk Associated with the 2014 West African Ebola Outbreak, PLOS Current Outbreaks, ‘14]
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[Gomes et al., 2014]

Read an article about how to estimate R0 of ebola.

http://currents.plos.org/outbreaks/article/estimating-the-reproduction-number-of-zaire-ebolavirus-ebov-during-the-2014-outbreak-in-west-africa/


References:  
1. Epidemiological Modeling of News and Rumors on Twitter.  Jin et al. SNAKDD 2013
2. False Information on Web and Social Media: A survey. Kumar et al., arXiv :1804.08559
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Notation:
§ S = Susceptible
§ I = Infected
§ E = Exposed
§ Z = Skeptics
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Tweets collected from eight stories: Four rumors and four real
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REAL EVENTS RUMORS



¡ SEIZ model is fit to each cascade to minimize the 

difference |"($) – $'(($)($)|:
§ $'(($)($) = number of rumor tweets 

§ "($) = the estimated number of rumor tweets by the model

¡ Use grid-search and use the parameters with 

minimum error is selected
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SEIZ model better models the real data, especially at initial points
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SEIZ model better models the real data, especially at initial points
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Notation:
S = Susceptible
I = Infected
E = Exposed
Z = Skeptics

New 
metric:

All parameters 
learned by 
model fitting to 
real data (from 
previous slides)
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Parameters obtained by fitting SEIZ model 
efficiently identifies rumors vs. news





¡ Initially some nodes S are active
¡ Each edge (u,v) has probability (weight) puv

¡ When node u becomes active/infected: 
§ It activates each out-neighbor v with prob. puv

¡ Activations spread through the network!
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¡ Independent cascade model 
is simple but requires
many parameters!
§ Estimating them from

data is very hard
[Goyal et al. 2010]

¡ Solution: Make all edges have the same 
weight (which brings us back to the SIR model)

§ Simple, but too simple

¡ Can we do something better?
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¡ From exposures to adoptions
§ Exposure: Node’s neighbor exposes the 

node to the contagion
§ Adoption: The node acts on the contagion

45

[KDD ‘12]
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¡ Exposure curve:
§ Probability of adopting new 

behavior depends on the total number 
of friends who have already adopted

¡ What’s the dependence?
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k = number of friends adopting
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Viruses, Information
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¡ From exposures to adoptions
§ Exposure: Node’s neighbor exposes the node to 

information
§ Adoption: The node acts on the information

¡ Examples of different adoption curves:

47

Pr
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Probability of
infection ever
increases

Nodes build 
resistance

[KDD ‘12]
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¡ Senders and followers of recommendations 
receive discounts on products

¡ Data: Incentivized Viral Marketing program
§ 16 million recommendations

§ 4 million people, 500k products
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10% credit 10% off

[Leskovec et al., TWEB ’07]
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¡ Group memberships spread over the 
network:
§ Red circles represent 

existing group members
§ Yellow squares may join

¡ Question:
§ How does prob. of joining 

a group depend on the 
number of friends already 
in the group?
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[Backstrom et al. KDD ‘06]
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¡ LiveJournal group membership 
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k (number of friends in the group)
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[Backstrom et al., KDD ’06]



¡ Twitter [Romero et al. ‘11]
§ Aug ‘09 to Jan ’10, 3B tweets, 60M users

§ Avg. exposure curve for the top 500 hashtags
§ What are the most important aspects of the 

shape of exposure curves?
§ Curve reaches peak fast, decreases after!
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¡ Persistence of P is the 
ratio of the area under 
the curve P and the area
of the rectangle of height
max(P), width max(D(P))
§ D(P) is the domain of P
§ Persistence measures the 

decay of exposure curves

¡ Stickiness of P is max(P)
§ Stickiness is the probability of 

usage at the most effective exposure
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¡ Manually identify 8 
broad categories with 
at least 20 HTs in each
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Pe
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• Idioms and Music 
have lower persistence 
than that of a random 
subset of hashtags of 
the same size
• Politics and Sports 
have higher persistence 
than that of a random 
subset of hashtags of 
the same size

True Rnd. subset



¡ Technology and Movies have lower stickiness than 
that of a random subset of hashtags

¡ Music has higher stickiness than that of a random 
subset of hashtags (of the same size)
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¡ Two sources of exposures 
[Myers et al., KDD, 2012]
§ Exposures from the network
§ External exposures

56

External
effectsÝ

[KDD ‘12]
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[KDD ‘12]

10/30/18 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



¡ Given:
§ Network G
§ A set of node adoption 

times (u, t) single piece of info
¡ Goal: Infer
§ External event profile: 

λext(t) … # external exposures over time
§ Adoption curve:
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¡ In social networks people post 
links to interesting  articles
§ You hear about an article from a friend

§ You read the article and then post it

¡ Data from Twitter
§ Complete data from Jan 2011: 

3 billion tweets

§ Trace the emergence of URLs

§ Label each URL by its topic
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[KDD ‘12]
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¡ Adoption of URLs across Twitter:

¡ More in Myers et al., KDD, 2012
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[KDD ‘12]

max P(k)
k at 

max P(k)
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§ Basic reproductive number R0

§ General epidemic models
§ SIR, SIS, SEIZ
§ Independent cascade model
§ Applications to rumor spread
§ Exposure curves
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