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Feature matrices, relationship tables, time
series, document corpora, image datasets, etc.
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How to Construct Networks?

Network construction
and inference

Today: How to construct and infer networks
from raw data?
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Why? -- Networks are Useful
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Jonas Richiardi et al., Correlated gene expression supports synchronous activity in
brain networks. Science 348:6240, 2015.
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Plan for Today

Multimode Network Transformations:
K-partite and bipartite graphs
One-mode network projections/folding

Graph contractions
K-Nearest Neighbor Graph Construction

Network Deconvolution:

Direct and and indirect effects in a network

Inferring networks by network deconvolution
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Multimode Network
Transformations




Bipartite and K-partite Networks

Most of the time, when we create a network, all nodes
represent objects of the same type:

People in social nets, bus stops in route nets, genes in gene nets

Multi-partite networks have multiple types of nodes,
where edges exclusively go from one type to the other:

2-partite student net: Students <-> Research projects
3-partite movie net: Actors <-> Movies <-> Movie Companies

’
A /.
@
i‘ Network on the left is a social bipartite

network. Blue squares stand for people and
red circles represent organizations

/
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One-mode Projections: Example

Example: Bipartite student-project network:
Edge: Student i works on research project k

Students i

Research projects k

Two network projections of student-project network:

Student network: Students are linked if they work together
in one or more projects

Project network: Research projects are linked if one or
more students work on both projects

In general: K-partite network has K one-mode network
projections
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One-mode Projections: Example

Example: Projection of bipartite student-project network
onto the student mode:

Students One-mode student projection
Research W
projects

Consider students 3, 4, and 5 connected in a triangle:

Triangle can be a result of:

Scenario #1: Each pair of students work on a different project
Scenario #2: Three students work on the same project

One-mode network projections discard some information:
Cannot distinguish between #1 and #2 just by looking at the projection
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(1) Constructing One-mode Projections

One-mode projection onto student mode:

#(projects) that students i and j work together on is
equivalent to the number of paths of length 2
connecting i and j in the bipartite network

Let C be incidence matrix of student-project net:
__J1ifi works on project k d
Clk — Students

0 otherwise W

Projects

C is an n X m binary non-symmetric matrix:

n is #(students), m is #(projects)
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(2) Constructing One-mode Projections

Idea: Use C to construct various one-mode network projections
Weighted student network: Students

B. =1 Wij , #(projects) that i and j collaborate on W
J 0 otherwise

Projects

Bi; = 1 Cix Cjk, I.e., the number of paths of length 2 connecting
students i and j in the bipartite network

B = cc! and B;; represents #(projects) that student i works on

Similarly, weighted project network:
D, = JWki #(students) that work on k and [
kel 0 otherwise

Dy = X CixCyy, i.e., the number of paths of length 2 connecting
projects k and [ in the bipartite network

D = C"C and Dy, represents #(students) that work on project k

Next: Use B and D to obtain different network projections
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(3) Construct One-mode Projections

Construct network projections by applying a node
similarity measure to B and D

Two node similarity measures:

Common neighbors: #(shared neighbors of nodes)
Student network: i and j are linked if they work together in r or
more projects, i.e., if B;; = r
Project network: k and [ are linked if  or more students work on
both projects, i.e., if Dy; = 1

Jaccard index:

Common neighbors with a penalization for each non-shared
neighbor:

Ratio of shared neighbors in the complete set of neighbors for 2 nodes
Student network: i and j are linked if they work together in at least
p fraction of their projects, i.e., if B;;/(B;; + Bjj — Bjj) = p

Project network: k and [ are linked if at least p fraction of their
students work on both projects, i.e., if Di;/(Dgx + Djy — D) = 0
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Example: The Human Disease Net

Human Disease Network
(HDN)

Charcot-Mal.Joth disease
Lipo.)phy
Spastic atax'aplegia

'r spastic paraplegia syndrome
Amyotrophic lateral .)Sis

Sar.off disease

Spinal n‘ atrophy

Androgen insensitivity

PFOSta‘er Perineal hypospadias
@
Wilms tL.r r
Ova‘wcef

Pancr‘ancer
Papillary se& carcinoma
Fanc‘e

mia
‘II lymphoblastic leukemia

Ataxia-telangiectasia

DISEASOME

disease phenome

Ataxia-telangiectasia
Perineal hypospadias
Androgen insensitivity
T-cell Iympht‘stic leukemia
Papillary se* carcinoma

Pros‘ncer

Pancr‘ancer

WiIrr‘Jmor

Spinal rr‘ atrophy

Sandh.iisease

Lipo.)phy
Charcot-Ma.)oth disease
Amyotrophiz.ral sclerosis

Silver spastic p‘legia syndrome

Spastic at.uaraplegia
Fancc.vemia

disease genome

AR

ATM

BRCA2

GARS

HEXB

LMNA

VAPB

BSCL2

BRIP1

Homework 1

Disease Gene Network
(DGN)

HEXB
s
BSCL2
VAPB
GARS

AR

ATM

BRIP1 (IRl

Kwang-Il Goh et al., The human disease network. PNAS, 104:21, 2007.
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Example: The Human Disease Net

Issue: Folded gene network
contains many cliques:

Why do cliques arise in the folded
gene network?

Homework 1

Cliques make the network
difficult to analyze:

Computational complexity of
many algorithms depends on the
size and number of large cliques

Solution: Use graph
contraction to eliminate cliques

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks

Disease Gene Network
(DGN)

HEXB

LMNA
ALz

VAPB
GARS

BSCL2

AR

ATM

BRIP1 ghcAz

v

A clique of g gene nodes

14



Graph Contraction

Graph contraction: Technique for computing

properties of networks in parallel:
Divide-and-conquer principle

Idea:

Contract the graph into a smaller graph, ideally a
constant fraction smaller

Recurse on the smaller graph

Use the result from the recursion along with the
initial graph to calculate the desired result

Next: How to contract (“shrink”) a graph?
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Graph Contraction: Algorithm

Start with the input graph G:
Select a node-partitioning of ¢ to guide the contraction:

Partitions are disjoint and they include all nodes in G
Contract each partition into a single node, a supernode
Drop edges internal to a partition
Reroute cross edges to corresponding supernodes
Set (7 to be the smaller graph; Repeat

Example: one round of graph contraction:

3 partitions: a, d, e a e
a e a e
# #
d d d

Identify partitons Contract Delete duplicate edges
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Graph Contraction: Example

Contracting a graph down to a single node in

three rounds:
Round 1

/\.a .e

Round 3

Round 2

o
.~ 4
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Different Types of Node-partitioning

Partitions should be disjoint and include all nodes in G
Three types of node-partitioning:

Each partition is a (maximal) clique of nodes:

a e
Contract a
* e

C

C

Each partition is a single node or two connected nodes:

a g g

Contract a

—p e

Each partition is a star of nodes, etc.
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Plan for Today

Multimode Network Transformations:

K-partite and bipartite graphs /
One-mode network projections/folding

Graph contractions

K-Nearest Neighbor Graph Construction %:

Network Deconvolution:

Direct and and indirect effects in a network

Inferring networks by network deconvolution
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Efficient Construction of
K-Nearest Neighbor Graph




K-Nearest Neighbor Graph

K-nearest neighbor graph (K-NNG) for a set of
objects I/ is a directed graph with vertex set I/:

Edges from each v € V to its K most similar
objects in V under a given similarity measure:

e.g., Cosine similarity for text
e.g., I, distance of CNN-derived features for images
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Why Constructing K-NNGs?

K-NNG construction is an important operation:

Recommender systems: connect users with similar
product rating patterns, then make recommendations
based on the user’s graph neighbors

Document retrieval systems: connect documents
with similar content, quickly answer input queries

Other problems in clustering, visualization,
information retrieval, data mining, manifold learning

K-NNGs allow us to use network methods on
datasets with no explicit graph structure
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Example: K-NNG in Visualization

Problem: Visualize large high-dim data in 2D space
Traditional approach:

Compute similarities between objects
Project objects into a 2D space by preserving the similarities
Does not scale to millions of objects and hundreds of dimensions

K-NNG can substantially reduce computational costs

HNENRENNEN

K-NNG construction Wbt Ty :
o \"} ‘ T
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W Y
e o By
HEREREREER e
v N
:
HEREREREER e ;s
(a) High-dimensional feature vectors (b) K-nearest neighbor graph (K-NNG) (c) 2-dimensional layout

WikiDoc data (t-SNE)
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K-NNG: A Brute-force Approach

10/4/18

Let’s construct a K-NNG by brute-force:
Given n objects V and a distance metric
g VXV - [0,0)
For each possible pair of (u, v), compute o(u, v)

For each v, let B (v) be v’s K-NN, i.e., the K
objects in V (ch.er than v) most similar to v

R_a 1:? Compute similarit
@W\p y
Loe \;fi@g — ‘8&;}3 Object v
. W% Choose k of the

nearest objects
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K-NNG: A Brute-force Approach

Computational cost of brute-force: 0 (n?)

Y e S

@\‘7\

N7 7 _—

AL

Issues with brute-force approach:  —

Not scalable: Practical for only small datasets

Not general: Many custom heuristics designed to
speed up computations:

Many heuristics are specific to a similarity measure

Not efficient: Compute all neighbors for every v

We only need k nearest neighbors for every v
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Today: NN-Descent Approach

Can we do better than brute-force?
Yes, and we will learn about it today!

NN-Descent [Dong et al., WWW 2011]:

Efficient algorithm to approximate K-NNG construction
with arbitrary similarity measure
Other published methods (not covered today):

Locality Sensitive Hashing (LSH): A new hash function
needs to be designed for a new similarity measure

Recursive Lanczos bisection: Recursively divide the
dataset, so objects in different partitions are not compared

K-NN search problem: If K-NN problem is solved, K-NNG
can be constructed by running a K-NN query foreachv € V

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 26



NN-Descent: Key Principle

Key principle: A neighbor of a neighbor is also
likely to be a neighbor

Use this principle in a NN-Descent method:
Start with an approximation of the K-NNG, B

Improve B by exploring each point’s neighbors’
neighbors as defined by the current approximation

Stop when no improvement can be made
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NN-Descent: Notation

10/4/18

Let:
IV be a metric space with distance metric
d:VXV — |0,00), 0 = —d is the similarity measure
By (v) be v's K-NN
Ry(v) ={u e€eV;v € Bxy(u)} be v's reverse K-NN
B|v] be current approximation of B (v)
B'lv] =U,repp, B[V'] be neighbors of v’s
neighbors

Foranyr > 0, let -ball around v be:
B.(v) ={ueV;du,v) <r}



Details

(1) NN-Descent: Overview

Def: Metric space I/ is growth-restricted if there
exists a constant ¢, such that:

Byr(W)| < ¢|B,(v)|, Vv EV

The smallest such c is growing constant of V

Approach:

Start with an approximation of the K-NNG, B

Use the growing constant of I/ to show that B can be

improved by comparing each object v against its
current neighbors’ neighbors B’ [v]

Next: Use the growing-constant argument on B

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 29



Details

(2) NN-Descent: Proof Outline

Two assumptions:
Let ¢ be the growing constantof V and let K = ¢

Have an approximate K-NNG B that is reasonably good:

For a fixed radius r, for all v, B[v] contains K neighbors that are
uniformly distributed in B, (v)

3

Lemma: B'[v] is likely to contain K nearest
neighbors in B, (V)

Corollary: We expect to halve the maximal
distance to the set of approximate K nearest
neighbors by exploring B'[v] for every v

Next: Let’s prove the lemma
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Details

(3) NN-Descent: Proof

Lemma: B'[v] is likely to contain K nearest neighbors in B,./,(v)

Proof:

For anyu € B,/,(v) to be found in B'[v], we need to have at least one
v’ such that

v' € B[v] A u € B[V']

Any v’ € By, (v) is likely to satisfy this requirement, as we have:
v'is also in B, (v), so Pr{v' € B[v]} = K/|B,(v)]|
d(u,v') <d(u,v)+dw,v) <r,soPr{u € B[v']} = K/|B,(v)]
IB ()| < ¢|Byj2(v)], and |B, (V)| < ¢|Br/2(V)| < ¢|B- (V)| <
c?|By (V)]

Combining 1-3 and assumlng mdependence we get:

Pr{v' € B[v]Au € B[V']} > K/|Br/2(v)|
In total, we have |B;., (V)| candldates for such v', so that: Pr{u €
qep TP E -0 K/|Br 20| )Er=0) ~ K /1By (v)
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Details

NN-Descent: Recap

Lemma suggests the following algorithm:
Pick a large enough K(depending on growing constant c)
Start from a random K-NNG approximation

For each v, find K nearest objects by exploring v’s
neighbors’ neighbors, B’

Repeat; stop when no improvement can be made
Random init ©
@

® k returned results
@

. b ........... ...

o ¥ (& @
& @ o0 ‘. The returned first result
®. o
& ® “~'Query point
& ® .
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NN-Descent: Algorithm

Algorithm 1: NNDESCENT

Data: dataset V, similarity oracle o, K
Result: K-NN list B

begin A. Start by picking a random
B[v] «+— SAMPLE(V, K) x {00}, V0 €V ummmmm— approximation of K-NN for each
loop object

R «—— REVERSE(B)

B[v] +— B[v]UR[v], YveV;
c+— 0 //update counter
for v eV do

for u; € B[v],uz € Blui] do B. Improve the approximation by
[ — o(v,u2) . ) ) i
L ¢ — o+ UPDATENN(B[u], (us, 1)) <@ comparlng each obJec.t against its
. current neighbors’ neighbors,
| L returnBife=0 including K-NN and reverse K-NN

function SAMPLE(S, n)

return Sample n items from set S C. Stop when no
function REVERSE(B) improvement can be made
begin
L R[v] «—A{u|(v,---) € Bu]} YveV
return R

function UPDATENN(H, (u,l,...))
Update K-NN heap H; return 1 if changed, or O if not.
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Experimental Setup: Data

10/4/18

Datasets:

Corel: Each image is segmented into 14 regions, a feature is
extracted from each region

Audio: Each sentence is described by 192 features
Shape: Each shape is described by 544-dim feature vector
DBLP: Each record includes authors’ names and pub. title

Flickr: Each image is segmented into regions, a pixel-based
feature is extracted from each region

Similarity measures: L1, L2, Cosine, Jaccard, EMD

Dataset | # Objects | Dimension | Similarity Measures
Corel 662,317 14 l1, 2
Audio 54,387 192 l1, [2
Shape 28,775 544 l1, 2
DBLP 857,820 N/A Cosine, Jaccard
Flickr 100,000 N/A EMD

Jure Leskovec, Stanford CS224W: Analysis of Networks
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Experimental Setup: Measures

Use recall as an accuracy measure:

Ground-truth: true K-NNs obtained by scanning
the datasets in brute force

Recall of one object is the number of its true K-NN
members found divided by K

Recall of an approximate K-NNG is the average
recall of all objects

Use #(sim. evaluations) as a measure of
computational cost:
#(similarity evaluations)

nn—1)/2

scan rate =

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 35



(1) Exp.: Overall Performance

1 ------------------ T T T T T T
N a--8--9 .o 014+ e ” Corel 2 —+— -
- B Hl X x Audio 12 -3¢
08 012+ Shape 12 =% ]
iX I ’ DBLP cos & |
= 06 Pl % 010 x Flicrk EMD --©--
S i1 c 0.08 | DU —— ]
= 04 X/ Corel 2 —+— 7 g 006 - o
Audio [2 -3¢ L OO OO
0.2 Shape 12 % | 0.04 "‘x o e EeEed 0
DBLP cos - 0.02 | x:vw,:‘;“jﬁ ........... o
O 1 1 Flicrlk EMD T"G ‘‘‘‘‘ O 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
iteration iteration

Similar performance trends on different datasets
Fast convergence across all datasets:

Curves are close to their final recall after 5 iterations
All curves converge within 12 iterations
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(2) Exp.: Performance as Data Scales

10 | o

Size | Corel | Audio | Shape | DBLP | Flickr

l2 lo lo cos EMD 8., “

1K | 1.000 | 0.999 | 1.000 0.959 | 0.999 g
5K | 1.000 | 0.996 | 0.992 | 0.970 | 0.991

10K | 1.000 | 0.993 | 0.998 | 0970 | 0.983

scan rate

0.1 ¢ Corel 2 ——
50K | 0.999 | 0.988 - | 0951 | 0.953 Dudio [2 -
100K | 0.999 - - | 0940 | 0.925 DBLE 005 gt
500K | 0.997 . - | 0.907 - 0.01 & Flickr EMD --o--

100 1000 10000 100000 1e+06

(recall values) dataset size

Run experiments on samples of the full datasets and observe
changes in recall and scan rate as sample size grows

Results:
As dataset grows, there is only a minor decline in recall

All curves form parallel straight lines in the scan rate vs. dataset size:
NN-descent has a polynomial time complexity
Fit the scan rate curves to obtain empirical complexity of NN-Descent:
0(n''*) « 0(n?*) (=brute-force)
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Plan for Today

Multimode Network Transformations:

K-partite and bipartite graphs /
One-mode network projections/folding

Graph contractions

K-Nearest Neighbor Graph Construction /
Network Deconvolution: @

Direct and and indirect effects in a network

Inferring networks by network deconvolution
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Network Deconvolution
and Inference




Motivation

Networks represent dependencies among objects
Co-authorships between scientists B, U
Friendships between people
Who-eats-whom in food webs
Bonds between molecular residues
Regulatory relationships between genes

Indirect dependencies occur because of
transitive effects of correlation

Problem: How to separate direct dependencies
from indirect ones?
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Application: Co-authorship Net

Goal: Distinguish strong and weak
collaborations between scientists

Agent-based

o Models

00\ ¥
QY
RYOR

D

ANSNG)

.‘:\\\Q[’:\i"‘. Mathematical

b“. Ecology

Collaboration tie strengths depend on
publication details, such as:

#(papers) each pair of scientists has
collaborated on

#(co-authors) on each of the papers

£\

AAI)E&-"A

A AER
AN
A

Strength of ties are important for:  x [\ ™"
Recommending friends and colleagues
Recognizing conflicts of interest

Evaluating authors’ contribution to teams
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Observed Network

Observed network: Combined direct and indirect
effects:

Observed network ( G ,..)

Transitive effects

—>» Direct effects
----» |ndirect effects

Indirect edges might be due to higher-order
interactions (e.g., 1=>4)

Each edge might contain both direct and indirect
components (e.g., 2—24)
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Network Deconvolution

Goal: Reverse the effect of transitive information flow
across all indirect paths:

Recover true direct network (blue edges, G4i) based on
observed network (combined blue and red edges, G s)

True network ( G ;) Observed network ( G, )

Transitive effects

Network deconvolution
(ND)

—>» Direct effects
-=-=-» |Indirect effects

Feizi et al., Nature Biotechnology, 31:8, 2013.
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Network Deconvolution: Challenge

Direct edges in a network can
lead to indirect relationships:

Transitive information flow Observed network ( G b )
(0] 0N
(

Indirect effects can be of length:
2 (e.g., 1-52->3)
3 (e.g., 1>2->3-5)
higher-order

Indirect effects can combine:

Both direct and indirect effect :
(ec,)g,, zlreezf) Ane INEIrect SHEEs — Direct effects

-===» |[ndirect effects

Multiple indirect effects along
varying paths (e.g., 2->3-5,
2>4->5)
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Network Deconvolution: Formally

Transitive effects in G}, can be expressed as an
infinite sum of G4 and all indirect effects:
Gobs = Ggir + Gindir

Indirect effects can be of increasing lengths:
3
Gindir = Gglir + Ggjr + Ggir T+ -

S B

2ndorder  3dorder 4t order

2 order effects: GJi. = A%,

The number of edges in G, of indirect paths of length 2
31d order effects: G3:. = AJ..

The number of edges in G, of indirect paths of length 3
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Powers of Adjacency Matrices

Let’s raise adjacency matrix Ag; to the second power:
The (i, j)-th entry of A3, is:

A%ir(i,)) = Xh=1 Aqir (i, k) Aqir (k. J)

This sum is only greater than zero if there exists a node

k for which Agi(i, k) and A4 (k, j) are both nonzero:
There exists a node k that is connected to both nodes i and j
The sum counts the number of neighbors that nodes i and j share
The sum counts the paths of length 2 between nodes i and j

This reasoning is valid for higher powers of Agjy:
A3:.(i,j) counts the paths of length 3 between i and j
A%:.(i,J) counts the paths of length 4 between i and j
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Network Deconvolution: Formally

Idea: Model indirect flow as power series of
direct flow:

Gobs T Ggir + Gﬁir + G?lir + Ggir + ...
T —

Converges with _
Indirect effects

correct scaling 0 y

Transitive closure of G;;

Note: Linear scaling of G, SO that max

absolute eigenvalue of Gy, < 1:
Indirect effects decay exponentially with path length

Infinite series converges
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Network Deconvolution: Formally

Transitive closure of G g4;- can be expressed as an
infinite sum of:

True direct network, Ggir
All indirect effects along paths of increasing
lengths, G5ir, Gaipr Gip » -

Idea: Can be written in a closed form as an infinite-
series sum using Taylor series expansions:

_ 2 3 4 _
Gobs = Ggir + Ggjr + Ggir + Ggir + - =
Gair(1 + Gair + Gdir + Ggir + ) = Gair(I — Ggir) ™*

Note: Let X be any square matrix with max
absolute eigenvalue < 1. Then the following
series converges: [ + X + X% + X3 + ---

The series converges to: Yn o X% = (1 — X)™1
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Network Deconvolution: Solution

Using Taylor series expansions we get a closed-
form expression for G}, ,:

Gops = Gdir(l — G'dir)_1

In network deconvolution:
Observed network G}, is known
True direct network G4 needs to be recovered

Finally, we get a closed-form solution for G g;,:
Gair = Gobs(l + G'obs)_1
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Network Deconvolution: Recap

Use closed-form expression for G, to
recover true direct network Gy

True network ( G ;) Observed network ( G, .)

Transitive effects

Network deconvolution
(ND)

—> Direct effects
-=-=-» |ndirect effects

( Indirect effects Series closed form

Transitive closure: Gops =Gy + Ggl.r+ Gf’ﬁr+ =Gyl - Gdir)_1
~1
(I+G,)

Network deconvolution: Gd,-r: GobS

&
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How to compute G, (I + Gops) ™!

The solution for Ggir is: Ggir = Gops(I + Gops) ™ ?

How to efficiently calculate Gg;,:
Without calculating matrix inverse (I + Gops) ™t

Approach:
Use the eigen-decomposition principle:

Express G,ps by decomposition into eigenvectors U and
eigenvalues X ps: Gops = UZ psU™E

Express each eigenvalue A% as a nonlinear function of a
single corresponding eigenvalue A?bsz

dir _ 4ob bs) !
AT =270 (1+ 2%) |
Form a diagonal matrix Z4;, such that Z4;,(i,i) = A%"
Recover true direct network as: G4;, = UZ4;, U1
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Network Deconvolution: Overview

Observed network

Direct network L e .
with linear indirect flows Deconvolved network
O
3 2>
8
s
= ,
:'(f) @© XL /,;A,
c Q Uy,
© = “;/A;/.'/K’l"
[ ﬂ,lﬁ
o®
Observed network
Direct network with nonlinear indirect flows Deconvolved network
§2)
(&
0
© ND
2 Sl
= X AN XTA P
. =0T
S 5007
Z . 1‘4,4
Ground-truth/True net Output
Length n > 2 indirect interactions (false positives) —— Direct interactions, correctly recovered (true positives)
True interactions removed by ND (false negatives) —— Length-2 indirect interactions (false positives)
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Application: Co-authorship Net

Goal: Distinguish strong and weak
collaborations between scientists

Agent-based

o Models

00\ ¥
QY
RYOR

D

ANSNG)

.‘:\\\Q[’:\i"‘. Mathematical

b“. Ecology

Collaboration tie strengths depend on
publication details, such as:

#(papers) each pair of scientists has
collaborated on

#(co-authors) on each of the papers

£\

AAI)E&-"A

A AER
AN
A

Strength of ties are important for:  x [\ ™"
Recommending friends and colleagues
Recognizing conflicts of interest

Evaluating authors’ contribution to teams
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Application: Co-authorship Net

Data: Unweighted network of scientists working in the
field of network science:

Two authors are linked if they co-authored at least one paper

Setup: Apply ND on the co-authorship network:

ND returns a weighted network whose:
Transitive closure most closely captures the input network
Weights represent the inferred strength of direct interactions

Output: Rank co-authorship edges by the ND-assigned weights

Ground-truth data:

True collaboration strengths are computed by summing the
number of co-authored papers and down-weighting each paper
by the number of additional co-authors

Compute correlation between ND-assigned weights and true
collaboration strengths
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Co-authorship Network: Results

Weak
incorrect

0.8

0.6

0.4

ND predicted collaboration strength

.%o e

DR 3 A

02 |+ ied eI
MY ¥ Y A

-Strong LR '

Strong correct correct |n¢orrect ¢

- = = Strong incorrect

1 1 1 1
X Weak correct 0 0.2 0.4 0.6 0.8 10
True collaboration strength

- = = Weak incorrect

Agreement between the rank obtained by the true collaboration
strength and the rank provided by the ND weight, R? = 0.76
Conclusion: ND predict collaboration tie strengths solely by using
network topology (i.e., not using other publication details)
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Application: Gene Network Inference

Goal: Infer a gene regulatory network from gene
feature vectors describing gene activity:

Nodes represent genes

Edges represent regulatory relationships between
regulators and their target genes

) 200 PRI > dhek
Well-studied problem in e “
bioinformatics:

A dataset is a gene-by-condition
expression matrix

Expression matrix is noisy with
many indirect measurements
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Application: Gene Network Inference

3 datasets: Gene expression datasets from: bacterium E.
coli, yeast S. cerevisiae, and a simulated env (in silico)

Setup: Use ND to improve network inference methods by
eliminating indirect edges in the inferred networks:

Infer a gene regulatory network using a particular network
inference method

Apply ND to the inferred network to deconvolve the network
Evaluate deconvolved network against ground-truth data

Ground-truth data:

True positive regulatory relationships (i.e., edges) are defined as
a set of interactions experimentally validation in a laboratory
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Gene Network Inference: Results

MI and correlation methods Other inference methods Community
o { O Before ND Before ND After ND
9] ' ' W After ND — —
g 40r : : Casc.FFL Casc.FFL
s ; ; [ CLR
o 20F i 1 S
> ' ' o
3 | ; = ARACNE .
OJ]_[I_[I_[I_i | = Relative performance of
1 2 3 4 5 | ; g MI .
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[ 1 1 =
5 : : =
L i 1 S
§ 100 | | [ Speaman cascades (casc.) and
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= H H r GENIE3
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v oo 12 3 4 5] ; S Inferelator (FFL) before and after
© [ | E ANOVerence H
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2 3r B Feed-forward loop
3 L (FFL) contains
'% 2 A —\>‘C feed-forward edge
§ 1 Feed forward edge
2] ' : B Cascade (casc.) lacks
Q~1 ((/2 \3 (\4 (\5 (56 %7 \8 @9 ) 1\0 / feed-forward edge
oY vc;e N £ & Q/e\((’ Q{o% & & @&‘\\ A
e < e
& AP AP\ OIS v\o“ =

ND improves the performance of top-performing network
inference methods
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Network Deconvolution: Recap

10/4/18

General approach to identify direct

dependencies between objects in a network:
Remove spurious edges that are due to indirect effects
Decrease over-estimated edge weights

Rescale edge weights so that they correspond to
direct dependencies between objects

Other published methods (not covered today):
Partial correlations and random matrix theory

Graphical models, e.g., Graphical lasso, Bayesian nets,
Markov random fields

Causal inference models
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Plan for Today

Multimode Network Transformations:

K-partite and bipartite graphs /
One-mode network projections/folding

Graph contractions

K-Nearest Neighbor Graph Construction /

Network Deconvolution:
Direct and and indirect effects in a network /

Inferring networks by network deconvolution
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Lucas Lacasa

Queen Mary University of London
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Correlation & functional networks

N = 8 world stock markets, daily indices, n = 100 days.

1400 o S — ——USA
" . R o AR N s Australia
. ¥ | =—=-UnitedKingdom
1200F - VA pn B - Germany
; T Greece
. Malaysia
1000¢ SouthAfrica
Croatia
£ 800
600
7\ ’/l\
4 \\ f~, "‘\\ = y ../\-\
400+ A V\‘\/\/\-\,v\/" B e "\f\\“‘/'\,h,/\”..\'\‘-‘\:
200 ' : y '
0 20 40 60 80 100
dayt

Similar indices, links among world stock markets?



x(t)

Correlation & functional networks

A similarity measure sim(i, ) quantifies the level of
e correlation or coupling between X; and Xj (undirected link)

e causality from X; and Xj, and vice versa (directed link).

A standard similarity measure is again Corr(X;, X;) = rx, y;.

1400 — —————————Ush
= |
1200} | Cemamy
. 3 " ! a G‘m . . .
1000k ' 1 One can interpret this matrix as
Croatia . . o

' a weighted adjacency matrix!
800r "
600r ' Correlation network
400+ v \v\_“,l\,\_\;»r‘ pose ‘v\\“/.\ﬁ/\,\.\.—.\:
2% 20 40 60 80 100

dayt



Correlation & functional networks

Sensorimotor

Functional networks

One can measure signals from the brain (EEG, fmri) at different regions and
extract a correlation network from the multivariate time series.

This network describes correlations between the activity of different
regions of the brain, and it's called a functional network.



Correlation & functional networks

Anatomical parcellation 1 ‘ Recording sites

Histological or
imaging data

li I

3/ .Muf"l'*‘M My
\

Functional brain network

sorimotor
~>a.  Premotor

- 7
Orbitofrontal

Temporal pole

Graph theoretical analysis

Bullmore, Sporns, Nature Reviews Neuroscience 10 (2009]



Correlation & functional networks

Functional brain network
Sensorimotor

™ . Premotor

P Prefrontal
) \
Occipital X % 3
—_ - e — j'
Inferior tempora *  Orbitofrontal
4 Temporal pole

Graph theoretical analysis

Bullmore, Sporns, Nature Reviews Neuroscience 10 (2009]



Correlation & functional networks

Subject 1 Subject 2 Subject n
sy O ) enemy ey
Functional Functional e Functional
network 1 network 2 network n
Typical study: | ‘ |
unsupervised clustering of diseases Pairviise distance
measure aaoss N @
networks
Can we predict which subject have _
schizophrenia by looking at brain signals? distance matrix
X
X
xx: : o ”“xx
® X
x o ® o
X o o _©
e _°® x%,
[ .. o ® o
® X g
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e Time series meets Networks

o Visibility graphs
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Visibility graphs were defined in computational geometry/computer science as the
backbone graph capturing visibility paths (intervisible locations] in landscapes

* Each node represents a location
* Two locations are connected by a link if they are visible
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1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES
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Visibility graphs: A combinatoric encription of time series

(univariate & multivariate)
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Univariate

s 6 T 8 $ 10 11 12 13 4 1S 6 17 8

@@"\

L. Lacasa, B. Luque, F. Ballesteros, J. Luque, JC Nufio , PNAS 105 (2008)

Oy

X L
7 \ N r\, -
\ == ol e
il <
| I/ \
/' !
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Visibility graphs: A combinatoric encription of time series

(univariate & multivariate) and beyond

Univariate

3.
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L. Lacasa, B. Luque, F. Ballesteros, J. Luque, JC Nufio , PNAS 105 (2008)

Spatial

L. Lacasa, J. lacovacci, Phys. Rev. E 96 (2017)
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Natural Visibility Algorithm W Queen Mary

University of London

For a time series of N data:

* each datum is mapped into a node
*two nodes are linked if a visibility criterion holds
in the series

X(t)

The resulting visibility graph:

* has N ordered nodes

*is connected by a Hamiltonian path

* is invariant under certain transformations in the
series

Lacasa, Lugue, Ballesteros, Lugue, Nurio, PNAS 105 (20085)



(Vanessa Silva Msc Thesis)

Example Application:
Clustering of Time Series

- Alternative approach to statistical time series analysis;

- Representing time series as complex networks:
| Mapping concepts;
! Topological measures.

Key question:

- Can simple topological measures of different networks
distinguish different processes of time series?




From Time Series to
Complex Networks
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Quantile Graph

m

I B ‘
JEL “’
Yy

epvenanny SEEEEEREEE >



Topological Metrics

* There is a vast set of topological metrics of
graphs to study the particular
characteristics of the system.

| Average Degree (k)

| Average Path Length (d)

| Global Clustering Coefficient (C)
! Number of Communities (S)

| Modularity (Q)




Time Series Clustering

* Distance-based methods

! Similarity between observations
! e.g. Dynamic Time Warping

* Characteristics-based methods
! Similarity between global characteristics

! e.g. trend, frequency, autocorrelation, Hurst

* Network-based methods

| Similarity between topological measures
| e.g. average degree, number of communities, clustering coefficient




Method

1. Generate Complex Networks
a. NVG, HVG, and QGs

2. Calculate Metrics and Normalize
a. k,d,C,SandQ
b. Min-Max normalization

3. Dimensionality Reduction
a. PCAand t-SNE

4. Clustering Analysis
1. k-means




Time Series Models

* White Noise (i.i.d) * Nonlinear models

u
* Linear models SETAR |
oy |
1 AR(1) Smoother
1 AR(2) Pseudo-Periodic I INAR | Integer Valued Data

I ARIMA Stochastic Trend J GARCH He&ir(:(czl;gg:tiity
| ARFIMA Long Memory ' EGARCH and Asymmetry
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