Network Construction, Inference, and Deconvolution

CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224W.stanford.edu

Raw Data are often not Networks

Feature matrices, relationship tables, time series, document corpora, image datasets, etc.

How to Construct Networks?

Today: How to construct and infer networks from raw data?

Why? -- Networks are Useful

- dDMN
- Salience

- Visuospatial

Posterior-anterior

Jonas Richiardi et al., Correlated gene expression supports synchronous activity in brain networks. Science 348:6240, 2015.

Plan for Today

1) Multimode Network Transformations:

- K-partite and bipartite graphs
- One-mode network projections/folding
- Graph contractions

2) K-Nearest Neighbor Graph Construction

3) Network Deconvolution:

- Direct and and indirect effects in a network
- Inferring networks by network deconvolution

Multimode Network
Transformations

Bipartite and K-partite Networks

- Most of the time, when we create a network, all nodes represent objects of the same type:
- People in social nets, bus stops in route nets, genes in gene nets
- Multi-partite networks have multiple types of nodes, where edges exclusively go from one type to the other:
- 2-partite student net: Students <-> Research projects
- 3-partite movie net: Actors <-> Movies <-> Movie Companies

Network on the left is a social bipartite network. Blue squares stand for people and red circles represent organizations

One-mode Projections: Example

- Example: Bipartite student-project network:
- Edge: Student i works on research project k

Students

Research projects

- Two network projections of student-project network:
- Student network: Students are linked if they work together in one or more projects
- Project network: Research projects are linked if one or more students work on both projects
- In general: K-partite network has K one-mode network projections

One-mode Projections: Example

- Example: Projection of bipartite student-project network onto the student mode:

One-mode student projection

- Consider students 3, 4, and 5 connected in a triangle:
- Triangle can be a result of:
- Scenario \#1: Each pair of students work on a different project
- Scenario \#2: Three students work on the same project
- One-mode network projections discard some information:
- Cannot distinguish between \#1 and \#2 just by looking at the projection

(1) Constructing One-mode Projections

- One-mode projection onto student mode:
- \#(projects) that students i and j work together on is equivalent to the number of paths of length 2 connecting i and j in the bipartite network
- Let C be incidence matrix of student-project net:

$$
C_{i k}=\left\{\begin{array}{l}
1 \text { if } i \text { works on project } k \\
0 \text { otherwise }
\end{array}\right.
$$

- C is an $n \times m$ binary non-symmetric matrix:
- n is \#(students), m is \#(projects)

(2) Constructing One-mode Projections

- Idea: Use C to construct various one-mode network projections
- Weighted student network:

$$
B_{i j}=\left\{\begin{array}{l}
w_{i j}, \#(\text { projects }) \text { that } i \text { and } j \text { collaborate on } \\
0 \quad \text { otherwise }
\end{array}\right.
$$

- $B_{i j}=\sum_{k=1}^{m} C_{i k} C_{j k}$, i.e., the number of paths of length 2 connecting students i and j in the bipartite network
- $\boldsymbol{B}=\boldsymbol{C} \boldsymbol{C}^{\boldsymbol{T}}$ and $B_{i i}$ represents \#(projects) that student i works on
- Similarly, weighted project network:

$$
D_{k l}= \begin{cases}w_{k l}, & \#(\text { students }) \text { that work on } k \text { and } l \\ 0 & \text { otherwise }\end{cases}
$$

- $D_{k l}=\sum_{i=1}^{n} C_{i k} C_{i l}$, i.e., the number of paths of length 2 connecting projects k and l in the bipartite network
- $\boldsymbol{D}=\boldsymbol{C}^{\boldsymbol{T}} \boldsymbol{C}$ and $D_{k k}$ represents \#(students) that work on project k
- Next: Use \boldsymbol{B} and \boldsymbol{D} to obtain different network projections

(3) Construct One-mode Projections

- Construct network projections by applying a node similarity measure to \boldsymbol{B} and \boldsymbol{D}
- Two node similarity measures:
- Common neighbors: \#(shared neighbors of nodes)
- Student network: i and j are linked if they work together in r or more projects, i.e., if $B_{i j} \geq r$
- Project network: k and l are linked if r or more students work on both projects, i.e., if $D_{k l} \geq r$
- Jaccard index:
- Common neighbors with a penalization for each non-shared neighbor:
- Ratio of shared neighbors in the complete set of neighbors for 2 nodes
- Student network: i and j are linked if they work together in at least p fraction of their projects, i.e., if $B_{i j} /\left(B_{i i}+B_{j j}-B_{i j}\right) \geq p$
- Project network: k and l are linked if at least p fraction of their students work on both projects, i.e., if $D_{k l} /\left(D_{k k}+D_{l l}-D_{k l}\right) \geq p$

Example: The Human Disease Net

Homework 1

Disease Gene Network (DGN)

Kwang-II Goh et al., The human disease network. PNAS, 104:21, 2007.

Example: The Human Disease Net

- Issue: Folded gene network contains many cliques:
- Why do cliques arise in the folded gene network?
- Homework 1
- Cliques make the network difficult to analyze:
- Computational complexity of many algorithms depends on the size and number of large cliques
- Solution: Use graph contraction to eliminate cliques

Disease Gene Network (DGN)

A clique of 9 gene nodes

Graph Contraction

- Graph contraction: Technique for computing properties of networks in parallel:
- Divide-and-conquer principle
- Idea:
- Contract the graph into a smaller graph, ideally a constant fraction smaller
- Recurse on the smaller graph
- Use the result from the recursion along with the initial graph to calculate the desired result
- Next: How to contract ("shrink") a graph?

Graph Contraction: Algorithm

- Start with the input graph G :

1. Select a node-partitioning of G to guide the contraction:

- Partitions are disjoint and they include all nodes in G

2. Contract each partition into a single node, a supernode
3. Drop edges internal to a partition
4. Reroute cross edges to corresponding supernodes
5. Set G to be the smaller graph; Repeat

- Example: one round of graph contraction:

3 partitions: a, d, e

Identify partitons

Contract

Delete duplicate edges

Graph Contraction: Example

Contracting a graph down to a single node in three rounds:

Round 1

Different Types of Node-partitioning

- Partitions should be disjoint and include all nodes in G
- Three types of node-partitioning:
- Each partition is a (maximal) clique of nodes:

- Each partition is a single node or two connected nodes:

- Each partition ís a star of nodes, etc.

Plan for Today

1) Multimode Network Transformations:

- K-partite and bipartite graphs
- One-mode network projections/folding
- Graph contractions

2) K-Nearest Neighbor Graph Construction
3) Network Deconvolution:

- Direct and and indirect effects in a network
- Inferring networks by network deconvolution

Efficient Construction of K-Nearest Neighbor Graph

K－Nearest Neighbor Graph

－K－nearest neighbor graph（K－NNG）for a set of objects V is a directed graph with vertex set V ：
－Edges from each $v \in V$ to its K most similar objects in V under a given similarity measure：
－e．g．，Cosine similarity for text
－e．g．，l_{2} distance of CNN－derived features for images

$$
\begin{aligned}
& \text { •易 - •園 }
\end{aligned}
$$

Why Constructing K-NNGs?

- K-NNG construction is an important operation:
- Recommender systems: connect users with similar product rating patterns, then make recommendations based on the user's graph neighbors
- Document retrieval systems: connect documents with similar content, quickly answer input queries
- Other problems in clustering, visualization, information retrieval, data mining, manifold learning
- K-NNGs allow us to use network methods on datasets with no explicit graph structure

Example: K-NNG in Visualization

- Problem: Visualize large high-dim data in 2D space - Traditional approach:
- Compute similarities between objects
- Project objects into a 2D space by preserving the similarities
- Does not scale to millions of objects and hundreds of dimensions
- K-NNG can substantially reduce computational costs

(c) 2-dimensional layout WikiDoc data (t-SNE)

K-NNG: A Brute-force Approach

- Let's construct a K-NNG by brute-force:
- Given n objects V and a distance metric $\sigma: V \times V \rightarrow[0, \infty)$
- For each possible pair of (u, v), compute $\sigma(u, v)$
- For each v, let $B_{K}(v)$ be v 's K-NN, i.e., the K objects in V (other than v) most similar to v

K-NNG: A Brute-force Approach

- Computational cost of brute-force: $O\left(n^{2}\right)$
- Issues with brute-force approach:

- Not scalable: Practical for only small datasets
- Not general: Many custom heuristics designed to speed up computations:
- Many heuristics are specific to a similarity measure
- Not efficient: Compute all neighbors for every v
- We only need k nearest neighbors for every v

Today: NN-Descent Approach

- Can we do better than brute-force?
- Yes, and we will learn about it today!
- NN-Descent [Dong et al., WWW 2011]:
- Efficient algorithm to approximate K-NNG construction with arbitrary similarity measure
- Other published methods (not covered today):
- Locality Sensitive Hashing (LSH): A new hash function needs to be designed for a new similarity measure
- Recursive Lanczos bisection: Recursively divide the dataset, so objects in different partitions are not compared
- K-NN search problem: If K-NN problem is solved, K-NNG can be constructed by running a K-NN query for each $v \in V$

NN-Descent: Key Principle

- Key principle: A neighbor of a neighbor is also likely to be a neighbor

- Use this principle in a NN-Descent method:
- Start with an approximation of the K-NNG, B
- Improve B by exploring each point's neighbors' neighbors as defined by the current approximation
- Stop when no improvement can be made

NN-Descent: Notation

- Let:
- V be a metric space with distance metric $d: V \times V \rightarrow[0, \infty), \sigma=-d$ is the similarity measure
- $B_{K}(v)$ be v 's K-NN
- $R_{K}(v)=\left\{u \in V ; v \in B_{K}(u)\right\}$ be v^{\prime} s reverse K-NN
- $B[v]$ be current approximation of $B_{K}(v)$
- $B^{\prime}[v]=\cup_{v^{\prime} \in B[v]} B\left[v^{\prime}\right]$ be neighbors of $v^{\prime} s$ neighbors
- For any $r>0$, let r-ball around v be:

$$
B_{r}(v)=\{u \in V ; d(u, v) \leq r\}
$$

(1) NN-Descent: Overview

- Def: Metric space V is growth-restricted if there exists a constant c, such that:

$$
\left|B_{2 r}(v)\right| \leq c\left|B_{r}(v)\right|, \quad \forall v \in V
$$

- The smallest such c is growing constant of V
- Approach:
- Start with an approximation of the K-NNG, B
- Use the growing constant of V to show that B can be improved by comparing each object v against its current neighbors' neighbors $B^{\prime}[v]$
- Next: Use the growing-constant argument on B

(2) NN-Descent: Proof Outliñe

- Two assumptions:
- Let c be the growing constant of V and let $K=c^{3}$
- Have an approximate K-NNG B that is reasonably good:
- For a fixed radius r, for all $v, B[v]$ contains K neighbors that are uniformly distributed in $B_{r}(v)$
- Lemma: $B^{\prime}[v]$ is likely to contain K nearest neighbors in $B_{r / 2}(v)$
- Corollary: We expect to halve the maximal distance to the set of approximate K nearest neighbors by exploring $B^{\prime}[v]$ for every v
- Next: Let's prove the lemma

(3) NN-Descent: Proof

- Lemma: $B^{\prime}[v]$ is likely to contain K nearest neighbors in $B_{r / 2}(v)$

Proof:

- For any $u \in B_{r / 2}(v)$ to be found in $B^{\prime}[v]$, we need to have at least one v^{\prime} such that:

$$
v^{\prime} \in B[v] \wedge u \in B\left[v^{\prime}\right]
$$

- Any $v^{\prime} \in B_{r / 2}(v)$ is likely to satisfy this requirement, as we have:

1. $\quad v^{\prime}$ is also in $B_{r}(v)$, so $\operatorname{Pr}\left\{v^{\prime} \in B[v]\right\} \geq K /\left|B_{r}(v)\right|$
2. $d\left(u, v^{\prime}\right) \leq d(u, v)+d\left(v, v^{\prime}\right) \leq r$, so $\operatorname{Pr}\left\{u \in B\left[v^{\prime}\right]\right\} \geq K /\left|B_{r}\left(v^{\prime}\right)\right|$
3. $\quad \left\lvert\, \begin{aligned} & \left|B_{r}(v)\right| \leq c\left|B_{r / 2}(v)\right| \text {, and }\left|B_{r}\left(v^{\prime}\right)\right| \leq c\left|B_{r / 2}\left(v^{\prime}\right)\right| \leq c\left|B_{r}(v)\right| \leq \\ & c^{2}\left|B_{r / 2}(v)\right|\end{aligned}\right.$

- Combining 1-3 and assuming independence, we get:

$$
\operatorname{Pr}\left\{v^{\prime} \in B[v] \wedge u \in B\left[v^{\prime}\right]\right\} \geq K /\left|B_{r / 2}(v)\right|^{2}
$$

- In total, we have $\left|B_{r / 2}(v)\right|$ candidates for such v^{\prime}, so that: $\operatorname{Pr}\{u \in$ $\left.B^{\prime}[v]\right\} \geq 1-\left(1-K /\left|B_{r / 2}(v)\right|^{2}\right)^{\left|B_{r / 2}(v)\right|} \approx K /\left|B_{r / 2}(v)\right|$

NN-Descent: Recap

- Lemma suggests the following algorithm:
- Pick a large enough K (depending on growing constant c)
- Start from a random K-NNG approximation
- For each v, find K nearest objects by exploring v 's neighbors' neighbors, B^{\prime}
- Repeat; stop when no improvement can be made

NN-Descent: Algorithm

Algorithm 1: NNDESCENT
Data: dataset V, similarity oracle σ, K
Result: K-NN list B
begin
$B[v] \longleftarrow \operatorname{Sample}(V, K) \times\{\infty\}, \quad \forall v \in V$
loop
$R \longleftarrow \operatorname{Reverse}(B)$
$\bar{B}[v] \longleftarrow B[v] \cup R[v], \quad \forall v \in V ;$
$c \longleftarrow 0 \quad$ //update counter
for $v \in V$ do
for $u_{1} \in \bar{B}[v], u_{2} \in \bar{B}\left[u_{1}\right]$ do
$l \longleftarrow \sigma\left(v, u_{2}\right)$
$c \longleftarrow c+\operatorname{UPDATENN}\left(B[v],\left\langle u_{2}, l\right\rangle\right)$
return B if $c=0$
function $\operatorname{SAMPLE}(S, n)$
return Sample n items from set S
function Reverse (B)
begin
$R[v] \longleftarrow\{u \mid\langle v, \cdots\rangle \in B[u]\} \quad \forall v \in V$
return R
function UpdatenN $(H,\langle u, l, \ldots\rangle)$
Update K-NN heap H; return 1 if changed, or 0 if not.

Experimental Setup: Data

- Datasets:
- Corel: Each image is segmented into 14 regions, a feature is extracted from each region
- Audio: Each sentence is described by 192 features
- Shape: Each shape is described by 544-dim feature vector
- DBLP: Each record includes authors' names and pub. title
- Flickr: Each image is segmented into regions, a pixel-based feature is extracted from each region
- Similarity measures: L1, L2, Cosine, Jaccard, EMD

Dataset	\# Objects	Dimension	Similarity Measures
Corel	662,317	14	l_{1}, l_{2}
Audio	54,387	192	l_{1}, l_{2}
Shape	28,775	544	l_{1}, l_{2}
DBLP	857,820	N/A	Cosine, Jaccard
Flickr	100,000	N/A	EMD

Experimental Setup: Measures

- Use recall as an accuracy measure:
- Ground-truth: true K-NNs obtained by scanning the datasets in brute force
- Recall of one object is the number of its true K-NN members found divided by K
- Recall of an approximate K-NNG is the average recall of all objects
- Use \#(sim. evaluations) as a measure of computational cost:

$$
\text { scan rate }=\frac{\#(\text { similarity evaluations })}{n(n-1) / 2}
$$

(1) Exp.: Overall Performance

- Similar performance trends on different datasets
- Fast convergence across all datasets:
- Curves are close to their final recall after 5 iterations
- All curves converge within 12 iterations

(2) Exp.: Performance as Data Scales

Size	Corel l_{2}	Audio l_{2}	Shape l_{2}	DBLP \cos	Flickr EMD
1 K	1.000	0.999	1.000	0.959	0.999
5 K	1.000	0.996	0.992	0.970	0.991
10 K	1.000	0.993	0.998	0.970	0.983
50 K	0.999	0.988	-	0.951	0.953
100 K	0.999	-	-	0.940	0.925
500 K	0.997	-	-	0.907	-

(recall values)

- Run experiments on samples of the full datasets and observe changes in recall and scan rate as sample size grows
- Results:
- As dataset grows, there is only a minor decline in recall
- All curves form parallel straight lines in the scan rate vs. dataset size:
- NN-descent has a polynomial time complexity
- Fit the scan rate curves to obtain empirical complexity of NN-Descent:
- $O\left(n^{1.14}\right) \ll O\left(n^{2}\right)$ (=brute-force)

Plan for Today

1) Multimode Network Transformations:

- K-partite and bipartite graphs
- One-mode network projections/folding
- Graph contractions

2) K-Nearest Neighbor Graph Construction
3) Network Deconvolution:

- Direct and and indirect effects in a network
- Inferring networks by network deconvolution

Network Deconvolution and Inference

Motivation

- Networks represent dependencies among objects:
- Co-authorships between scientists
- Friendships between people
- Who-eats-whom in food webs
- Bonds between molecular residues
- Regulatory relationships between genes
- Indirect dependencies occur because of transitive effects of correlation
- Problem: How to separate direct dependencies from indirect ones?

Application: Co-authorship Net

- Goal: Distinguish strong and weak collaborations between scientists
- Collaboration tie strengths depend on publication details, such as:
- \#(papers) each pair of scientists has collaborated on
- \#(co-authors) on each of the papers
- Strength of ties are important for:

- Recommending friends and colleagues
- Recognizing conflicts of interest
- Evaluating authors' contribution to teams

Observed Network

- Observed network: Combined direct and indirect effects:

- Indirect edges might be due to higher-order interactions (e.g., 1 $\rightarrow 4$)
- Each edge might contain both direct and indirect components (e.g., 2 $\rightarrow 4$)

Network Deconvolution

- Goal: Reverse the effect of transitive information flow across all indirect paths:
- Recover true direct network (blue edges, $\boldsymbol{G}_{\text {dir }}$) based on observed network (combined blue and red edges, $\boldsymbol{G}_{\text {obs }}$)

Feizi et al., Nature Biotechnology, 31:8, 2013.

Network Deconvolution: Challenge

- Direct edges in a network can lead to indirect relationships:
- Transitive information flow
- Indirect effects can be of length:
- 2 (e.g., $1 \rightarrow 2 \rightarrow 3$)
- 3 (e.g., $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$)
- higher-order
- Indirect effects can combine:
- Both direct and indirect effects (e.g., $2 \rightarrow 4$)
- Multiple indirect effects along Observed network ($\mathrm{G}_{\mathrm{obs}}$)
 varying paths (e.g., $2 \rightarrow 3 \rightarrow 5$, $2 \rightarrow 4 \rightarrow 5$)

Network Deconvolution: Formally

- Transitive effects in $G_{\text {obs }}$ can be expressed as an infinite sum of $G_{\text {dir }}$ and all indirect effects:

$$
G_{\mathrm{obs}}=\mathrm{G}_{\mathrm{dir}}+\boldsymbol{G}_{\mathrm{indir}}
$$

- Indirect effects can be of increasing lengths:

$$
G_{\text {indir }}=G_{\text {dir }}^{2}+G_{\text {dir }}^{3}+G_{\text {dir }}^{4}+\cdots
$$

- $2^{\text {nd }}$ order effects: $G_{\text {dir }}^{2}=A_{\text {dir }}^{2}$
- The number of edges in $G_{\text {obs }}$ of indirect paths of length 2
- $3^{\text {rd }}$ order effects: $G_{\text {dir }}^{3}=A_{\text {dir }}^{3}$
- The number of edges in $G_{\text {obs }}$ of indirect paths of length 3

Powers of Adjacency Matrices

- Let's raise adjacency matrix $A_{\text {dir }}$ to the second power:
- The (i, j)-th entry of $A_{\text {dir }}^{2}$ is:

$$
A_{\mathrm{dir}}^{2}(i, j)=\sum_{k=1}^{n} A_{\mathrm{dir}}(i, k) A_{\mathrm{dir}}(k, j)
$$

- This sum is only greater than zero if there exists a node

k for which $A_{\text {dir }}(i, k)$ and $A_{\text {dir }}(k, j)$ are both nonzero:
- There exists a node k that is connected to both nodes i and j
- The sum counts the number of neighbors that nodes i and j share
- The sum counts the paths of length 2 between nodes i and j
- This reasoning is valid for higher powers of $A_{\text {dir }}$:
- $A_{\mathrm{dir}}^{3}(i, j)$ counts the paths of length 3 between i and j
- $A_{\mathrm{dir}}^{4}(i, j)$ counts the paths of length 4 between i and j

Network Deconvolution: Formally

- Idea: Model indirect flow as power series of direct flow:

$$
G_{\text {obs }}^{\substack{\text { Converges with } \\ \text { correct scaling }}}=\mathrm{G}_{\text {dir }}+{\underset{\text { Indirect effects }}{2}}_{\mathrm{G}_{\text {dir }}^{2}+\mathrm{G}_{\text {dir }}^{3}+G_{\text {dir }}^{4}+\cdots}^{\text {Transitive closure of } G_{\text {dir }}}
$$

- Note: Linear scaling of $G_{o b s}$ so that max absolute eigenvalue of $\mathrm{G}_{\mathrm{dir}}<1$:
- Indirect effects decay exponentially with path length
- Infinite series converges

Network Deconvolution: Formally

- Transitive closure of $G_{\text {dir }}$ can be expressed as an infinite sum of:
- True direct network, $G_{\text {dir }}$
- All indirect effects along paths of increasing lengths, $G_{\text {dir }}^{2}, G_{\text {dir }}^{3}, G_{\text {dir }}^{4}, \ldots$
- Idea: Can be written in a closed form as an infiniteseries sum using Taylor series expansions:

$$
\begin{aligned}
& G_{\mathrm{obs}}=\mathrm{G}_{\mathrm{dir}}+\mathrm{G}_{\mathrm{dir}}^{2}+\mathrm{G}_{\mathrm{dir}}^{3}+G_{\mathrm{dir}}^{4}+\cdots= \\
& G_{\mathrm{dir}}\left(\mathrm{I}+\mathrm{G}_{\mathrm{dir}}+G_{\mathrm{dir}}^{2}+\mathrm{G}_{\mathrm{dir}}^{3}+\cdots\right)=G_{\mathrm{dir}}\left(\mathrm{I}-\mathrm{G}_{\mathrm{dir}}\right)^{-1}
\end{aligned}
$$

Note: Let X be any square matrix with max absolute eigenvalue <1. Then the following series converges: $\mathrm{I}+X+X^{2}+\mathrm{X}^{3}+\cdots$ The series converges to: $\sum_{k=0}^{\infty} X^{k}=(1-X)^{-1}$

Network Deconvolution: Solution

- Using Taylor series expansions we get a closedform expression for $G_{\text {obs }}$:

$$
G_{\mathrm{obs}}=G_{\mathrm{dir}}\left(\mathrm{I}-\mathrm{G}_{\mathrm{dir}}\right)^{-1}
$$

- In network deconvolution:
- Observed network $\boldsymbol{G}_{\text {obs }}$ is known
- True direct network $\boldsymbol{G}_{\text {dir }}$ needs to be recovered
- Finally, we get a closed-form solution for $G_{\text {dir }}$:

$$
G_{\text {dir }}=G_{\mathrm{obs}}\left(\mathrm{I}+\mathrm{G}_{\mathrm{obs}}\right)^{-1}
$$

Network Deconvolution: Recap

- Use closed-form expression for $G_{\text {obs }}$ to recover true direct network $G_{\text {dir }}$

Indirect effects Series closed form
Transitive closure:

$$
G_{o b s}=G_{d i r}+G_{d i r}^{2}+G_{d i r}^{3}+\ldots=G_{d i r}\left(I-G_{d i r}\right)^{-1}
$$

Network deconvolution: $G_{\text {dir }}=G_{o b s}\left(I+G_{o b s}\right)^{-1}$

How to compute $G_{\text {obs }}\left(\mathrm{I}+\mathrm{G}_{\mathrm{obs}}\right)^{-1}$

- The solution for $G_{\text {dir }}$ is: $G_{\text {dir }}=G_{\text {obs }}\left(I+G_{\text {obs }}\right)^{-1}$
- How to efficiently calculate $G_{\text {dir }}$:
- Without calculating matrix inverse $\left(I+G_{\text {obs }}\right)^{-1}$
- Approach:
- Use the eigen-decomposition principle:

1. Express $G_{\text {obs }}$ by decomposition into eigenvectors U and eigenvalues $\Sigma_{\text {obs }}: G_{\text {obs }}=U \Sigma_{\text {obs }} U^{-1}$
2. Express each eigenvalue $\lambda_{i}^{\text {dir }}$ as a nonlinear function of a single corresponding eigenvalue $\lambda_{i}^{\text {obs }}$:

$$
\lambda_{i}^{\mathrm{dir}}=\lambda_{i}^{\mathrm{obs}}\left(1+\lambda_{i}^{\mathrm{obs}}\right)^{-1}
$$

3. Form a diagonal matrix $\Sigma_{\text {dir }}$ such that $\Sigma_{\text {dir }}(i, i)=\lambda_{i}^{\text {dir }}$
4. Recover true direct network as: $G_{\text {dir }}=\mathbf{U} \Sigma_{\text {dir }} \mathbf{U}^{-1}$

Network Deconvolution: Overview

Direct network

Observed network with linear indirect flows

Deconvolved network

ND

Observed network with nonlinear indirect flows
Direct network

Ground-truth/True net

Input

Deconvolved network

Output

- Length $n>2$ indirect interactions (false positives)
- True interactions removed by ND (false negatives)
- Direct interactions, correctly recovered (true positives)
—— Length-2 indirect interactions (false positives)

Application: Co-authorship Net

- Goal: Distinguish strong and weak collaborations between scientists
- Collaboration tie strengths depend on publication details, such as:
- \#(papers) each pair of scientists has collaborated on
- \#(co-authors) on each of the papers
- Strength of ties are important for:

- Recommending friends and colleagues
- Recognizing conflicts of interest
- Evaluating authors' contribution to teams

Application: Co-authorship Net

- Data: Unweighted network of scientists working in the field of network science:
- Two authors are linked if they co-authored at least one paper
- Setup: Apply ND on the co-authorship network:
- ND returns a weighted network whose:
- Transitive closure most closely captures the input network
- Weights represent the inferred strength of direct interactions
- Output: Rank co-authorship edges by the ND-assigned weights
- Ground-truth data:
- True collaboration strengths are computed by summing the number of co-authored papers and down-weighting each paper by the number of additional co-authors
- Compute correlation between ND-assigned weights and true collaboration strengths

Co-authorship Network: Results

- Agreement between the rank obtained by the true collaboration strength and the rank provided by the ND weight, $R^{2}=0.76$
- Conclusion: ND predict collaboration tie strengths solely by using network topology (i.e., not using other publication details)

Application: Gene Network Inference

- Goal: Infer a gene regulatory network from gene feature vectors describing gene activity:
- Nodes represent genes
- Edges represent regulatory relationships between regulators and their target genes
- Well-studied problem in bioinformatics:
- A dataset is a gene-by-condition expression matrix
- Expression matrix is noisy with many indirect measurements

Application: Gene Network Inference

- 3 datasets: Gene expression datasets from: bacterium E. coli, yeast S. cerevisiae, and a simulated env (in silico)
- Setup: Use ND to improve network inference methods by eliminating indirect edges in the inferred networks:

1. Infer a gene regulatory network using a particular network inference method
2. Apply ND to the inferred network to deconvolve the network
3. Evaluate deconvolved network against ground-truth data

- Ground-truth data:
- True positive regulatory relationships (i.e., edges) are defined as a set of interactions experimentally validation in a laboratory

Gene Network Inference: Results

Relative performance of inference methods for cascades (casc.) and feed-forward loops (FFL) before and after network deconvolution

ND improves the performance of top-performing network inference methods

Network Deconvolution: Recap

- General approach to identify direct dependencies between objects in a network:
- Remove spurious edges that are due to indirect effects
- Decrease over-estimated edge weights
- Rescale edge weights so that they correspond to direct dependencies between objects
- Other published methods (not covered today):
- Partial correlations and random matrix theory
- Graphical models, e.g., Graphical lasso, Bayesian nets, Markov random fields
- Causal inference models

Plan for Today

1) Multimode Network Transformations:

- K-partite and bipartite graphs
- One-mode network projections/folding
- Graph contractions

2) K-Nearest Neighbor Graph Construction
3) Network Deconvolution:

- Direct and and indirect effects in a network
- Inferring networks by network deconvolution

Time Series meets Network Science

Lucas Lacasa

Queen Mary University of London
l.lacasa@qmul.ac.uk

Porto, 17 December 2018

Winter School on Network Science

Nownulimushors
Nryminmenwin

Leveraging the interface between signal processing and network science

SIGNAL PROCESSING

NETWORK SCIENCE

Leveraging the interface between signal processing and network science

Signal processing of graphs

Leveraging the interface between signal processing and network science

SIGNAL PROCESSING

Graph-theoretical time series analysis
(2) Time series meets Networks

- Functional networks
- Probing networks using random walks
- Visibility graphs

SIGNAL PROCESSING

Correlation \& functional networks

$N=8$ world stock markets, daily indices, $n=100$ days.

Similar indices, links among world stock markets?

A similarity measure $\operatorname{sim}(i, j)$ quantifies the level of

- correlation or coupling between X_{i} and X_{j} (undirected link)
- causality from X_{i} and X_{j}, and vice versa (directed link).

A standard similarity measure is again $\operatorname{Corr}\left(X_{i}, X_{j}\right)=r X_{i}, Y_{j}$.

One can interpret this matrix as a weighted adjacency matrix!

Correlation network

Functional networks

One can measure signals from the brain (EEG, fmri) at different regions and extract a correlation network from the multivariate time series.

This network describes correlations between the activity of different regions of the brain, and it's called a functional network.

Correlation \& functional networks

Bullmore, Sporns, Nature Reviews Neuroscience 10 [2009]

Correlation \& functional networks

Bullmore, Sporns, Nature Reviews Neuroscience 10 (2009)

Correlation \& functional networks

Typical study:
unsupervised clustering of diseases
Can we predict which subject have schizophrenia by looking at brain signals?

(2) Time series meets Networks

- Functional networks
- Probing networks using random walks
- Visibility graphs

SIGNAL PROCESSING

NETWORK SCIENCE

Visibility graphs were defined in computational geometry/computer science as the backbone graph capturing visibility paths (intervisible locations) in landscapes

- Each node represents a location
- Two locations are connected by a link if they are visible

Visibility graphs were defined in computational geometry/computer science as the backbone graph capturing visibility paths (intervisible locations) in landscapes

- Each node represents a location
- Two locations are connected by a link if they are visible

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

Visibility graphs: A combinatoric encription of time series (univariate \& multivariate)

Univariate

L. Lacasa, B. Luque, F. Ballesteros, J. Luque, JC Nuño , PNAS 105 (2008)

Multivariate

Visibility graphs: A combinatoric encription of time series (univariate \& multivariate) and beyond

Univariate

For a time series of N data:

* each datum is mapped into a node
* two nodes are linked if a visibility criterion holds in the series

The resulting visibility graph:

* has N ordered nodes
* is connected by a Hamiltonian path
* is invariant under certain transformations in the series

(Vanessa Silva Msc Thesis) Example Application: Clustering of Time Series

- Alternative approach to statistical time series analysis;
- Representing time series as complex networks:
\square Mapping concepts;
\square Topological measures.

Key question:

- Can simple topological measures of different networks distinguish different processes of time series?

From Time Series to Complex Networks

$y_{c}=y_{b}+\left(y_{a}-y_{b}\right) \frac{\left(t_{b}-t_{c}\right)}{t_{b}-t_{a}}, \quad t_{a}<t_{c}<t_{b}$

Natural Visibility Graph

Horizontal Visibility Graph

Quantile Graph

Topological Metrics

- There is a vast set of topological metrics of graphs to study the particular characteristics of the system.
${ }^{\square}$ Average Degree ($\overline{\mathrm{k}}$)
${ }^{\square}$ Average Path Length (d)
\square Global Clustering Coefficient (C)
${ }^{\square}$ Number of Communities (S)
\square Modularity (Q)

$\bar{k}=1,89$
$\bar{d}=1,47$
$C=0,45$
$S=2,00$
$Q=0,05$

Time Series Clustering

- Distance-based methods
\square Similarity between observations
${ }^{\square}$ e.g. Dynamic Time Warping
- Characteristics-based methods
\square Similarity between global characteristics
\square e.g. trend, frequency, autocorrelation, Hurst
- Network-based methods
\square Similarity between topological measures
e.g. average degree, number of communities, clustering coefficient

Method

1. Generate Complex Networks
a. NVG, HVG, and QGs
2. Calculate Metrics and Normalize
a. \bar{k}, \bar{d}, C, S and Q
b. Min-Max normalization
3. Dimensionality Reduction
a. PCA and t-SNE
4. Clustering Analysis
5. k -means

Time Series Models

- White Noise (i.i.d)
- Linear models

- Nonlinear models
\square SETAR
Regimes
\square HMM
\square INAR
${ }^{\square}$ GARCH
- EGARCH

States
Integer Valued Data
Conditional Heterocesdaticity and Asymmetry

Cluster Analysis

$$
\begin{aligned}
& \text { Model }
\end{aligned}
$$

