
CS224W: Analysis of Networks
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 2

Feature matrices, relationship tables, time
series, document corpora, image datasets, etc.

Today: How to construct and infer networks
from raw data?

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 3

Network construction
and inference

Jonas Richiardi et al., Correlated gene expression supports synchronous activity in
brain networks. Science 348:6240, 2015.
10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 4

1) Multimode Network Transformations:
§ K-partite and bipartite graphs
§ One-mode network projections/folding
§ Graph contractions

2) K-Nearest Neighbor Graph Construction

3) Network Deconvolution:
§ Direct and and indirect effects in a network
§ Inferring networks by network deconvolution

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 5

¡ Most of the time, when we create a network, all nodes
represent objects of the same type:
§ People in social nets, bus stops in route nets, genes in gene nets

¡ Multi-partite networks have multiple types of nodes,
where edges exclusively go from one type to the other:
§ 2-partite student net: Students <-> Research projects
§ 3-partite movie net: Actors <-> Movies <-> Movie Companies

Network on the left is a social bipartite
network. Blue squares stand for people and
red circles represent organizations

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 7

¡ Example: Bipartite student-project network:
§ Edge: Student ! works on research project "

¡ Two network projections of student-project network:
§ Student network: Students are linked if they work together

in one or more projects
§ Project network: Research projects are linked if one or

more students work on both projects

¡ In general: K-partite network has K one-mode network
projections

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 8

Research projects

Students !

"

¡ Example: Projection of bipartite student-project network
onto the student mode:

¡ Consider students 3, 4, and 5 connected in a triangle:
§ Triangle can be a result of:

§ Scenario #1: Each pair of students work on a different project
§ Scenario #2: Three students work on the same project

§ One-mode network projections discard some information:
§ Cannot distinguish between #1 and #2 just by looking at the projection

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 9

Students

Research
projects

1 2 3 4 5

1

2

3

4

5

One-mode student projection

¡ One-mode projection onto student mode:
§ #(projects) that students ! and " work together on is

equivalent to the number of paths of length 2
connecting ! and " in the bipartite network

¡ Let # be incidence matrix of student-project net:

#$% = '1 if ! works on project 60 otherwise

¡ # is an 9 ×; binary non-symmetric matrix:
§ 9 is #(students), ; is #(projects)

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 10

Students

Projects

¡ Idea: Use ! to construct various one-mode network projections
¡ Weighted student network:

"#$ = & '#$, # projects that 4 and 7 collaborate on
0 otherwise

§ "#$ = ∑>?@A !#>!$>, i.e., the number of paths of length 2 connecting
students 4 and 7 in the bipartite network

§ B = CCD and "## represents #(projects) that student 4 works on

¡ Similarly, weighted project network:

E>F = &'>F , # students that work on I and J
0 otherwise

§ E>F = ∑#?@K !#>!#F, i.e., the number of paths of length 2 connecting
projects I and J in the bipartite network

§ L = CDC and E>> represents #(students) that work on project I

¡ Next: Use B and L to obtain different network projections
10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 11

Students

Projects

¡ Construct network projections by applying a node
similarity measure to ! and "

¡ Two node similarity measures:
§ Common neighbors: #(shared neighbors of nodes)

§ Student network: # and $ are linked if they work together in % or
more projects, i.e., if &'(≥ *

§ Project network: + and , are linked if % or more students work on
both projects, i.e., if -./ ≥ *

§ Jaccard index:
§ Common neighbors with a penalization for each non-shared

neighbor:
§ Ratio of shared neighbors in the complete set of neighbors for 2 nodes

§ Student network: # and $ are linked if they work together in at least
0 fraction of their projects, i.e., if &'(/(&'' + &((− &'() ≥ 6

§ Project network: + and , are linked if at least 0 fraction of their
students work on both projects, i.e., if -.//(-.. + -// − -./) ≥ 6

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 12

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 13

Kwang-Il Goh et al., The human disease network. PNAS, 104:21, 2007.

a few other disorders, whereas a few phenotypes such as colon
cancer (linked to k ! 50 other disorders) or breast cancer (k ! 30)
represent hubs that are connected to a large number of distinct
disorders. The prominence of cancer among the most connected
disorders arises in part from the many clinically distinct cancer
subtypes tightly connected with each other through common tumor
repressor genes such as TP53 and PTEN.

Although the HDN layout was generated independently of any
knowledge on disorder classes, the resulting network is naturally
and visibly clustered according to major disorder classes. Yet, there
are visible differences between different classes of disorders.
Whereas the large cancer cluster is tightly interconnected due to the
many genes associated with multiple types of cancer (TP53, KRAS,
ERBB2, NF1, etc.) and includes several diseases with strong pre-
disposition to cancer, such as Fanconi anemia and ataxia telangi-
ectasia, metabolic disorders do not appear to form a single distinct
cluster but are underrepresented in the giant component and
overrepresented in the small connected components (Fig. 2a). To
quantify this difference, we measured the locus heterogeneity of
each disorder class and the fraction of disorders that are connected
to each other in the HDN (see SI Text). We find that cancer and
neurological disorders show high locus heterogeneity and also
represent the most connected disease classes, in contrast with
metabolic, skeletal, and multiple disorders that have low genetic
heterogeneity and are the least connected (SI Fig. 7).

Properties of the DGN. In the DGN, two disease genes are connected
if they are associated with the same disorder, providing a comple-

mentary, gene-centered view of the diseasome. Given that the links
signify related phenotypic association between two genes, they
represent a measure of their phenotypic relatedness, which could be
used in future studies, in conjunction with protein–protein inter-
actions (6, 7, 19), transcription factor-promoter interactions (20),
and metabolic reactions (8), to discover novel genetic interactions.
In the DGN, 1,377 of 1,777 disease genes are connected to other
disease genes, and 903 genes belong to a giant component (Fig. 2b).
Whereas the number of genes involved in multiple diseases de-
creases rapidly (SI Fig. 6d; light gray nodes in Fig. 2b), several
disease genes (e.g., TP53, PAX6) are involved in as many as 10
disorders, representing major hubs in the network.

Functional Clustering of HDN and DGN. To probe how the topology
of the HDN and GDN deviates from random, we randomly
shuffled the associations between disorders and genes, while keep-
ing the number of links per each disorder and disease gene in the
bipartite network unchanged. Interestingly, the average size of the
giant component of 104 randomized disease networks is 643 " 16,
significantly larger than 516 (P # 10$4; for details of statistical
analyses of the results reported hereafter, see SI Text), the actual
size of the HDN (SI Fig. 6c). Similarly, the average size of the giant
component from randomized gene networks is 1,087 " 20 genes,
significantly larger than 903 (P # 10$4), the actual size of the DGN
(SI Fig. 6e). These differences suggest important pathophysiological
clustering of disorders and disease genes. Indeed, in the actual
networks disorders (genes) are more likely linked to disorders
(genes) of the same disorder class. For example, in the HDN there

AR

ATM

BRCA1

BRCA2

CDH1

GARS

HEXB

KRAS

LMNA

MSH2

PIK3CA

TP53

MAD1L1

RAD54L

VAPB

CHEK2

BSCL2

ALS2

BRIP1

Androgen insensitivity

Breast cancer

Perineal hypospadias

Prostate cancer

Spinal muscular atrophy

Ataxia-telangiectasia

Lymphoma

T-cell lymphoblastic leukemia

Ovarian cancer

Papillary serous carcinoma

Fanconi anemia

Pancreatic cancer

Wilms tumor

Charcot-Marie-Tooth disease

Sandhoff disease

Lipodystrophy

Amyotrophic lateral sclerosis

Silver spastic paraplegia syndrome

Spastic ataxia/paraplegia

AR

ATM

BRCA1

BRCA2

CDH1

GARS

HEXB

KRAS

LMNA

MSH2

PIK3CA

TP53

MAD1L1

RAD54L

VAPB

CHEK2

BSCL2

ALS2

BRIP1

Androgen insensitivity

Breast cancer

Perineal hypospadiasProstate cancer

Spinal muscular atrophy

Ataxia-telangiectasia

Lymphoma

T-cell lymphoblastic leukemia

Ovarian cancer

Papillary serous carcinoma
Fanconi anemia

Pancreatic cancer

Wilms tumor

Charcot-Marie-Tooth disease

Sandhoff disease

Lipodystrophy

Amyotrophic lateral sclerosis

Silver spastic paraplegia syndromeSpastic ataxia/paraplegia

Human Disease Network
(HDN)

Disease Gene Network
(DGN)

disease genomedisease phenome

DISEASOME

Fig. 1. Construction of the diseasome bipartite network. (Center) A small subset of OMIM-based disorder–disease gene associations (18), where circles and rectangles
correspond to disorders and disease genes, respectively. A link is placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.
Thesizeofacircle isproportional tothenumberofgenesparticipating inthecorrespondingdisorder,andthecolorcorrespondstothedisorderclass towhichthedisease
belongs. (Left) The HDN projection of the diseasome bipartite graph, in which two disorders are connected if there is a gene that is implicated in both. The width of
a link is proportional to the number of genes that are implicated in both diseases. For example, three genes are implicated in both breast cancer and prostate cancer,
resulting in a link of weight three between them. (Right) The DGN projection where two genes are connected if they are involved in the same disorder. The width of
a link is proportional to the number of diseases with which the two genes are commonly associated. A full diseasome bipartite map is provided as SI Fig. 13.

8686 ! www.pnas.org"cgi"doi"10.1073"pnas.0701361104 Goh et al.

Homework 1

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 14

a few other disorders, whereas a few phenotypes such as colon
cancer (linked to k ! 50 other disorders) or breast cancer (k ! 30)
represent hubs that are connected to a large number of distinct
disorders. The prominence of cancer among the most connected
disorders arises in part from the many clinically distinct cancer
subtypes tightly connected with each other through common tumor
repressor genes such as TP53 and PTEN.

Although the HDN layout was generated independently of any
knowledge on disorder classes, the resulting network is naturally
and visibly clustered according to major disorder classes. Yet, there
are visible differences between different classes of disorders.
Whereas the large cancer cluster is tightly interconnected due to the
many genes associated with multiple types of cancer (TP53, KRAS,
ERBB2, NF1, etc.) and includes several diseases with strong pre-
disposition to cancer, such as Fanconi anemia and ataxia telangi-
ectasia, metabolic disorders do not appear to form a single distinct
cluster but are underrepresented in the giant component and
overrepresented in the small connected components (Fig. 2a). To
quantify this difference, we measured the locus heterogeneity of
each disorder class and the fraction of disorders that are connected
to each other in the HDN (see SI Text). We find that cancer and
neurological disorders show high locus heterogeneity and also
represent the most connected disease classes, in contrast with
metabolic, skeletal, and multiple disorders that have low genetic
heterogeneity and are the least connected (SI Fig. 7).

Properties of the DGN. In the DGN, two disease genes are connected
if they are associated with the same disorder, providing a comple-

mentary, gene-centered view of the diseasome. Given that the links
signify related phenotypic association between two genes, they
represent a measure of their phenotypic relatedness, which could be
used in future studies, in conjunction with protein–protein inter-
actions (6, 7, 19), transcription factor-promoter interactions (20),
and metabolic reactions (8), to discover novel genetic interactions.
In the DGN, 1,377 of 1,777 disease genes are connected to other
disease genes, and 903 genes belong to a giant component (Fig. 2b).
Whereas the number of genes involved in multiple diseases de-
creases rapidly (SI Fig. 6d; light gray nodes in Fig. 2b), several
disease genes (e.g., TP53, PAX6) are involved in as many as 10
disorders, representing major hubs in the network.

Functional Clustering of HDN and DGN. To probe how the topology
of the HDN and GDN deviates from random, we randomly
shuffled the associations between disorders and genes, while keep-
ing the number of links per each disorder and disease gene in the
bipartite network unchanged. Interestingly, the average size of the
giant component of 104 randomized disease networks is 643 " 16,
significantly larger than 516 (P # 10$4; for details of statistical
analyses of the results reported hereafter, see SI Text), the actual
size of the HDN (SI Fig. 6c). Similarly, the average size of the giant
component from randomized gene networks is 1,087 " 20 genes,
significantly larger than 903 (P # 10$4), the actual size of the DGN
(SI Fig. 6e). These differences suggest important pathophysiological
clustering of disorders and disease genes. Indeed, in the actual
networks disorders (genes) are more likely linked to disorders
(genes) of the same disorder class. For example, in the HDN there

AR

ATM

BRCA1

BRCA2

CDH1

GARS

HEXB

KRAS

LMNA

MSH2

PIK3CA

TP53

MAD1L1

RAD54L

VAPB

CHEK2

BSCL2

ALS2

BRIP1

Androgen insensitivity

Breast cancer

Perineal hypospadias

Prostate cancer

Spinal muscular atrophy

Ataxia-telangiectasia

Lymphoma

T-cell lymphoblastic leukemia

Ovarian cancer

Papillary serous carcinoma

Fanconi anemia

Pancreatic cancer

Wilms tumor

Charcot-Marie-Tooth disease

Sandhoff disease

Lipodystrophy

Amyotrophic lateral sclerosis

Silver spastic paraplegia syndrome

Spastic ataxia/paraplegia

AR

ATM

BRCA1

BRCA2

CDH1

GARS

HEXB

KRAS

LMNA

MSH2

PIK3CA

TP53

MAD1L1

RAD54L

VAPB

CHEK2

BSCL2

ALS2

BRIP1

Androgen insensitivity

Breast cancer

Perineal hypospadiasProstate cancer

Spinal muscular atrophy

Ataxia-telangiectasia

Lymphoma

T-cell lymphoblastic leukemia

Ovarian cancer

Papillary serous carcinoma
Fanconi anemia

Pancreatic cancer

Wilms tumor

Charcot-Marie-Tooth disease

Sandhoff disease

Lipodystrophy

Amyotrophic lateral sclerosis

Silver spastic paraplegia syndromeSpastic ataxia/paraplegia

Human Disease Network
(HDN)

Disease Gene Network
(DGN)

disease genomedisease phenome

DISEASOME

Fig. 1. Construction of the diseasome bipartite network. (Center) A small subset of OMIM-based disorder–disease gene associations (18), where circles and rectangles
correspond to disorders and disease genes, respectively. A link is placed between a disorder and a disease gene if mutations in that gene lead to the specific disorder.
Thesizeofacircle isproportional tothenumberofgenesparticipating inthecorrespondingdisorder,andthecolorcorrespondstothedisorderclass towhichthedisease
belongs. (Left) The HDN projection of the diseasome bipartite graph, in which two disorders are connected if there is a gene that is implicated in both. The width of
a link is proportional to the number of genes that are implicated in both diseases. For example, three genes are implicated in both breast cancer and prostate cancer,
resulting in a link of weight three between them. (Right) The DGN projection where two genes are connected if they are involved in the same disorder. The width of
a link is proportional to the number of diseases with which the two genes are commonly associated. A full diseasome bipartite map is provided as SI Fig. 13.

8686 ! www.pnas.org"cgi"doi"10.1073"pnas.0701361104 Goh et al.

A clique of 9 gene nodes

¡ Issue: Folded gene network
contains many cliques:
§ Why do cliques arise in the folded

gene network?
§ Homework 1

¡ Cliques make the network
difficult to analyze:
§ Computational complexity of

many algorithms depends on the
size and number of large cliques

¡ Solution: Use graph
contraction to eliminate cliques

¡ Graph contraction: Technique for computing
properties of networks in parallel:
§ Divide-and-conquer principle

¡ Idea:
§ Contract the graph into a smaller graph, ideally a

constant fraction smaller
§ Recurse on the smaller graph
§ Use the result from the recursion along with the

initial graph to calculate the desired result

¡ Next: How to contract (“shrink”) a graph?

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 15

¡ Start with the input graph !:
1. Select a node-partitioning of ! to guide the contraction:
§ Partitions are disjoint and they include all nodes in !

2. Contract each partition into a single node, a supernode
3. Drop edges internal to a partition
4. Reroute cross edges to corresponding supernodes
5. Set ! to be the smaller graph; Repeat

¡ Example: one round of graph contraction:

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 16

a

b

c
d

e

f

a e

d

a

d

e

Identify partitons Contract Delete duplicate edges

a

d

e

a

b

c
d

e

f

a

e

d

a
d

e

Round 1

Round 2

a e

Round 3

a

e

a

a

3 partitions: a, d, e

a

b

c
d

e

f

a e

d

a

d

e

Identify partitons Contract Delete duplicate edges

a

d

e

a

b

c
d

e

f

a

e

d

a
d

e

Round 1

Round 2

a e

Round 3

a

e

a

a

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 17

Contracting a graph down to a single node in
three rounds:

¡ Partitions should be disjoint and include all nodes in !
¡ Three types of node-partitioning:

§ Each partition is a (maximal) clique of nodes:

§ Each partition is a single node or two connected nodes:

§ Each partition is a star of nodes, etc.

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 18

a

b

e

fa e

a e

c

Contract

c

dc
gh

i

a

b

c d

e

fa
e

c

a e

c

Contract
g g

1) Multimode Network Transformations:
§ K-partite and bipartite graphs
§ One-mode network projections/folding
§ Graph contractions

2) K-Nearest Neighbor Graph Construction

3) Network Deconvolution:
§ Direct and and indirect effects in a network
§ Inferring networks by network deconvolution

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 19

¡ K-nearest neighbor graph (K-NNG) for a set of
objects ! is a directed graph with vertex set !:
§ Edges from each " ∈ ! to its $ most similar

objects in ! under a given similarity measure:
§ e.g., Cosine similarity for text
§ e.g., %& distance of CNN-derived features for images

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 21

¡ K-NNG construction is an important operation:
§ Recommender systems: connect users with similar

product rating patterns, then make recommendations
based on the user’s graph neighbors

§ Document retrieval systems: connect documents
with similar content, quickly answer input queries

§ Other problems in clustering, visualization,
information retrieval, data mining, manifold learning

¡ K-NNGs allow us to use network methods on
datasets with no explicit graph structure

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 22

Figure 1: A typical pipeline of data visualization by first constructing a K-nearest neighbor graph and then projecting the
graph into a low-dimensional space.

eration technique [26] for the t-SNE by first constructing
a K-nearest neighbor (KNN) graph of the data points and
then projecting the graph into low-dimensional spaces with
tree-based algorithms. T-SNE and its variants, which rep-
resent a family of methods that first construct a similarity
structure from the data and then project the structure into
a 2D/3D space (see Figure 1), have been widely adopted re-
cently due to the ability to handle real-world data and the
good quality of visualizations.

Despite their successes, when applied to data with millions
of points and hundreds of dimensions, the t-SNE techniques
are still far from satisfaction. The reasons are three-fold:
(1) the construction of the K-nearest neighbor graph is a
computational bottleneck for dealing with large-scale and
high-dimensional data. T-SNE constructs the graph using
the technique of vantage-point trees [28], the performance
of which significantly deteriorates when the dimensionality
of the data grows high; (2) the e�ciency of the graph vi-
sualization step significantly deteriorates when the size of
the data becomes large; (3) the parameters of the t-SNE
are very sensitive on di↵erent data sets. To generate a good
visualization, one has to search for the optimal parameters
exhaustively, which is very time consuming on large data
sets. It is still a long shot of the community to create high
quality visualizations that scales to both the size and the
dimensionality of the data.

We report a significant progress on this direction through
the LargeVis, a new visualization technique that computes
the layout of large-scale and high-dimensional data. The
LargeVis employs a very e�cient algorithm to construct an
approximate K-nearest neighbor graph at a high accuracy,
which builds on top of but significantly improves a state-of-
the-art approach to KNN graph construction, the random
projection trees [7]. We then propose a principled probabilis-
tic approach to visualizing the K-nearest neighbor graph,
which models both the observed links and the unobserved
(i.e., negative) links in the graph. The model preserves the
structures of the graph in the low-dimensional space, keep-
ing similar data points close and dissimilar data points far
away from each other. The corresponding objective func-
tion can be optimized through the asynchronous stochastic
gradient descent, which scales linearly to the data size N .
Comparing to the one used by the t-SNE, the optimization
process of LargeVis is much more e�cient and also more ef-
fective. Besides, on di↵erent data sets the parameters of the
LargeVis are much more stable.

We conduct extensive experiments on real-world, large-
scale and high-dimensional data sets, including text (words

and documents), images, and networks. Experimental re-
sults show that our proposed algorithm for constructing
the approximate K-nearest neighbor graph significantly out-
performs the vantage-point tree algorithm used in the t-
SNE and other state-of-the-art methods. LargeVis gener-
ates comparable graph visualizations to the t-SNE on small
data sets and more intuitive visualizations on large data sets;
it is much more e�cient when data becomes large; the pa-
rameters are not sensitive to di↵erent data sets. On a set
of three million data points with one hundred dimensions,
LargeVis is up to thirty times faster at graph construction
and seven times faster at graph visualization. LargeVis only
takes a couple of hours to visualize millions of data points
with hundreds of dimensions on a single machine.
To summarize, we make the following contributions:

• We propose a new visualization technique which is able
to compute the layout of millions of data points with
hundreds of dimensions e�ciently.

• We propose a very e�cient algorithm to construct an
approximate K-nearest neighbor graph from large-scale,
high-dimensional data.

• We propose a principled probabilistic model for graph
visualization. The objective function of the model can
be e↵ectively optimized through asynchronous stochas-
tic gradient descent with a time complexity of O(N).

• We conduct experiments on real-world, very large data
sets and compare the performance of LargeVis and t-
SNE, both quantitatively and visually.

2. RELATED WORK

To the best of our knowledge, very few visualization tech-
niques can e�ciently layout millions of high-dimensional data
points meaningfully on a 2D space. Instead, most visualiza-
tions of large data sets have to first layout a summary or a
coarse aggregation of the data and then refine a subset of
the data (a region of the visualization) if the user zooms in
[5]. Admittedly, there are other design factors besides the
computational capability, for example the aggregated data
may be more intuitive and more robust to noises. However,
with a layout of the entire data set as basis, the e↵ectiveness
of these aggregated/approximate visualizations will only be
improved. Many visualization tools are designed to layout
geographical data, sensor data, and network data. These
tools typically cannot handle high-dimensional data.
Many recent successes of visualizing high-dimensional data

come from the machine learning community. Methods like

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 23

(a) 20NG (t-SNE) (b) 20NG (LargeVis)

(c) WikiDoc (t-SNE) (d) WikiDoc (LargeVis)

(e) LiveJournal (t-SNE) (f) LiveJournal (LargeVis)

Figure 8: Visualizations of 20NG, WikiDoc, and LiveJournal by t-SNE and LargeVis. Di↵erent colors correspond to di↵erent
categories (20NG) or clusters learned by K-means according to high-dimensional representations.

Graph visualizationK-NNG construction

¡ Problem: Visualize large high-dim data in 2D space
¡ Traditional approach:

§ Compute similarities between objects

§ Project objects into a 2D space by preserving the similarities

§ Does not scale to millions of objects and hundreds of dimensions

¡ K-NNG can substantially reduce computational costs

WikiDoc data (t-SNE)

¡ Let’s construct a K-NNG by brute-force:
§ Given ! objects " and a distance metric
#: " × " → [0,∞)

§ For each possible pair of (-, .), compute #(-, .)
§ For each ., let /0(1) be .’s K-NN, i.e., the 2

objects in " (other than .) most similar to .

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 24

Choose 3 of the
nearest objects

Compute similarity

Object .

¡ Computational cost of brute-force: !(#$)

¡ Issues with brute-force approach:
§ Not scalable: Practical for only small datasets
§ Not general: Many custom heuristics designed to

speed up computations:
§ Many heuristics are specific to a similarity measure

§ Not efficient: Compute all neighbors for every &
§ We only need ' nearest neighbors for every &

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 25

¡ Can we do better than brute-force?
¡ Yes, and we will learn about it today!

¡ NN-Descent [Dong et al., WWW 2011]:
§ Efficient algorithm to approximate K-NNG construction

with arbitrary similarity measure
¡ Other published methods (not covered today):

§ Locality Sensitive Hashing (LSH): A new hash function
needs to be designed for a new similarity measure

§ Recursive Lanczos bisection: Recursively divide the
dataset, so objects in different partitions are not compared

§ K-NN search problem: If K-NN problem is solved, K-NNG
can be constructed by running a K-NN query for each ! ∈ #

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 26

¡ Key principle: A neighbor of a neighbor is also
likely to be a neighbor

¡ Use this principle in a NN-Descent method:
§ Start with an approximation of the K-NNG, !
§ Improve ! by exploring each point’s neighbors’

neighbors as defined by the current approximation
§ Stop when no improvement can be made

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 27

Type
equation
here.

0 0′

2

¡ Let:
§ ! be a metric space with distance metric
": !×! → [0,∞),	, = −" is the similarity measure

§ /0(2) be 3’s K-NN
§ 40 2 = {6 ∈ !; 2 ∈ /0(6)} be 3’s reverse K-NN
§ /[2] be current approximation of /0(2)
§ /; 2 =∪=>∈?[=] /[2;] be neighbors of 3’s

neighbors
§ For any @ > 0, let B-ball around 3 be:

/C 2 = {6 ∈ !; " 6, 2 ≤ @}
10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 28

¡ Def: Metric space ! is growth-restricted if there
exists a constant ", such that:

#$% & ≤ " #% & , ∀& ∈ !
¡ The smallest such " is growing constant of !
¡ Approach:

§ Start with an approximation of the K-NNG, #
§ Use the growing constant of + to show that # can be

improved by comparing each object , against its
current neighbors’ neighbors -.[,]

¡ Next: Use the growing-constant argument on #
10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 29

Details

¡ Two assumptions:
§ Let ! be the growing constant of " and let # = !%
§ Have an approximate K-NNG & that is reasonably good:

§ For a fixed radius ', for all (, &[(] contains # neighbors that are
uniformly distributed in &+(()

¡ Lemma: &. (is likely to contain # nearest
neighbors in &+/0 (

¡ Corollary: We expect to halve the maximal
distance to the set of approximate K nearest
neighbors by exploring &′[(] for every (

¡ Next: Let’s prove the lemma
10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 30

Details

¡ Lemma: !" # is likely to contain $ nearest neighbors in !%/' #
Proof:

§ For any (∈ !%/'(#) to be found in !′[#], we need to have at least one
#′ such that:

#′ ∈ ![#] ∧ (∈ ![#′]
§ Any #′ ∈ !%/'(#) is likely to satisfy this requirement, as we have:
1. #′ is also in !%(#), so Pr{#′ ∈ ![#]} ≥ $/|!%(#)|
2. 9((, #′) ≤ 9((, #) + 9(#, #′′) ≤ =, so Pr{(∈ ![#′]} ≥ $/|!%(#′)|
3. |!%(#)| ≤ ?|!%/'(#)|, and |!%(#′)| ≤ ?|!%/'(#′)| ≤ ?|!%(#)| ≤

?'|!%/'(#)|
§ Combining 1-3 and assuming independence, we get:

Pr{#′ ∈ ![#] ∧ (∈ ![#′]} ≥ $/ !%/' #
'

§ In total, we have |!%/'(#)| candidates for such #′, so that: Pr{
}

(∈
!" # ≥ 1 − (1 − $/ !%/' #

')|AB/C(D)| ≈ $/|!%/'(#)|
QED

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 31

Details

¡ Lemma suggests the following algorithm:
§ Pick a large enough !(depending on growing constant ")
§ Start from a random K-NNG approximation
§ For each #, find ! nearest objects by exploring #’s

neighbors’ neighbors, $′
§ Repeat; stop when no improvement can be made

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 32

Details

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 33

Algorithm 1: NNDescent

Data: dataset V , similarity oracle σ, K
Result: K-NN list B
begin

B[v]←− Sample(V, K)× {∞}, ∀v ∈ V
loop

R←− Reverse(B)

B[v]←− B[v] ∪ R[v], ∀v ∈ V ;
c←− 0 //update counter
for v ∈ V do

for u1 ∈ B[v], u2 ∈ B[u1] do
l←− σ(v, u2)
c←− c + UpdateNN(B[v], ⟨u2, l⟩)

return B if c = 0

function Sample(S, n)
return Sample n items from set S

function Reverse(B)
begin

R[v]←− {u | ⟨v, · · ·⟩ ∈ B[u]} ∀v ∈ V
return R

function UpdateNN(H , ⟨u, l, . . .⟩)
Update K-NN heap H ; return 1 if changed, or 0 if not.

is similar to decentralized search of small-world networks [14]
(global optimization). The effect is that most points can
reach their true K-NN in a few iterations.

The basic algorithm already performs remarkably well on
many datasets. In practice, it can be improved in multiple
ways as discussed in the rest of this section.

2.3 Local Join
Given point v and its neighbors B[v], a local join on B[v]

is to compute the similarity between each pair of different
p, q ∈ B[v], and to update B[p] and B[q] with the similarity.
The operation of having each point explore its neighbors’
neighbors can be equally realized by a local join on each
point’s neighborhood, i.e. each point introducing its neigh-
bors to know each other. To see that, consider the following
relationship: a → b → c, meaning that b ∈ BK(a) and
c ∈ BK(b) (the directions does not matter as we also con-
sider reverse K-NN). In the basic algorithm, we compare a
and c twice, once when exploring around either a or c (the
redundancy can be avoided by comparing only when a > c).
Equally, the comparison between a and c is guaranteed by
the local join on B[b].

Even though the amount of computation remains the same,
local join dramatically improves data locality of the algo-
rithm and makes its execution much more efficient. Assume
that the average size of B[·] is K, in the basic algorithm,

exploring each point’s neighborhood touches K
2

points; the
local join on each point, on the contrary, touches only K
points.

For a single machine implementation, the local join opti-
mization may speed up the algorithm by several percent to
several times by improving cache hit rate. For a MapReduce
implementation, local join largely reduce data replication
among machines.

2.4 Incremental Search
As the algorithm runs, fewer and fewer new items make

their way into the K-NNG in each iteration. Hence it is
wasteful to conduct a full local join in each iteration as many
pairs are already compared in previous iterations. We use
the following incremental search strategy to avoid redundant
computation:

• We attach a boolean flag to each object in the K-NN
lists. The flag is initially marked true when an object
is inserted into the list.

• In local join, two objects are compared only if at least
one of them is new. After an object participates in a
local join, its flag is marked false.

2.5 Sampling
So far there are still two problems with our method. One

is that the cost of local join could be high when K is large.
Even if only objects in K-NN are used for a local join, cost of
each iteration is K2N similarity comparisons. The situation
is worse when reverse K-NN is considered, as there is no
limit on the size of reverse K-NN. Another problem is that
it is possible that two points are both connected to more
than one point, and are compared multiple times when local
join is conducted on their common neighbors. We use the
sampling strategy to alleviate both problems:

• Before local join, we sample ρK out of the K-NN items
marked true for each object to use in local join, ρ ∈
(0, 1] being the sample rate. Only those sampled ob-
jects are marked false after each iteration.

• Reverse K-NN lists are constructed separately with the
sampled objects and the objects marked false. Those
lists are sampled again, so each has at most ρK items.

• Local join is conducted on the sampled objects, and
between sampled objects and old items.

Note that the objects marked true but not sampled in the
current iteration still have a chance to be sampled in future
iterations, if they are not replaced by better approximations.

We found that the algorithm usually converges to accept-
able recall even when only a few items are sampled. Both
accuracy and cost decline with sample rate ρ, though cost
declines much faster (evaluated in Section 4.4.2). The pa-
rameter ρ is used to control the trade-off between accuracy
and speed.

2.6 Early Termination
The natural termination criterion is when the K-NNG can

no longer be improved. In practice, the number of K-NNG
updates in each iteration shrinks rapidly. Little real work
is done in the final few iterations, when the bookkeeping
overhead dominates the computational cost. We use the
following early termination criteria to stop the algorithm
when further iteration can no longer bring meaningful im-
provement to accuracy: we count the number of K-NN list
updates in each iteration, and stop when it becomes less than
δKN , where δ is a precision parameter, which is roughly the
fraction of true K-NN that are allowed to be missed due to
early termination. We use a default δ of 0.001.

Algorithm 1: NNDescent

Data: dataset V , similarity oracle σ, K
Result: K-NN list B
begin

B[v]←− Sample(V, K)× {∞}, ∀v ∈ V
loop

R←− Reverse(B)

B[v]←− B[v] ∪ R[v], ∀v ∈ V ;
c←− 0 //update counter
for v ∈ V do

for u1 ∈ B[v], u2 ∈ B[u1] do
l←− σ(v, u2)
c←− c + UpdateNN(B[v], ⟨u2, l⟩)

return B if c = 0

function Sample(S, n)
return Sample n items from set S

function Reverse(B)
begin

R[v]←− {u | ⟨v, · · ·⟩ ∈ B[u]} ∀v ∈ V
return R

function UpdateNN(H , ⟨u, l, . . .⟩)
Update K-NN heap H ; return 1 if changed, or 0 if not.

is similar to decentralized search of small-world networks [14]
(global optimization). The effect is that most points can
reach their true K-NN in a few iterations.

The basic algorithm already performs remarkably well on
many datasets. In practice, it can be improved in multiple
ways as discussed in the rest of this section.

2.3 Local Join
Given point v and its neighbors B[v], a local join on B[v]

is to compute the similarity between each pair of different
p, q ∈ B[v], and to update B[p] and B[q] with the similarity.
The operation of having each point explore its neighbors’
neighbors can be equally realized by a local join on each
point’s neighborhood, i.e. each point introducing its neigh-
bors to know each other. To see that, consider the following
relationship: a → b → c, meaning that b ∈ BK(a) and
c ∈ BK(b) (the directions does not matter as we also con-
sider reverse K-NN). In the basic algorithm, we compare a
and c twice, once when exploring around either a or c (the
redundancy can be avoided by comparing only when a > c).
Equally, the comparison between a and c is guaranteed by
the local join on B[b].

Even though the amount of computation remains the same,
local join dramatically improves data locality of the algo-
rithm and makes its execution much more efficient. Assume
that the average size of B[·] is K, in the basic algorithm,

exploring each point’s neighborhood touches K
2

points; the
local join on each point, on the contrary, touches only K
points.

For a single machine implementation, the local join opti-
mization may speed up the algorithm by several percent to
several times by improving cache hit rate. For a MapReduce
implementation, local join largely reduce data replication
among machines.

2.4 Incremental Search
As the algorithm runs, fewer and fewer new items make

their way into the K-NNG in each iteration. Hence it is
wasteful to conduct a full local join in each iteration as many
pairs are already compared in previous iterations. We use
the following incremental search strategy to avoid redundant
computation:

• We attach a boolean flag to each object in the K-NN
lists. The flag is initially marked true when an object
is inserted into the list.

• In local join, two objects are compared only if at least
one of them is new. After an object participates in a
local join, its flag is marked false.

2.5 Sampling
So far there are still two problems with our method. One

is that the cost of local join could be high when K is large.
Even if only objects in K-NN are used for a local join, cost of
each iteration is K2N similarity comparisons. The situation
is worse when reverse K-NN is considered, as there is no
limit on the size of reverse K-NN. Another problem is that
it is possible that two points are both connected to more
than one point, and are compared multiple times when local
join is conducted on their common neighbors. We use the
sampling strategy to alleviate both problems:

• Before local join, we sample ρK out of the K-NN items
marked true for each object to use in local join, ρ ∈
(0, 1] being the sample rate. Only those sampled ob-
jects are marked false after each iteration.

• Reverse K-NN lists are constructed separately with the
sampled objects and the objects marked false. Those
lists are sampled again, so each has at most ρK items.

• Local join is conducted on the sampled objects, and
between sampled objects and old items.

Note that the objects marked true but not sampled in the
current iteration still have a chance to be sampled in future
iterations, if they are not replaced by better approximations.

We found that the algorithm usually converges to accept-
able recall even when only a few items are sampled. Both
accuracy and cost decline with sample rate ρ, though cost
declines much faster (evaluated in Section 4.4.2). The pa-
rameter ρ is used to control the trade-off between accuracy
and speed.

2.6 Early Termination
The natural termination criterion is when the K-NNG can

no longer be improved. In practice, the number of K-NNG
updates in each iteration shrinks rapidly. Little real work
is done in the final few iterations, when the bookkeeping
overhead dominates the computational cost. We use the
following early termination criteria to stop the algorithm
when further iteration can no longer bring meaningful im-
provement to accuracy: we count the number of K-NN list
updates in each iteration, and stop when it becomes less than
δKN , where δ is a precision parameter, which is roughly the
fraction of true K-NN that are allowed to be missed due to
early termination. We use a default δ of 0.001.

A. Start by picking a random
approximation of K-NN for each
object

C. Stop when no
improvement can be made

B. Improve the approximation by
comparing each object against its
current neighbors’ neighbors,
including K-NN and reverse K-NN

Details

¡ Datasets:
§ Corel: Each image is segmented into 14 regions, a feature is

extracted from each region
§ Audio: Each sentence is described by 192 features
§ Shape: Each shape is described by 544-dim feature vector
§ DBLP: Each record includes authors’ names and pub. title
§ Flickr: Each image is segmented into regions, a pixel-based

feature is extracted from each region

¡ Similarity measures: L1, L2, Cosine, Jaccard, EMD

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 34

Algorithm 2: NNDescentFull

Data: dataset V , similarity oracle σ, K, ρ, δ
Result: K-NN list B
begin

B[v]←− Sample(V, K)× {⟨∞, true⟩} ∀v ∈ V
loop

parallel for v ∈ V do
old[v]←− all items in B[v] with a false flag
new[v]←− ρK items in B[v] with a true flag
Mark sampled items in B[v] as false;

1 old′ ← Reverse(old), new′ ← Reverse(new)
c←− 0 //update counter
parallel for v ∈ V do

old[v]←− old[v] ∪ Sample(old′[v], ρK)
new[v]←− new[v] ∪ Sample(new′[v], ρK)
for u1, u2 ∈ new[v], u1 < u2

or u1 ∈ new[v], u2 ∈ old[v] do
l←− σ(u1, u2)
// c and B[.] are synchronized.

2 c←− c + UpdateNN(B[u1], ⟨u2, l, true⟩)
3 c←− c + UpdateNN(B[u2], ⟨u1, l, true⟩)

return B if c < δNK

2.7 The Full Algorithm
The full NN-Descent algorithm incorporating the four op-

timizations discussed above is listed in Algorithm 2. In this
paper we are mainly interested in a method that is inde-
pendent of similarity measures. Optimizations specialized
to particular similarity measures are possible. For exam-
ple, if the similarity measure is a distance metric, triangle
inequality could be potentially used to avoid unnecessary
computation.

Our optimizations are not sufficient to ensure that the
similarity between two objects is only evaluated once. Full
elimination of redundant computation would require a table
of O(N2) space, which is too expensive for large datasets.
Space efficient approximations, like Bloom filter, are pos-
sible, but come with extra computational cost, and would
only be helpful if similarity measure is very expensive to
compute.

2.8 On MapReduce Implementation
Our algorithm can be easily implemented under the MapRe-

duce framework. A record consists of a key object and a list
of (candidate) neighbors each attached with its distances to
the key object. An iteration is realized with two MapReduce
operations: first, the mapper issues the input record and the
reversed K-NN items, and the reducer merges the K-NN and
reverse K-NN; second, the mapper conducts a local join and
issues the input record as well as compared pairs of objects,
and the reducer merges the neighbors of each key object,
keeping only the top K items.

3. EXPERIMENTAL SETUP
This section provides details about experimental setup, in-

cluding datasets and similarity measures, performance mea-
sures, default parameters and system environments. Exper-
imental results are to be reported in the next section.

3.1 Datasets and Similarity Measures
We use 5 datasets and 5 similarity measures, divided into

three categories as described below. These datasets are cho-
sen to reflect a variety of real-life use cases, and to cover
similarity measures of different natures. Table 1 summa-
rizes the salient information of these datasets.

Four of the datasets are each experimented with two sim-
ilarity measures (l1 and l2, or Jaccard and cosine). Our
results show that the two similarity measures for the same
dataset usually produce very similar performance numbers
and overlapping curves, so in some plots and tables we only
report results with one similarity measure per dataset due
to space limitation. However, this is not to suggest that
different similarity measures for the same dataset are in-
terchangeable. For example, if we test our method with l1
distance on a benchmark generated with l2 distance (or vise-
versa), only around 70% recall can be reached as apposed to
above 95% when the right measure is used.

Dataset # Objects Dimension Similarity Measures
Corel 662,317 14 l1, l2
Audio 54,387 192 l1, l2
Shape 28,775 544 l1, l2
DBLP 857,820 N/A Cosine, Jaccard
Flickr 100,000 N/A EMD

Table 1: Dataset summary

3.1.1 Dense Vectors
Datasets in this category are composed of dense feature

vectors with l1 and l2 metrics. These datasets are used in
a previous work [12] to evaluate LSH, and the reader is re-
ferred to that study for detailed information on dataset con-
struction.
Corel: This dataset contains features extracted from 66,000
Corel stock images. Each image is segmented into about 10
regions, and a feature is extracted from each region. We
treat region features as individual objects.
Audio: This dataset contains features extracted from the
DARPA TIMIT collection, which contains recordings of 6,300
English sentences. We break each sentence into smaller seg-
ments and extract features. Again, we treat segment fea-
tures as individual objects.
Shape: This dataset contains about 29,000 3D shape mod-
els from various sources. A feature is extracted from each
model.

3.1.2 Text Data
We tokenize and stem text data and view them as, de-

pending on the context, multisets of words, or sparse vectors.
We apply two popular similarity measures on text data:

• Cosine similarity (vector view) : C(x, y) = x·y
∥x∥·∥y∥ ;

• Jaccard similarity (multiset view): J(x, y) = |x∩y|
|x∪y| .

DBLP: This dataset contains 0.9 million bibliography records
from the DBLP web site. Each record includes the authors’
full names and the title of a publication. The same dataset
was used in a previous study [22] on similarity join of text
data.

(EMD: earth mover’s distance)

¡ Use recall as an accuracy measure:
§ Ground-truth: true K-NNs obtained by scanning

the datasets in brute force
§ Recall of one object is the number of its true K-NN

members found divided by !
§ Recall of an approximate K-NNG is the average

recall of all objects
¡ Use #(sim. evaluations) as a measure of

computational cost:
scan rate = #(similarity evaluations)

4(4 − 1)/2

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 35

¡ Similar performance trends on different datasets
¡ Fast convergence across all datasets:

§ Curves are close to their final recall after 5 iterations
§ All curves converge within 12 iterations

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 36

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

re
ca

ll

iteration

Corel l2
Audio l2

Shape l2
DBLP cos

Flicrk EMD
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 0 2 4 6 8 10 12

sc
a

n
 r

a
te

iteration

Corel l2
Audio l2

Shape l2
DBLP cos

Flicrk EMD

Figure 1: Recall and scan rate vs. iterations. Recall increases fast in the beginning and then quickly
converges.

and with all other parameters fixed, scan rate shrinks as
dataset grows. The scan rate of Shape is relatively high
mainly because its size is small. In general, at million-
object level, we expect to cover several percents of the total
N(N − 1)/2 comparisons.

For a closer observation of the algorithm’s behavior, Fig-
ure 1 shows the accumulative recall and scan rate through
iterations. The curves of different data have very similar
trends. We see a fast convergence speed across all datasets
— the curves are already close to their final recall after five
iterations, and all curves converge within 12 iterations.

 0

 1

 2

 3

 4

 5

 6

 7

0.1 0.5 1.0

p
ro

b
a

b
ili

ty
 d

e
n

si
ty

square of l2 distance

iteration 5 recall 0.991
iteration 4 recall 0.849
iteration 3 recall 0.259
iteration 2 recall 0.027
iteration 1 recall 0.002

Figure 2: Approximate K-NN distance distributions
of Corel dataset after each iteration. The peaks of
the bottom three curves spread equally on the log-
scaled horizontal axis, suggesting the exponential re-
duction of the radius covered by approximate K-NN
during the execution of our method.

Figure 2 shows the approximate K-NN distance (N ×K
distance values) distributions of the Corel datasets during
the first five iterations. The peaks of the first three iterations
spread equally on a log-scaled horizontal axis, i.e. the search
radius around each object shrink exponentially in the initial
iterations. This remotely confirms our observation made in
Section 2.

4.2 Comparison Against Existing Methods
We compare our method with two recent techniques, both

specific to l2 distance, so only the three dense-vector datasets
are used. The brute-force approach, even though achieving

100% accuracy, is too expensive for large datasets and is not
considered here.

4.2.1 Recursive Lanczos Bisection
Recursive Lanczos Bisection (RLB)[8] is a divide-and-conquer

method for approximate K-NN graph construction in Eu-
clidean space. According to the two configurations sup-
ported by RLB, we conduct comparison under two settings,
one for speed (R = 0.15 for RLB and ρ = 0.5 for ours) and
one for quality (R = 0.3 for RLB and ρ = 1.0 for ours).
Table 3 summarizes the recall and CPU time of both meth-
ods under those settings. Our method consistently achieves
both higher recall and faster speed (2× to 16× speedup) in
all cases. Actually, even the recall of our low-accuracy set-
ting beats RLB’s high-accuracy setting in all cases except for
the Corel dataset, where there is only a difference of 0.001.

Dataset Method
For Speed For Accuracy

recall time recall time

Corel
RLB 0.988 1844s 0.996 5415s
Ours 0.995 252s 0.997 335s

Audio
RLB 0.906 84.6s 0.965 188.6s
Ours 0.969 21.1s 0.986 31.5s

Shape
RLB 0.961 29.7s 0.989 56.0s
Ours 0.994 14.0s 0.997 24.4s

Table 3: Comparison against Recursive Lanczos Bi-
section (RLB) under two settings. Our method runs
2 to 16 times faster with consistently higher recall.

4.2.2 Locality Sensitive Hashing
LSH is a promising method for approximate K-NN search

in high dimensional spaces. We use LSH for offline K-NNG
construction by building an LSH index (with multiple hash
tables) and then running a K-NN query for each object.
We use plain LSH [13] rather than the more recent Multi-
Probing LSH [17] in this evaluation as the latter is mainly
to reduce space cost, but could slightly raise scan rate to
achieve the same recall. We make the following optimiza-
tions to the original LSH method to better suit the K-NNG
construction task:

• For each query, we use a bit vector to record the objects
that have been compared, so if the same points are seen
in another hash table, they are not evaluated again.

¡ Run experiments on samples of the full datasets and observe
changes in recall and scan rate as sample size grows

¡ Results:
§ As dataset grows, there is only a minor decline in recall
§ All curves form parallel straight lines in the scan rate vs. dataset size:

§ NN-descent has a polynomial time complexity
§ Fit the scan rate curves to obtain empirical complexity of NN-Descent:

§ ! "#.#% ≪ !("() (=brute-force)

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 37

Dataset
LSH Ours

recall scan rate recall scan rate
Corel 0.906 0.004 0.995 0.004
Audio 0.615 0.047 0.969 0.045
Shape 0.925 0.076 0.994 0.075

Table 4: Comparison against LSH. We achieve much
higher recall at similar scan rate. It is impractical
to tune LSH to reach our recall as it would become
slower than brute-force search.

• We simultaneously keep the approximate K-NN lists
for all objects, so whenever two objects are compared,
the K-NN lists of both are updated;

• A query is only compared against objects with a smaller
ID.

These optimizations eliminate all redundant computations
without affecting recall. We translate the cost of LSH into
our scan rate measure, so the two methods are directly
comparable (we ignore the cost of LSH index construction
though).

It is hard for LSH to achieve even the recall of our low-
accuracy settings, as the cost would be higher than brute-
force search. Hence we tune the scan rate of both methods
to an equal level and compare recall. For LSH, we use the
same default parameters in our previous study [12], except
that we tune the number of hash tables to adjust scan rate.
For our method, the low-accuracy setting is used (ρ = 0.5).

Table 4 summarizes recall and scan rate for both method.
We see that our method strictly out-performs LSH: we achieve
significantly higher recall at similar scan rate. Also note
that the space cost of LSH is much higher than ours as tens
of hash tables are needed, and the computational cost to
construct those hash tables are not considered in the com-
parison.

4.3 Performance as Data Scales
It is important that an algorithm has a consistent accu-

racy and a predictable cost as data scales, so that param-
eters tuned with a small sample are applicable to the full
dataset. To study the scalability of our algorithm, we run
experiments on subsamples of the full datasets with fixed
parameter settings and observe the changes in recall and
scan rate as sample size grows.

Table 5 shows recall vs. sample size. We see that as
dataset grows, there is only a minor decline in recall. This
confirms the feasibility of parameter tuning with a sampled
dataset.

Figure 3 plots scan rate vs. dataset size, in log-log scale,
and we see a very interesting phenomenon: all curves form
parallel straight lines, and the curves of all datasets except
DBLP almost coincide. This suggests that our method has
a polynomial time complexity disregard the complexity of
the dataset (which affects the accuracy rather than speed
when parameters are fixed). Table 6 shows the empirical
complexity of our method on various datasets obtained by
fitting the scan rate curves, which is roughly O(n1.14) for all
datasets.

The main reason that the DBLP curve is higher is that
we use K = 50 for DBLP and K = 20 for other datasets. As
a local join costs O(K2), we expect the scan rate of DBLP

Size Corel Audio Shape DBLP Flickr
l2 l2 l2 cos EMD

1K 1.000 0.999 1.000 0.959 0.999
5K 1.000 0.996 0.992 0.970 0.991

10K 1.000 0.993 0.998 0.970 0.983
50K 0.999 0.988 - 0.951 0.953

100K 0.999 - - 0.940 0.925
500K 0.997 - - 0.907 -

Table 5: Recall vs. dataset size. The impact of data
size growth is small.

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06

sc
a
n
 r

a
te

Corel l2
Audio l2

Shape l2
DBLP cos

Flickr EMD

Figure 3: Scan rate vs. dataset size. The conin-
cidence of various datasets (except DBLP) suggests
that when parameters are fixed, the time complexity
of our method depends polynomially on the dataset
size, but is independent on the complexity of the
dataset (DBLP is different due to a larger K value
used).

to be about (50/20)2 = 6.25 times the scan rate of other
datasets if they all converge at the same speed. The real
value we estimate from the curves (by dividing the intercept
of the DBLP curve and the average intercept of the rest) is
5.2, which is close to the expected value.

4.4 Parameter Tuning
We need to fix three parameters for the algorithm: K,

sample rate ρ and termination threshold δ. The meaning of
δ is clear: the loss in recall tolerable with early termination.
Here we study the impact of K and ρ on performance.

4.4.1 Tuning K as a Parameter
The application determines the minimal K required. Mean-

while, a sufficiently large K is necessary to achieve high re-

Dataset & Measure Empirical Complexity
Corel/l2 O(n1.11)
Audio/l2 O(n1.14)
Shape/l2 O(n1.11)

DBLP/cos O(n1.11)
Flickr/EMD O(n1.14)

Table 6: Empirical complexity of different datasets
and similarity measures under default parameter
settings. The values are obtained by fitting the scan
rate curves in Figure 3.

(recall values)

Dataset
LSH Ours

recall scan rate recall scan rate
Corel 0.906 0.004 0.995 0.004
Audio 0.615 0.047 0.969 0.045
Shape 0.925 0.076 0.994 0.075

Table 4: Comparison against LSH. We achieve much
higher recall at similar scan rate. It is impractical
to tune LSH to reach our recall as it would become
slower than brute-force search.

• We simultaneously keep the approximate K-NN lists
for all objects, so whenever two objects are compared,
the K-NN lists of both are updated;

• A query is only compared against objects with a smaller
ID.

These optimizations eliminate all redundant computations
without affecting recall. We translate the cost of LSH into
our scan rate measure, so the two methods are directly
comparable (we ignore the cost of LSH index construction
though).

It is hard for LSH to achieve even the recall of our low-
accuracy settings, as the cost would be higher than brute-
force search. Hence we tune the scan rate of both methods
to an equal level and compare recall. For LSH, we use the
same default parameters in our previous study [12], except
that we tune the number of hash tables to adjust scan rate.
For our method, the low-accuracy setting is used (ρ = 0.5).

Table 4 summarizes recall and scan rate for both method.
We see that our method strictly out-performs LSH: we achieve
significantly higher recall at similar scan rate. Also note
that the space cost of LSH is much higher than ours as tens
of hash tables are needed, and the computational cost to
construct those hash tables are not considered in the com-
parison.

4.3 Performance as Data Scales
It is important that an algorithm has a consistent accu-

racy and a predictable cost as data scales, so that param-
eters tuned with a small sample are applicable to the full
dataset. To study the scalability of our algorithm, we run
experiments on subsamples of the full datasets with fixed
parameter settings and observe the changes in recall and
scan rate as sample size grows.

Table 5 shows recall vs. sample size. We see that as
dataset grows, there is only a minor decline in recall. This
confirms the feasibility of parameter tuning with a sampled
dataset.

Figure 3 plots scan rate vs. dataset size, in log-log scale,
and we see a very interesting phenomenon: all curves form
parallel straight lines, and the curves of all datasets except
DBLP almost coincide. This suggests that our method has
a polynomial time complexity disregard the complexity of
the dataset (which affects the accuracy rather than speed
when parameters are fixed). Table 6 shows the empirical
complexity of our method on various datasets obtained by
fitting the scan rate curves, which is roughly O(n1.14) for all
datasets.

The main reason that the DBLP curve is higher is that
we use K = 50 for DBLP and K = 20 for other datasets. As
a local join costs O(K2), we expect the scan rate of DBLP

Size Corel Audio Shape DBLP Flickr
l2 l2 l2 cos EMD

1K 1.000 0.999 1.000 0.959 0.999
5K 1.000 0.996 0.992 0.970 0.991

10K 1.000 0.993 0.998 0.970 0.983
50K 0.999 0.988 - 0.951 0.953

100K 0.999 - - 0.940 0.925
500K 0.997 - - 0.907 -

Table 5: Recall vs. dataset size. The impact of data
size growth is small.

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06

sc
a
n
 r

a
te

Corel l2
Audio l2

Shape l2
DBLP cos

Flickr EMD

Figure 3: Scan rate vs. dataset size. The conin-
cidence of various datasets (except DBLP) suggests
that when parameters are fixed, the time complexity
of our method depends polynomially on the dataset
size, but is independent on the complexity of the
dataset (DBLP is different due to a larger K value
used).

to be about (50/20)2 = 6.25 times the scan rate of other
datasets if they all converge at the same speed. The real
value we estimate from the curves (by dividing the intercept
of the DBLP curve and the average intercept of the rest) is
5.2, which is close to the expected value.

4.4 Parameter Tuning
We need to fix three parameters for the algorithm: K,

sample rate ρ and termination threshold δ. The meaning of
δ is clear: the loss in recall tolerable with early termination.
Here we study the impact of K and ρ on performance.

4.4.1 Tuning K as a Parameter
The application determines the minimal K required. Mean-

while, a sufficiently large K is necessary to achieve high re-

Dataset & Measure Empirical Complexity
Corel/l2 O(n1.11)
Audio/l2 O(n1.14)
Shape/l2 O(n1.11)

DBLP/cos O(n1.11)
Flickr/EMD O(n1.14)

Table 6: Empirical complexity of different datasets
and similarity measures under default parameter
settings. The values are obtained by fitting the scan
rate curves in Figure 3.

dataset size

1) Multimode Network Transformations:
§ K-partite and bipartite graphs
§ One-mode network projections/folding
§ Graph contractions

2) K-Nearest Neighbor Graph Construction

3) Network Deconvolution:
§ Direct and and indirect effects in a network
§ Inferring networks by network deconvolution

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 38

Application: Food webs

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).

7

A B

C

Figure 1: Higher-order network structures and the higher-order network clustering

framework. A: Higher-order structures are captured by network motifs. For example, all
13 connected three-node directed motifs are shown here. B: Clustering of a network based on
motif M7. For a given motif M , our framework aims to find a set of nodes S that minimizes
motif conductance, �M(S), which we define as the ratio of the number of motifs cut (filled
triangles cut) to the minimum number of nodes in instances of the motif in either S or S̄ (11).
In this case, there is one motif cut. C: The higher-order network clustering framework. Given a
graph and a motif of interest (in this case, M7), the framework forms a motif adjacency matrix
(WM) by counting the number of times two nodes co-occur in an instance of the motif. An
eigenvector of a Laplacian transformation of the motif adjacency matrix is then computed. The
ordering � of the nodes provided by the components of the eigenvector (13) produces nested sets
Sr = {�1, . . . , �r} of increasing size r. We prove that the set Sr with the smallest motif-based
conductance, �M(Sr), is a near-optimal higher-order cluster (11).

7

58

Florida Bay food web:

§ Nodes: species in
the ecosystem

§ Edges: carbon exchange
(who eats whom)

Different motifs capture
different energy flow patterns:

Jure Leskovec, Stanford

¡ Networks represent dependencies among objects:
§ Co-authorships between scientists
§ Friendships between people
§ Who-eats-whom in food webs
§ Bonds between molecular residues
§ Regulatory relationships between genes

¡ Indirect dependencies occur because of
transitive effects of correlation

¡ Problem: How to separate direct dependencies
from indirect ones?

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 40

¡ Goal: Distinguish strong and weak
collaborations between scientists

¡ Collaboration tie strengths depend on
publication details, such as:
§ #(papers) each pair of scientists has

collaborated on
§ #(co-authors) on each of the papers

¡ Strength of ties are important for:
§ Recommending friends and colleagues
§ Recognizing conflicts of interest
§ Evaluating authors’ contribution to teams

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 41

¡ Observed network: Combined direct and indirect
effects:

¡ Indirect edges might be due to higher-order
interactions (e.g., 1à4)

¡ Each edge might contain both direct and indirect
components (e.g., 2à4)

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 42

1

4
5

2 3

1

4
5

2 3

True network (Gdir) Observed network (Gobs)

Direct effects
Indirect effects

Transitive effects

Feizi et al., Nature Biotechnology, 31:8, 2013.

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 43

1

4
5

2 3

1

4
5

2 3

True network (Gdir) Observed network (Gobs)

Direct effects
Indirect effects

Network deconvolution

Transitive effects

(ND)

¡ Goal: Reverse the effect of transitive information flow
across all indirect paths:
§ Recover true direct network (blue edges, !"#$) based on

observed network (combined blue and red edges, !%&')

¡ Direct edges in a network can
lead to indirect relationships:
§ Transitive information flow

¡ Indirect effects can be of length:
§ 2 (e.g., 1→2→3)
§ 3 (e.g., 1→2→3→5)
§ higher-order

¡ Indirect effects can combine:
§ Both direct and indirect effects

(e.g., 2→4)
§ Multiple indirect effects along

varying paths (e.g., 2→3→5,
2→4→5)

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 44

1

4
5

2 3

1

4
5

2 3

True network (Gdir) Observed network (Gobs)

Direct effects
Indirect effects

Network deconvolution

Transitive effects

(ND)

¡ Transitive effects in !"#$ can be expressed as an
infinite sum of %&'(and all indirect effects:

%)*+ = G&'(+ !/01/2
¡ Indirect effects can be of increasing lengths:

%'3&'(= G&'(4 + G&'(5 + %&'(6 + ⋯

¡ 2nd order effects: %&'(4 = A&'(4

§ The number of edges in !"#$ of indirect paths of length 2
¡ 3rd order effects: %&'(5 = A&'(5

§ The number of edges in !"#$ of indirect paths of length 3

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 45

2nd order 4th order3rd order

¡ Let’s raise adjacency matrix !"#$ to the second power:
§ The (&, ()-th entry of *+,-. is:

*+,-. &, (= ∑1234 *+,- &, 5 *+,-(5, ()

§ This sum is only greater than zero if there exists a node
5 for which *+,-(&, 5) and *+,-(5, () are both nonzero:
§ There exists a node 6 that is connected to both nodes 7 and 8
§ The sum counts the number of neighbors that nodes & and (share
§ The sum counts the paths of length 2 between nodes 7 and 8

¡ This reasoning is valid for higher powers of *+,-:
§ *+,-9 (&, () counts the paths of length 3 between & and (
§ *+,-: (&, () counts the paths of length 4 between & and (

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 46

& (

53

5.

54

*;1< *=1<

¡ Idea: Model indirect flow as power series of
direct flow:
!"#$ = G'() + G'()+ + G'(), + !'()- + ⋯

¡ Note: Linear scaling of G"#$ so that max
absolute eigenvalue of G'() < 1:

§ Indirect effects decay exponentially with path length
§ Infinite series converges

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 47

Indirect effects
Converges with
correct scaling

Transitive closure of 1234

¡ Transitive closure of !"#$ can be expressed as an
infinite sum of:
§ True direct network, %&'(
§ All indirect effects along paths of increasing

lengths, %&'() , %&'(* , %&'(+ , …

¡ Idea: Can be written in a closed form as an infinite-
series sum using Taylor series expansions:

%,-. = G&'(+ G&'() + G&'(* + %&'(+ + ⋯ =
%&'(I + G&'(+ %&'() + G&'(* + ⋯ = %&'(I − G&'(56

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 48

Note: Let 7 be any square matrix with max
absolute eigenvalue < 1. Then the following
series converges: I + 7 + 7) + X* + ⋯
The series converges to: ∑:;<= 7: = 1 − 7 56

¡ Using Taylor series expansions we get a closed-
form expression for !"#$:

%&'(= %*+, I − G*+, 01

¡ In network deconvolution:
§ Observed network !"#$ is known
§ True direct network !234 needs to be recovered

¡ Finally, we get a closed-form solution for !234:
%*+, = %&'(I + G&'(01

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 49

¡ Use closed-form expression for !"#$ to
recover true direct network %&'(

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 50

1

4
5

2 3

1

4
5

2 3

True network (Gdir) Observed network (Gobs)

Direct effects
Indirect effects

Network deconvolution

Transitive effects

(ND)

NATURE BIOTECHNOLOGY VOLUME 31 NUMBER 8 AUGUST 2013 727

A N A LY S I S

We introduce an algorithm for network deconvolution that can effi-
ciently solve the inverse problem of transitive closure of a weighted
adjacency matrix, by use of decomposition principles of eigenvectors
and eigenvalues, and by exploiting the closed form solution of infinite
Taylor series. We demonstrate the effectiveness of this approach and
our algorithm in several large-scale networks from different domains
and with different properties (Supplementary Table 1). First, we seek
to distinguish likely direct targets in gene regulatory networks as a post-
processing step for diverse gene network inference methods, and show
that network deconvolution improves both global and local network
quality. Second, we show the effectiveness of network deconvolution in
distinguishing directly interacting amino-acid residues based on pair-
wise mutual information data in multispecies protein alignments. Third,
we apply network deconvolution to a social network setting using a co-
authorship network that contains solely connectivity information, and
show that the resulting edge weights are able to distinguish strong and
weak ties independently inferred based on the number of joint papers
and additional co-authors. The wide applicability of network deconvolu-
tion suggests that such a closed-form solution is not only of important
theoretical use in reversing the effect of matrix transitive closure, but also
of wide practical applicability in a diverse set of real-world networks.

RESULTS
Resolving direct and indirect dependencies in a graph
Mathematically, we model the weights of an observed network
Gobs, whose diagonal is set to zero, as the sum of both direct weights
in the true network Gdir, and indirect weights due to indirect paths
of increasing length in Gdir

2 , Gdir
3 and others (Fig. 1a). The inverse

problem of inferring the direct network from the observed network
is seemingly intractable, as the direct information has now dif-
fused through the observed network beyond recognition. However,
expressing Gobs as an infinite sum of the exponentially decreasing
contributions of increasingly indirect paths leads to a closed form
solution for Gobs as a function of Gdir using an infinite-series sum-
mation (Fig. 1b). Moreover, by decomposing the observed network
into its eigenvalues and eigenvectors, which provide a factorization of

the connectivity matrix into its canonical form, we can express each
eigenvalue of the direct matrix as a function of the corresponding
eigenvalue of the observed matrix (Fig. 1c). This decomposition leads
to a simple closed-form solution for Gdir and provides a framework for
an efficient globally optimal algorithm to deconvolve the contribu-
tions of direct and indirect edges given an observed network (Online
Methods and Supplementary Note, 1).

The resulting network deconvolution algorithm can be viewed as
a nonlinear filter over eigenvalues of a locally observed network to
compute global edge significance, removing indirect flow effects for
each eigenvalue by computing the inverse of a Taylor series expan-
sion (Supplementary Fig. 1). This results in the decrease of large posi-
tive eigenvalues of the observed dependency matrix that are inflated
owing to indirect effects. The eigenvalue/eigenvector matrix decom-
position holds for all symmetric matrices, including all correlation
or information-based matrices, and also for some asymmetric input
matrices, such as those in Supplementary Note, 1.4.1. For nondecom-
posable matrices, we present an iterative conjugate gradient descent
approach for network deconvolution that converges to a globally opti-
mal solution by convex optimization (Supplementary Note, 1.4.2 and
Supplementary Fig. 2).

Our formulation of network deconvolution has two underlying
modeling assumptions: first that indirect flow weights can be
approximated as the product of direct edge weights, and second, that
observed edge weights are the sum of direct and indirect flows. When
these assumptions hold, network deconvolution provides an exact

a

b

e

d

c

1

4
5

2 3

1

4
5

2 3

Transitive closure:

Network deconvolution:

Indirect effects Series closed form

True network (Gdir) Observed network (Gobs)

Observed networkTrue network

Direct effects
Indirect effects

Network deconvolution

Network deconvolution

Deconvolved network

Deconvolved networkDirect network

Direct network Observed network
with linear indirect flows

Observed network
with nonlinear indirect flows

Length n > 2 indirect interactions (false positives)
Length-2 indirect interactions (false positives)
Direct interactions, correctly recovered (true positives)

True interactions removed by ND (false negatives)

ND

T
ra

ns
iti

ve
 c

lo
su

re
(li

ne
ar

, a
dd

iti
ve

)
N

on
-li

ne
ar

 e
ffe

ct
s

ND

Transitive closure

(ND)

(TC)

Gobs = Gdir + G2
dir + G3

dir + ··· = Gdir(I – Gdir)
–1

Gdir = Gobs(I + Gobs)
–1

Gdir = U�dirU
–1

�i
dir0

0 0

0

Gobs = U�obsU
–1

�1
obs�1

dir

�2
dir

�n
dir

�2
obs

�n
obs

0
0 0

0

=
�i

obs

1 ����i
obs

Figure 1 Network deconvolution overview. (a) Direct edges in a network
(solid blue arrows) can lead to indirect relationships (dashed red arrows)
as a result of transitive information flow. These indirect contributions
can be of length 2 (e.g., 1l2l3), 3 (e.g., 1l2l3l5) or higher, and
can combine both direct and indirect effects (e.g., 2l4), and multiple
indirect effects along varying paths (e.g., 2l3l5, 2l4l5). Self-loops
are excluded from networks. Network deconvolution seeks to reverse the
effect of transitive information flow across all indirect paths in order to
recover the true direct network (blue edges, Gdir) based on the observed
network (combined blue and red edges, Gobs). (b) Algebraically, the
transitive closure of a network can be expressed as an infinite sum of
the true direct network and all indirect effects along paths of increasing
lengths, which can be written in a closed form as an infinite-series sum.
Network deconvolution exploits this closed form to express the direct
network Gdir as a function of the observed network Gobs. (c) To efficiently
compute this inverse operation, we express both the true and observed
networks Gdir and Gobs by decomposition into their eigenvectors and
eigenvalues, which enables each eigenvalue Li

dir of the original network to
be expressed as a nonlinear function of a single corresponding eigenvalue
Li

obs of the convolved observed network. (d,e) Network deconvolution
assumes that indirect flow weights can be approximated as the product
of direct edge weights, and that observed edge weights are the sum of
direct and indirect flows. When these assumptions hold (d), network
deconvolution removes all indirect flow effects and infers all direct
interactions and weights exactly. Even when these assumptions do not
hold (e), network deconvolution infers 87% of direct edges, showing
robustness to nonlinear effects.

¡ The solution for !"#$ is: !"#$ = !&'() + !&'(+,

¡ How to efficiently calculate !"#$:
§ Without calculating matrix inverse) + !&'(+,

¡ Approach:
§ Use the eigen-decomposition principle:

1. Express !&'(by decomposition into eigenvectors - and
eigenvalues Σ&'(: !&'(= -Σ&'(U+,

2. Express each eigenvalue 01234 as a nonlinear function of a
single corresponding eigenvalue 56&'(:

56"#$ = 56&'(1 + 56&'(
+,

3. Form a diagonal matrix Σ"#$ such that Σ"#$ 8, 8 = 56"#$
4. Recover true direct network as: :234 = ;<234;+=

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 51

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 52

NATURE BIOTECHNOLOGY VOLUME 31 NUMBER 8 AUGUST 2013 727

A N A LY S I S

We introduce an algorithm for network deconvolution that can effi-
ciently solve the inverse problem of transitive closure of a weighted
adjacency matrix, by use of decomposition principles of eigenvectors
and eigenvalues, and by exploiting the closed form solution of infinite
Taylor series. We demonstrate the effectiveness of this approach and
our algorithm in several large-scale networks from different domains
and with different properties (Supplementary Table 1). First, we seek
to distinguish likely direct targets in gene regulatory networks as a post-
processing step for diverse gene network inference methods, and show
that network deconvolution improves both global and local network
quality. Second, we show the effectiveness of network deconvolution in
distinguishing directly interacting amino-acid residues based on pair-
wise mutual information data in multispecies protein alignments. Third,
we apply network deconvolution to a social network setting using a co-
authorship network that contains solely connectivity information, and
show that the resulting edge weights are able to distinguish strong and
weak ties independently inferred based on the number of joint papers
and additional co-authors. The wide applicability of network deconvolu-
tion suggests that such a closed-form solution is not only of important
theoretical use in reversing the effect of matrix transitive closure, but also
of wide practical applicability in a diverse set of real-world networks.

RESULTS
Resolving direct and indirect dependencies in a graph
Mathematically, we model the weights of an observed network
Gobs, whose diagonal is set to zero, as the sum of both direct weights
in the true network Gdir, and indirect weights due to indirect paths
of increasing length in Gdir

2 , Gdir
3 and others (Fig. 1a). The inverse

problem of inferring the direct network from the observed network
is seemingly intractable, as the direct information has now dif-
fused through the observed network beyond recognition. However,
expressing Gobs as an infinite sum of the exponentially decreasing
contributions of increasingly indirect paths leads to a closed form
solution for Gobs as a function of Gdir using an infinite-series sum-
mation (Fig. 1b). Moreover, by decomposing the observed network
into its eigenvalues and eigenvectors, which provide a factorization of

the connectivity matrix into its canonical form, we can express each
eigenvalue of the direct matrix as a function of the corresponding
eigenvalue of the observed matrix (Fig. 1c). This decomposition leads
to a simple closed-form solution for Gdir and provides a framework for
an efficient globally optimal algorithm to deconvolve the contribu-
tions of direct and indirect edges given an observed network (Online
Methods and Supplementary Note, 1).

The resulting network deconvolution algorithm can be viewed as
a nonlinear filter over eigenvalues of a locally observed network to
compute global edge significance, removing indirect flow effects for
each eigenvalue by computing the inverse of a Taylor series expan-
sion (Supplementary Fig. 1). This results in the decrease of large posi-
tive eigenvalues of the observed dependency matrix that are inflated
owing to indirect effects. The eigenvalue/eigenvector matrix decom-
position holds for all symmetric matrices, including all correlation
or information-based matrices, and also for some asymmetric input
matrices, such as those in Supplementary Note, 1.4.1. For nondecom-
posable matrices, we present an iterative conjugate gradient descent
approach for network deconvolution that converges to a globally opti-
mal solution by convex optimization (Supplementary Note, 1.4.2 and
Supplementary Fig. 2).

Our formulation of network deconvolution has two underlying
modeling assumptions: first that indirect flow weights can be
approximated as the product of direct edge weights, and second, that
observed edge weights are the sum of direct and indirect flows. When
these assumptions hold, network deconvolution provides an exact

a

b

e

d

c

1

4
5

2 3

1

4
5

2 3

Transitive closure:

Network deconvolution:

Indirect effects Series closed form

True network (Gdir) Observed network (Gobs)

Observed networkTrue network

Direct effects
Indirect effects

Network deconvolution

Network deconvolution

Deconvolved network

Deconvolved networkDirect network

Direct network Observed network
with linear indirect flows

Observed network
with nonlinear indirect flows

Length n > 2 indirect interactions (false positives)
Length-2 indirect interactions (false positives)
Direct interactions, correctly recovered (true positives)

True interactions removed by ND (false negatives)

ND

T
ra

ns
iti

ve
 c

lo
su

re
(li

ne
ar

, a
dd

iti
ve

)
N

on
-li

ne
ar

 e
ffe

ct
s

ND

Transitive closure

(ND)

(TC)

Gobs = Gdir + G2
dir + G3

dir + ··· = Gdir(I – Gdir)
–1

Gdir = Gobs(I + Gobs)
–1

Gdir = U�dirU
–1

�i
dir0

0 0

0

Gobs = U�obsU
–1

�1
obs�1

dir

�2
dir

�n
dir

�2
obs

�n
obs

0
0 0

0

=
�i

obs

1 ����i
obs

Figure 1 Network deconvolution overview. (a) Direct edges in a network
(solid blue arrows) can lead to indirect relationships (dashed red arrows)
as a result of transitive information flow. These indirect contributions
can be of length 2 (e.g., 1l2l3), 3 (e.g., 1l2l3l5) or higher, and
can combine both direct and indirect effects (e.g., 2l4), and multiple
indirect effects along varying paths (e.g., 2l3l5, 2l4l5). Self-loops
are excluded from networks. Network deconvolution seeks to reverse the
effect of transitive information flow across all indirect paths in order to
recover the true direct network (blue edges, Gdir) based on the observed
network (combined blue and red edges, Gobs). (b) Algebraically, the
transitive closure of a network can be expressed as an infinite sum of
the true direct network and all indirect effects along paths of increasing
lengths, which can be written in a closed form as an infinite-series sum.
Network deconvolution exploits this closed form to express the direct
network Gdir as a function of the observed network Gobs. (c) To efficiently
compute this inverse operation, we express both the true and observed
networks Gdir and Gobs by decomposition into their eigenvectors and
eigenvalues, which enables each eigenvalue Li

dir of the original network to
be expressed as a nonlinear function of a single corresponding eigenvalue
Li

obs of the convolved observed network. (d,e) Network deconvolution
assumes that indirect flow weights can be approximated as the product
of direct edge weights, and that observed edge weights are the sum of
direct and indirect flows. When these assumptions hold (d), network
deconvolution removes all indirect flow effects and infers all direct
interactions and weights exactly. Even when these assumptions do not
hold (e), network deconvolution infers 87% of direct edges, showing
robustness to nonlinear effects.

NATURE BIOTECHNOLOGY VOLUME 31 NUMBER 8 AUGUST 2013 727

A N A LY S I S

We introduce an algorithm for network deconvolution that can effi-
ciently solve the inverse problem of transitive closure of a weighted
adjacency matrix, by use of decomposition principles of eigenvectors
and eigenvalues, and by exploiting the closed form solution of infinite
Taylor series. We demonstrate the effectiveness of this approach and
our algorithm in several large-scale networks from different domains
and with different properties (Supplementary Table 1). First, we seek
to distinguish likely direct targets in gene regulatory networks as a post-
processing step for diverse gene network inference methods, and show
that network deconvolution improves both global and local network
quality. Second, we show the effectiveness of network deconvolution in
distinguishing directly interacting amino-acid residues based on pair-
wise mutual information data in multispecies protein alignments. Third,
we apply network deconvolution to a social network setting using a co-
authorship network that contains solely connectivity information, and
show that the resulting edge weights are able to distinguish strong and
weak ties independently inferred based on the number of joint papers
and additional co-authors. The wide applicability of network deconvolu-
tion suggests that such a closed-form solution is not only of important
theoretical use in reversing the effect of matrix transitive closure, but also
of wide practical applicability in a diverse set of real-world networks.

RESULTS
Resolving direct and indirect dependencies in a graph
Mathematically, we model the weights of an observed network
Gobs, whose diagonal is set to zero, as the sum of both direct weights
in the true network Gdir, and indirect weights due to indirect paths
of increasing length in Gdir

2 , Gdir
3 and others (Fig. 1a). The inverse

problem of inferring the direct network from the observed network
is seemingly intractable, as the direct information has now dif-
fused through the observed network beyond recognition. However,
expressing Gobs as an infinite sum of the exponentially decreasing
contributions of increasingly indirect paths leads to a closed form
solution for Gobs as a function of Gdir using an infinite-series sum-
mation (Fig. 1b). Moreover, by decomposing the observed network
into its eigenvalues and eigenvectors, which provide a factorization of

the connectivity matrix into its canonical form, we can express each
eigenvalue of the direct matrix as a function of the corresponding
eigenvalue of the observed matrix (Fig. 1c). This decomposition leads
to a simple closed-form solution for Gdir and provides a framework for
an efficient globally optimal algorithm to deconvolve the contribu-
tions of direct and indirect edges given an observed network (Online
Methods and Supplementary Note, 1).

The resulting network deconvolution algorithm can be viewed as
a nonlinear filter over eigenvalues of a locally observed network to
compute global edge significance, removing indirect flow effects for
each eigenvalue by computing the inverse of a Taylor series expan-
sion (Supplementary Fig. 1). This results in the decrease of large posi-
tive eigenvalues of the observed dependency matrix that are inflated
owing to indirect effects. The eigenvalue/eigenvector matrix decom-
position holds for all symmetric matrices, including all correlation
or information-based matrices, and also for some asymmetric input
matrices, such as those in Supplementary Note, 1.4.1. For nondecom-
posable matrices, we present an iterative conjugate gradient descent
approach for network deconvolution that converges to a globally opti-
mal solution by convex optimization (Supplementary Note, 1.4.2 and
Supplementary Fig. 2).

Our formulation of network deconvolution has two underlying
modeling assumptions: first that indirect flow weights can be
approximated as the product of direct edge weights, and second, that
observed edge weights are the sum of direct and indirect flows. When
these assumptions hold, network deconvolution provides an exact

a

b

e

d

c

1

4
5

2 3

1

4
5

2 3

Transitive closure:

Network deconvolution:

Indirect effects Series closed form

True network (Gdir) Observed network (Gobs)

Observed networkTrue network

Direct effects
Indirect effects

Network deconvolution

Network deconvolution

Deconvolved network

Deconvolved networkDirect network

Direct network Observed network
with linear indirect flows

Observed network
with nonlinear indirect flows

Length n > 2 indirect interactions (false positives)
Length-2 indirect interactions (false positives)
Direct interactions, correctly recovered (true positives)

True interactions removed by ND (false negatives)

ND

T
ra

ns
iti

ve
 c

lo
su

re
(li

ne
ar

, a
dd

iti
ve

)
N

on
-li

ne
ar

 e
ffe

ct
s

ND

Transitive closure

(ND)

(TC)

Gobs = Gdir + G2
dir + G3

dir + ··· = Gdir(I – Gdir)
–1

Gdir = Gobs(I + Gobs)
–1

Gdir = U�dirU
–1

�i
dir0

0 0

0

Gobs = U�obsU
–1

�1
obs�1

dir

�2
dir

�n
dir

�2
obs

�n
obs

0
0 0

0

=
�i

obs

1 ����i
obs

Figure 1 Network deconvolution overview. (a) Direct edges in a network
(solid blue arrows) can lead to indirect relationships (dashed red arrows)
as a result of transitive information flow. These indirect contributions
can be of length 2 (e.g., 1l2l3), 3 (e.g., 1l2l3l5) or higher, and
can combine both direct and indirect effects (e.g., 2l4), and multiple
indirect effects along varying paths (e.g., 2l3l5, 2l4l5). Self-loops
are excluded from networks. Network deconvolution seeks to reverse the
effect of transitive information flow across all indirect paths in order to
recover the true direct network (blue edges, Gdir) based on the observed
network (combined blue and red edges, Gobs). (b) Algebraically, the
transitive closure of a network can be expressed as an infinite sum of
the true direct network and all indirect effects along paths of increasing
lengths, which can be written in a closed form as an infinite-series sum.
Network deconvolution exploits this closed form to express the direct
network Gdir as a function of the observed network Gobs. (c) To efficiently
compute this inverse operation, we express both the true and observed
networks Gdir and Gobs by decomposition into their eigenvectors and
eigenvalues, which enables each eigenvalue Li

dir of the original network to
be expressed as a nonlinear function of a single corresponding eigenvalue
Li

obs of the convolved observed network. (d,e) Network deconvolution
assumes that indirect flow weights can be approximated as the product
of direct edge weights, and that observed edge weights are the sum of
direct and indirect flows. When these assumptions hold (d), network
deconvolution removes all indirect flow effects and infers all direct
interactions and weights exactly. Even when these assumptions do not
hold (e), network deconvolution infers 87% of direct edges, showing
robustness to nonlinear effects.

NATURE BIOTECHNOLOGY VOLUME 31 NUMBER 8 AUGUST 2013 727

A N A LY S I S

We introduce an algorithm for network deconvolution that can effi-
ciently solve the inverse problem of transitive closure of a weighted
adjacency matrix, by use of decomposition principles of eigenvectors
and eigenvalues, and by exploiting the closed form solution of infinite
Taylor series. We demonstrate the effectiveness of this approach and
our algorithm in several large-scale networks from different domains
and with different properties (Supplementary Table 1). First, we seek
to distinguish likely direct targets in gene regulatory networks as a post-
processing step for diverse gene network inference methods, and show
that network deconvolution improves both global and local network
quality. Second, we show the effectiveness of network deconvolution in
distinguishing directly interacting amino-acid residues based on pair-
wise mutual information data in multispecies protein alignments. Third,
we apply network deconvolution to a social network setting using a co-
authorship network that contains solely connectivity information, and
show that the resulting edge weights are able to distinguish strong and
weak ties independently inferred based on the number of joint papers
and additional co-authors. The wide applicability of network deconvolu-
tion suggests that such a closed-form solution is not only of important
theoretical use in reversing the effect of matrix transitive closure, but also
of wide practical applicability in a diverse set of real-world networks.

RESULTS
Resolving direct and indirect dependencies in a graph
Mathematically, we model the weights of an observed network
Gobs, whose diagonal is set to zero, as the sum of both direct weights
in the true network Gdir, and indirect weights due to indirect paths
of increasing length in Gdir

2 , Gdir
3 and others (Fig. 1a). The inverse

problem of inferring the direct network from the observed network
is seemingly intractable, as the direct information has now dif-
fused through the observed network beyond recognition. However,
expressing Gobs as an infinite sum of the exponentially decreasing
contributions of increasingly indirect paths leads to a closed form
solution for Gobs as a function of Gdir using an infinite-series sum-
mation (Fig. 1b). Moreover, by decomposing the observed network
into its eigenvalues and eigenvectors, which provide a factorization of

the connectivity matrix into its canonical form, we can express each
eigenvalue of the direct matrix as a function of the corresponding
eigenvalue of the observed matrix (Fig. 1c). This decomposition leads
to a simple closed-form solution for Gdir and provides a framework for
an efficient globally optimal algorithm to deconvolve the contribu-
tions of direct and indirect edges given an observed network (Online
Methods and Supplementary Note, 1).

The resulting network deconvolution algorithm can be viewed as
a nonlinear filter over eigenvalues of a locally observed network to
compute global edge significance, removing indirect flow effects for
each eigenvalue by computing the inverse of a Taylor series expan-
sion (Supplementary Fig. 1). This results in the decrease of large posi-
tive eigenvalues of the observed dependency matrix that are inflated
owing to indirect effects. The eigenvalue/eigenvector matrix decom-
position holds for all symmetric matrices, including all correlation
or information-based matrices, and also for some asymmetric input
matrices, such as those in Supplementary Note, 1.4.1. For nondecom-
posable matrices, we present an iterative conjugate gradient descent
approach for network deconvolution that converges to a globally opti-
mal solution by convex optimization (Supplementary Note, 1.4.2 and
Supplementary Fig. 2).

Our formulation of network deconvolution has two underlying
modeling assumptions: first that indirect flow weights can be
approximated as the product of direct edge weights, and second, that
observed edge weights are the sum of direct and indirect flows. When
these assumptions hold, network deconvolution provides an exact

a

b

e

d

c

1

4
5

2 3

1

4
5

2 3

Transitive closure:

Network deconvolution:

Indirect effects Series closed form

True network (Gdir) Observed network (Gobs)

Observed networkTrue network

Direct effects
Indirect effects

Network deconvolution

Network deconvolution

Deconvolved network

Deconvolved networkDirect network

Direct network Observed network
with linear indirect flows

Observed network
with nonlinear indirect flows

Length n > 2 indirect interactions (false positives)
Length-2 indirect interactions (false positives)
Direct interactions, correctly recovered (true positives)

True interactions removed by ND (false negatives)

ND

T
ra

ns
iti

ve
 c

lo
su

re
(li

ne
ar

, a
dd

iti
ve

)
N

on
-li

ne
ar

 e
ffe

ct
s

ND

Transitive closure

(ND)

(TC)

Gobs = Gdir + G2
dir + G3

dir + ··· = Gdir(I – Gdir)
–1

Gdir = Gobs(I + Gobs)
–1

Gdir = U�dirU
–1

�i
dir0

0 0

0

Gobs = U�obsU
–1

�1
obs�1

dir

�2
dir

�n
dir

�2
obs

�n
obs

0
0 0

0

=
�i

obs

1 ����i
obs

Figure 1 Network deconvolution overview. (a) Direct edges in a network
(solid blue arrows) can lead to indirect relationships (dashed red arrows)
as a result of transitive information flow. These indirect contributions
can be of length 2 (e.g., 1l2l3), 3 (e.g., 1l2l3l5) or higher, and
can combine both direct and indirect effects (e.g., 2l4), and multiple
indirect effects along varying paths (e.g., 2l3l5, 2l4l5). Self-loops
are excluded from networks. Network deconvolution seeks to reverse the
effect of transitive information flow across all indirect paths in order to
recover the true direct network (blue edges, Gdir) based on the observed
network (combined blue and red edges, Gobs). (b) Algebraically, the
transitive closure of a network can be expressed as an infinite sum of
the true direct network and all indirect effects along paths of increasing
lengths, which can be written in a closed form as an infinite-series sum.
Network deconvolution exploits this closed form to express the direct
network Gdir as a function of the observed network Gobs. (c) To efficiently
compute this inverse operation, we express both the true and observed
networks Gdir and Gobs by decomposition into their eigenvectors and
eigenvalues, which enables each eigenvalue Li

dir of the original network to
be expressed as a nonlinear function of a single corresponding eigenvalue
Li

obs of the convolved observed network. (d,e) Network deconvolution
assumes that indirect flow weights can be approximated as the product
of direct edge weights, and that observed edge weights are the sum of
direct and indirect flows. When these assumptions hold (d), network
deconvolution removes all indirect flow effects and infers all direct
interactions and weights exactly. Even when these assumptions do not
hold (e), network deconvolution infers 87% of direct edges, showing
robustness to nonlinear effects.

Input OutputGround-truth/True net

¡ Goal: Distinguish strong and weak
collaborations between scientists

¡ Collaboration tie strengths depend on
publication details, such as:
§ #(papers) each pair of scientists has

collaborated on
§ #(co-authors) on each of the papers

¡ Strength of ties are important for:
§ Recommending friends and colleagues
§ Recognizing conflicts of interest
§ Evaluating authors’ contribution to teams

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 53

¡ Data: Unweighted network of scientists working in the
field of network science:
§ Two authors are linked if they co-authored at least one paper

¡ Setup: Apply ND on the co-authorship network:
§ ND returns a weighted network whose:

§ Transitive closure most closely captures the input network
§ Weights represent the inferred strength of direct interactions

§ Output: Rank co-authorship edges by the ND-assigned weights

¡ Ground-truth data:
§ True collaboration strengths are computed by summing the

number of co-authored papers and down-weighting each paper
by the number of additional co-authors

§ Compute correlation between ND-assigned weights and true
collaboration strengths

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 54

¡ Agreement between the rank obtained by the true collaboration
strength and the rank provided by the ND weight, !" = 0.76

¡ Conclusion: ND predict collaboration tie strengths solely by using
network topology (i.e., not using other publication details)

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 55

NATURE BIOTECHNOLOGY VOLUME 31 NUMBER 8 AUGUST 2013 731

A N A LY S I S

it (Fig. 4a). Beyond the binary classification of edges into strong and
weak, we found a strong overall agreement between the rank obtained
by the true collaboration strength and the rank provided by the net-
work deconvolution weight (correlation coefficient R2 = 0.76, Fig. 4b).
The exception was a population of edges that had strong collabora-
tion scores but weak network deconvolution weights, likely due to the
number of co-authored publications that factors in the collaboration
score but is not available in the network deconvolution network input.
Indeed, collaborators connected by a strong edge that were incorrectly
predicted by network deconvolution had on average co-authored six-
fold more papers per author than collaborators correctly predicted as
weak, suggesting a very strong additional bias beyond the information
provided by the topology. With the widespread availability of social
networks and the current interest in predicting strong and weak social
ties, we expect that network deconvolution will be widely useful in
many social network applications beyond co-authorship.

DISCUSSION
Network deconvolution provides a general framework for comput-
ing direct dependencies in a network by use of observed similarities.
It can recognize and remove spurious transitive edges due to indirect
effects, decrease edge weights that are overestimated owing to indi-
rect relationships, and assign edge weights corresponding to direct
dependencies to the remaining edges. Thereby, network deconvolu-
tion can improve the quality of a broad range of observed networks
that are tainted by indirect edge weights because of transitive effects.
We introduced an efficient and scalable algorithm for deconvolving an
observed network based on a nonlinear filter computing the inverse of
a Taylor series expansion over each eigenvalue. We demonstrated that

network deconvolution is effective for gene regulatory network infer-
ence, protein contact prediction based on protein sequence alignment
and inference of collaboration strength from co-authorship social
networks. In each case, even though we did not use domain-specific
knowledge, network deconvolution was effective, illustrating the
generality and wide applicability of the approach.

The problem of indirect spurious edges has been widely recognized
in network inference, but characterized mostly at the local level. In
particular, even top-performing network inference methods have
been shown to contain many false transitive edges in cascade network
motifs, and efforts to remedy this situation lead to incorrect removal
of true edges in feed-forward loops5. At this local level, we have shown
that network deconvolution has the ability to correctly remove spuri-
ous transitive edges in true cascade network motifs, while maintaining
true feed-forward edges in feed-forward network motifs. In contrast
to previous methods that make well-documented tradeoffs in sensitiv-
ity versus specificity for these transitive edges5, network deconvolu-
tion reduces the number of false positives on indirect interactions,
while maintaining true positives in feed-forward loops.

However, network deconvolution has a much broader effect
than simply removing local indirect edges. In contrast to previous
approaches that study local patterns of dependencies to recognize
potential indirect edges, network deconvolution takes a global
approach by directly inverting the transitive closure of the true net-
work. Previous algorithms29 have sought local approximations to the
removal of indirect effects which have been limited to indirect paths
of only limited lengths (typically of length 2), owing to the compu-
tational complexity of enumerating and evaluating all higher-order
paths, and the lack of a systematic way to compute their combined

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

True collaboration strength

N
D

 p
re

di
ct

ed
 c

ol
la

bo
ra

tio
n

st
re

ng
th

Strong
correct

Strong
incorrect

Weak
incorrect

Weak
correctStrong correct

Strong incorrect

Weak correct

Weak incorrect

a b

Figure 4 Application to co-authorship social network. (a) Use of network deconvolution to distinguishing strong ties from weak ties in the largest
connected component of a co-authorship network containing 379 authors. True collaboration strengths were computed by summing the number of
co-authored papers and down-weighting each paper by the number of additional co-authors. Network deconvolution only had access to unweighted
co-authorship edges, but exploiting transitive relationships to weigh down weak ties resulting in 77% accurate predictions (solid lines) and only 23%
inaccurate predictions (dashed lines), demonstrating that this information lies within the network edges, and that network deconvolution is well-
suited for discovering it. (b) Beyond the binary classification of strong and weak ties, we found a strong correlation (R2 = 0.76) across all 2,742 edges
connecting 1,589 authors, between the weights assigned by network deconvolution (ND) and the true collaboration strengths obtained using additional
publication details.

¡ Goal: Infer a gene regulatory network from gene
feature vectors describing gene activity:
§ Nodes represent genes
§ Edges represent regulatory relationships between

regulators and their target genes

¡ Well-studied problem in
bioinformatics:
§ A dataset is a gene-by-condition

expression matrix
§ Expression matrix is noisy with

many indirect measurements

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 56

¡ 3 datasets: Gene expression datasets from: bacterium E.
coli, yeast S. cerevisiae, and a simulated env (in silico)

¡ Setup: Use ND to improve network inference methods by
eliminating indirect edges in the inferred networks:

1. Infer a gene regulatory network using a particular network
inference method

2. Apply ND to the inferred network to deconvolve the network

3. Evaluate deconvolved network against ground-truth data

¡ Ground-truth data:
§ True positive regulatory relationships (i.e., edges) are defined as

a set of interactions experimentally validation in a laboratory

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 57

ND improves the performance of top-performing network
inference methods

10/4/18
Jure Leskovec, Stanford CS224W: Analysis of Networks

58

728 VOLUME 31 NUMBER 8 AUGUST 2013 NATURE BIOTECHNOLOGY

A N A LY S I S

closed-form solution for completely removing all indirect flow effects
and inferring all direct interactions and weights exactly (Fig. 1d).
We show that network deconvolution performs well even when
these assumptions do not hold, by inclusion of nonlinear effects
through simulations when the direct edges are known (Fig. 1e and
Supplementary Note, 1.3) and by application to diverse real-world
biological and social networks where additional properties can be
independently evaluated. Our Taylor series closed-form solution
assumes that all eigenvalues of the direct dependency matrix are
between –1 and 1, which leads to a geometric decrease in the contri-
butions of indirect paths of increasing lengths (Supplementary Note,
1.2). This assumption can be achieved for any matrix by scaling the
observed input network by a function of the magnitude of its eigen-
values (Supplementary Note, 1.6 and Supplementary Fig. 4).

We also provide a useful generalization of network deconvo-
lution when the observation dependency matrix is itself noisy
(Supplementary Note, 1.5). Although direct dependency weights can-
not be recovered exactly from the noisy observations, we show that the
resulting estimates are close to true weights for moderate noise levels
in the input data sets (Supplementary Fig. 3). We also present two
extensions of the network deconvolution algorithm (Supplementary
Note, 1.7) that make it scalable to very large networks: the first exploits
the sparsity of eigenvalues of low rank networks, and the second paral-
lelizes network deconvolution over potentially overlapping subgraphs
of the network (Supplementary Fig. 5).

We next apply our network deconvolution approach to three settings:
(i) inferring gene regulatory networks, (ii) inferring protein structural
constraints and (iii) inferring weak and strong ties in social networks.

Application to gene regulatory networks
We first apply our network deconvolution algorithm to gene regu-
latory networks, which are pervasively used in molecular biology

to describe regulatory relationships between transcription factors
(regulators) and their target genes1. Regulatory network inference
from high-throughput gene expression data1,6,32, or by integrating
complementary types of data sets33–35, is a well-studied problem in
computational molecular biology26,29,36,37, enabling us to benefit from
available data sets and community efforts for direct method com-
parisons1,6. Perhaps the largest such comparison is the recently pub-
lished network inference challenge part of the Dialogue on Reverse
Engineering Assessment and Methods (DREAM) project5.

In the DREAM5 network inference challenge5, different methods
were applied to reconstruct networks for the bacterium Escherichia
coli and the single-celled eukaryote Saccharomyces cerevisiae based on
experimental data sets, and to reconstruct an in silico network based
on simulated data sets (Supplementary Note, 2.1 and Supplementary
Fig. 6). True positive interactions were defined as a set of experimen-
tally validated interactions from the RegulonDB database for E. coli38,
and a high-confidence set of interactions supported by genome-wide
transcription-factor binding data (ChIP-chip) and evolutionarily con-
served binding motifs for S. cerevisiae39. All methods were evaluated
using the same four performance evaluation metrics: (i) the area under
the precision-recall curve; (ii) the area under the receiver operating
characteristic curve; (iii) a combined per-network score that utilizes
both previous metrics for each individual network; and (iv) an overall
per-method score that summarizes the combined performance across
all three networks (Online Methods and Supplementary Note, 2.3).
The DREAM5 challenge provides an ideal benchmark for evaluating
network deconvolution, given the uniform benchmarks for network
reconstruction used, and the participation of many of the research teams
at the forefront of network inference research, with a total of 35 different
prediction methods applied across a wide array of methodologies.

Given that network deconvolution is designed as a way to
eliminate indirect edge weights in mutual information–based and

Figure 2 Deconvolution of gene regulatory
networks. (a) Network deconvolution applied to
the inferred networks of top-scoring methods
from DREAM5 leads to consistent improvements
for mutual information (MI) and correlation-
based methods (average performance increase,
59%). Network deconvolution also improves
other top-scoring methods (11% on average),
including the best-performing method of
the DREAM5 challenge (GENIE3), thus
leading to a new overall highest performance.
Moreover, the community network obtained by
integrating network predictions from individual
methods (1–9) before network deconvolution
is outperformed by the community network
based on deconvolved networks by ~22%.
(b) Network motif analysis showing the relative
performance of inference methods for cascades
(casc.) and feed-forward loops (FFL) before
and after network deconvolution. Red and
blue corresponds to increased and decreased
prediction accuracy, respectively, of the two
motif types relative to the overall performance
of the method before network deconvolution
(measured by AUROC; Supplementary Note,
2.4). The original methods (before network
deconvolution, left side) have different
relative performances for cascades and FFLs, for example, MI–based network inference tends to include feed-forward edges (red arrow), resulting in
higher accuracy for FFLs but lower accuracy for cascades, whereas the opposite is true for the Inferelator and ANOVerence. The deconvolved networks
(after network deconvolution, right side) show significantly higher accuracy (AUROC) for true cascade network motifs for all methods, and moderately
improved accuracy for FFLs on average, showing that network deconvolution successfully eliminates spurious indirect feed-forward edges for true
cascade motifs, without sacrificing accuracy for true FFLs.

Relative performance
(AUROC) 0 +5%–5%

b

0

20

40

60
Before ND
After ND

0

50

100

150

0

5

10

15

20

MI

Com
mun

ity

ANOVer
en

ce

GENIE
3

Pea
rso

n

Spe
ar

man

TIG
RESS

CLR

Inf
er

ela
tor

ARACNE

0

1

2

3

4

O
ve

ra
ll

sc
or

e
In

 s
ili

co
 s

co
re

E
. c

ol
i s

co
re

S
. c

er
ev

is
ia

e
sc

or
e

81 754 6 932

81 754 6 932

81 754 6 932

MI and correlation methods Other inference methodsa
Casc.FFL Casc.FFL

Before ND After ND

A C

B

A C

B

M
I &

 c
or

re
la

tio
n

O
th

er

Feed-forward loop
(FFL) contains
feed-forward edge

Cascade (casc.) lacks
feed-forward edge

Feed forward edge

81 754 6 932

Community

10

10

10

10

CLR

ARACNE

MI

Pearson

Spearman

GENIE3

TIGRESS

Inferelator

ANOVerence

Community

Average improvement

728 VOLUME 31 NUMBER 8 AUGUST 2013 NATURE BIOTECHNOLOGY

A N A LY S I S

closed-form solution for completely removing all indirect flow effects
and inferring all direct interactions and weights exactly (Fig. 1d).
We show that network deconvolution performs well even when
these assumptions do not hold, by inclusion of nonlinear effects
through simulations when the direct edges are known (Fig. 1e and
Supplementary Note, 1.3) and by application to diverse real-world
biological and social networks where additional properties can be
independently evaluated. Our Taylor series closed-form solution
assumes that all eigenvalues of the direct dependency matrix are
between –1 and 1, which leads to a geometric decrease in the contri-
butions of indirect paths of increasing lengths (Supplementary Note,
1.2). This assumption can be achieved for any matrix by scaling the
observed input network by a function of the magnitude of its eigen-
values (Supplementary Note, 1.6 and Supplementary Fig. 4).

We also provide a useful generalization of network deconvo-
lution when the observation dependency matrix is itself noisy
(Supplementary Note, 1.5). Although direct dependency weights can-
not be recovered exactly from the noisy observations, we show that the
resulting estimates are close to true weights for moderate noise levels
in the input data sets (Supplementary Fig. 3). We also present two
extensions of the network deconvolution algorithm (Supplementary
Note, 1.7) that make it scalable to very large networks: the first exploits
the sparsity of eigenvalues of low rank networks, and the second paral-
lelizes network deconvolution over potentially overlapping subgraphs
of the network (Supplementary Fig. 5).

We next apply our network deconvolution approach to three settings:
(i) inferring gene regulatory networks, (ii) inferring protein structural
constraints and (iii) inferring weak and strong ties in social networks.

Application to gene regulatory networks
We first apply our network deconvolution algorithm to gene regu-
latory networks, which are pervasively used in molecular biology

to describe regulatory relationships between transcription factors
(regulators) and their target genes1. Regulatory network inference
from high-throughput gene expression data1,6,32, or by integrating
complementary types of data sets33–35, is a well-studied problem in
computational molecular biology26,29,36,37, enabling us to benefit from
available data sets and community efforts for direct method com-
parisons1,6. Perhaps the largest such comparison is the recently pub-
lished network inference challenge part of the Dialogue on Reverse
Engineering Assessment and Methods (DREAM) project5.

In the DREAM5 network inference challenge5, different methods
were applied to reconstruct networks for the bacterium Escherichia
coli and the single-celled eukaryote Saccharomyces cerevisiae based on
experimental data sets, and to reconstruct an in silico network based
on simulated data sets (Supplementary Note, 2.1 and Supplementary
Fig. 6). True positive interactions were defined as a set of experimen-
tally validated interactions from the RegulonDB database for E. coli38,
and a high-confidence set of interactions supported by genome-wide
transcription-factor binding data (ChIP-chip) and evolutionarily con-
served binding motifs for S. cerevisiae39. All methods were evaluated
using the same four performance evaluation metrics: (i) the area under
the precision-recall curve; (ii) the area under the receiver operating
characteristic curve; (iii) a combined per-network score that utilizes
both previous metrics for each individual network; and (iv) an overall
per-method score that summarizes the combined performance across
all three networks (Online Methods and Supplementary Note, 2.3).
The DREAM5 challenge provides an ideal benchmark for evaluating
network deconvolution, given the uniform benchmarks for network
reconstruction used, and the participation of many of the research teams
at the forefront of network inference research, with a total of 35 different
prediction methods applied across a wide array of methodologies.

Given that network deconvolution is designed as a way to
eliminate indirect edge weights in mutual information–based and

Figure 2 Deconvolution of gene regulatory
networks. (a) Network deconvolution applied to
the inferred networks of top-scoring methods
from DREAM5 leads to consistent improvements
for mutual information (MI) and correlation-
based methods (average performance increase,
59%). Network deconvolution also improves
other top-scoring methods (11% on average),
including the best-performing method of
the DREAM5 challenge (GENIE3), thus
leading to a new overall highest performance.
Moreover, the community network obtained by
integrating network predictions from individual
methods (1–9) before network deconvolution
is outperformed by the community network
based on deconvolved networks by ~22%.
(b) Network motif analysis showing the relative
performance of inference methods for cascades
(casc.) and feed-forward loops (FFL) before
and after network deconvolution. Red and
blue corresponds to increased and decreased
prediction accuracy, respectively, of the two
motif types relative to the overall performance
of the method before network deconvolution
(measured by AUROC; Supplementary Note,
2.4). The original methods (before network
deconvolution, left side) have different
relative performances for cascades and FFLs, for example, MI–based network inference tends to include feed-forward edges (red arrow), resulting in
higher accuracy for FFLs but lower accuracy for cascades, whereas the opposite is true for the Inferelator and ANOVerence. The deconvolved networks
(after network deconvolution, right side) show significantly higher accuracy (AUROC) for true cascade network motifs for all methods, and moderately
improved accuracy for FFLs on average, showing that network deconvolution successfully eliminates spurious indirect feed-forward edges for true
cascade motifs, without sacrificing accuracy for true FFLs.

Relative performance
(AUROC) 0 +5%–5%

b

0

20

40

60
Before ND
After ND

0

50

100

150

0

5

10

15

20

MI

Com
mun

ity

ANOVer
en

ce

GENIE
3

Pea
rso

n

Spe
ar

man

TIG
RESS

CLR

Inf
er

ela
tor

ARACNE

0

1

2

3

4

O
ve

ra
ll

sc
or

e
In

 s
ili

co
 s

co
re

E
. c

ol
i s

co
re

S
. c

er
ev

is
ia

e
sc

or
e

81 754 6 932

81 754 6 932

81 754 6 932

MI and correlation methods Other inference methodsa
Casc.FFL Casc.FFL

Before ND After ND

A C

B

A C

B

M
I &

 c
or

re
la

tio
n

O
th

er

Feed-forward loop
(FFL) contains
feed-forward edge

Cascade (casc.) lacks
feed-forward edge

Feed forward edge

81 754 6 932

Community

10

10

10

10

CLR

ARACNE

MI

Pearson

Spearman

GENIE3

TIGRESS

Inferelator

ANOVerence

Community

Average improvement

Network inference methods

D
at

as
et

s

Relative performance of
inference methods for
cascades (casc.) and
feed-forward loops
(FFL) before and after
network deconvolution

¡ General approach to identify direct
dependencies between objects in a network:
§ Remove spurious edges that are due to indirect effects
§ Decrease over-estimated edge weights
§ Rescale edge weights so that they correspond to

direct dependencies between objects
¡ Other published methods (not covered today):

§ Partial correlations and random matrix theory
§ Graphical models, e.g., Graphical lasso, Bayesian nets,

Markov random fields
§ Causal inference models

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 59

1) Multimode Network Transformations:
§ K-partite and bipartite graphs
§ One-mode network projections/folding
§ Graph contractions

2) K-Nearest Neighbor Graph Construction

3) Network Deconvolution:
§ Direct and and indirect effects in a network
§ Inferring networks by network deconvolution

10/4/18 Jure Leskovec, Stanford CS224W: Analysis of Networks 60

SIGNAL PROCESSING NETWORK SCIENCE

Leveraging the interface between signal processing and network science

SIGNAL PROCESSING NETWORK SCIENCE

Leveraging the interface between signal processing and network science

Signal processing of graphs

SIGNAL PROCESSING NETWORK SCIENCE

Leveraging the interface between signal processing and network science

Graph-theoretical time series analysis

SIGNAL PROCESSING NETWORK SCIENCE

• What it is, where it can be applied

Correlation & functional networks

Correlation & functional networks

One can interpret this matrix as
a weighted adjacency matrix!

Correlation network

Functional networks

One can measure signals from the brain (EEG, fmri) at different regions and
extract a correlation network from the multivariate time series.

This network describes correlations between the activity of different
regions of the brain, and it’s called a functional network.

Correlation & functional networks

Bullmore, Sporns, Nature Reviews Neuroscience 10 (2009)

Correlation & functional networks

Bullmore, Sporns, Nature Reviews Neuroscience 10 (2009)

Correlation & functional networks

Typical study:
unsupervised clustering of diseases

Can we predict which subject have
schizophrenia by looking at brain signals?

Correlation & functional networks

SIGNAL PROCESSING NETWORK SCIENCE

Visibility graphs were defined in computational geometry/computer science as the
backbone graph capturing visibility paths (intervisible locations) in landscapes

• Each node represents a location
• Two locations are connected by a link if they are visible

Visibility graphs were defined in computational geometry/computer science as the
backbone graph capturing visibility paths (intervisible locations) in landscapes

• Each node represents a location
• Two locations are connected by a link if they are visible

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

Univariate

Multivariate

Visibility graphs: A combinatoric encription of time series
(univariate & multivariate)

L. Lacasa, B. Luque, F. Ballesteros, J. Luque, JC Nuño , PNAS 105 (2008)

L. Lacasa, E. Nicosia, V. Latora , Sci. Rep. 5 (2015)

Univariate

Spatial

L. Lacasa, B. Luque, F. Ballesteros, J. Luque, JC Nuño , PNAS 105 (2008)

L. Lacasa, J. Iacovacci, Phys. Rev. E 96 (2017)

Visibility graphs: A combinatoric encription of time series
(univariate & multivariate) and beyond

Natural Visibility Algorithm

Lacasa, Luque, Ballesteros, Luque, Nuño, PNAS 105 (2008)

For a time series of N data:

* each datum is mapped into a node
* two nodes are linked if a visibility criterion holds
in the series

The resulting visibility graph:

* has N ordered nodes
* is connected by a Hamiltonian path
* is invariant under certain transformations in the
series

(Vanessa Silva Msc Thesis)
Example Application:
Clustering of Time Series

• Alternative approach to statistical time series analysis;
• Representing time series as complex networks:

 Mapping concepts;
 Topological measures.

Key question:
• Can simple topological measures of different networks

distinguish different processes of time series?
1

From Time Series to
Complex Networks

Natural Visibility Graph

3

NVG

𝑦𝑐=𝑦 𝑏+(𝑦𝑎− 𝑦𝑏)
(𝑡𝑏− 𝑡𝑐)

𝑡𝑏− 𝑡𝑎
,𝑡𝑎<𝑡𝑐<𝑡𝑏

Horizontal Visibility Graph

4

HVG

𝑦𝑎 , 𝑦𝑏>𝑦𝑐 , 𝑡𝑎<𝑡 𝑐<𝑡𝑏

Quantile Graph

5

QG

Topological Metrics
• There is a vast set of topological metrics of

graphs to study the particular
characteristics of the system.
 Average Degree (k)
 Average Path Length (d)
 Global Clustering Coefficient (C)
 Number of Communities (S)
 Modularity (Q)

6

Time Series Clustering
• Distance-based methods

 Similarity between observations
 e.g. Dynamic Time Warping

• Characteristics-based methods
 Similarity between global characteristics

 e.g. trend, frequency, autocorrelation, Hurst

• Network-based methods
 Similarity between topological measures

 e.g. average degree, number of communities, clustering coefficient

7

Method
•

8

Time Series Models
• White Noise (i.i.d)

• Linear models

 AR(1)

 AR(2)

 ARIMA

 ARFIMA

• Nonlinear models

 SETAR

 HMM

 INAR

 GARCH

 EGARCH

9

Long Memory

Stochastic Trend

Pseudo-Periodic

Smoother

Regimes

States

Conditional
Heterocesdaticity
and Asymmetry

Integer Valued Data

10

	Goal: Clustering of Time Series
	From Time Series to Complex Networks
	Natural Visibility Graph
	Horizontal Visibility Graph
	Quantile Graph
	Topological Metrics
	Time Series Clustering
	Method
	Time Series Models
	Slide 10

