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Network Properties:

how to measure a nhetwork?



Plan: Key Network Properties

* (1) Degree distribution P(k)
* (2) Path Length h
* (3) Clustering coefficient C

* (4) Connected components S
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(1) Degree Distribution

* Degree distribution P(k): probability that
a randomly chosen node has degree k

N, = # nodes with degree k

 Normalized histogram:
P(k) =N,/N - plot
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(2) Paths in a Graph

A path is a sequence of nodes in which
each node is linked to the next one

P,={i, I3, 15, ... ,i,.} oOr

Pn — {(io; il); (i1; iz); (i21 i3); cany (in—ll in);}

* A path can intersect itself
and pass trough the same
edge multiple times

- E.g. ACBDCDEG

- In a directed graph, a path
can only follow the direction
of the “arrow”
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Distance in a Graph

* Distance (shortest path, geodesic)
between a pair of nodes is defined
as the number of edges along the
shortest path connecting the nodes

- |If the two nodes are not connected, the
distance is usually defined as infinite

* In directed graphs paths need to
follow the direction of the arrows

- Consequence: distance is
not symmetric: hg. # h¢g
hac = 1. hep =2
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Network Diameter

* Diameter: The maximum (shortest path)
distance between any pair of nodes in a
graph

 Average path length for a connected
graph (component) or a strongly connected

(component of a) directed graph

— 1 Where h,.j IS the distance from node i to node j
h = Z i Ena IS max number of edges (total number of

ma

2Emax i,j#i node pairs) = n(n-1)/2

- Many times we compute the average only over
the connected pairs of nodes (that is, we ignore
“infinite”length paths)
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(3) Clustering Coefficient

* Clustering coefficient:
- What portion of I's neighbors are connected?
- Node i with degree k;
- C.€/0,1]

C.= 2 € where e, is the number of edges
: ki (ki_ 1) between the neighbors of node |

K M

G =1 Ci =1/2 C; =0

 Average clustering coefficient: CzﬁZ C.
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Clustering Coefficient

* Clustering coefficient:
- What portion of I's neighbors are connected?
- Node i with degree k;

2e. where e, is the number of edges

— Ci: : . .
between the neighbors of node i
ki (ki_ 1) J

k=2, es=1, C,=2/2=1
k=4, e =2, C,=4/12=1/3

Avg. Clustering: C = 0.33

Pedro Ribeiro - Measuring Networks and Random Graph Models



(4) Connectivity

* Size of the largest connected component

- Largest set where any two vertices can be
joined by a path

- Largest component = Giant component

How to find connected components:

e Start from random node and perform
Breadth First Search (BFS)

D F  Label the nodes BFS visited
I e If all nodes are visited, the network is connected
® H

 Otherwise find an unvisited node and repeat BFS
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Summary: Key Network Properties

* (1) Degree distribution P(k)
* (2) Path Length h
* (3) Clustering coefficient C

* (4) Connected components S
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Measuring these properties

in a Real World Graph




MSN Messenger

- MSN Messenger
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Spatial Network: Geography
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Communication =» Connections

Network: 180M people, 1.3B edges
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Messaging as multigraph

Messaging as an
undirected graph

Edge (u,v) if users uand v
_ exchanged at least 1 msg
- Contact - Conversation N=180 million people

E=1.3 billion edges
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MSN: (1) Degree Distribution
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MSN: Log-Log Degree Distribution

Count, P(k)*n

o P o [ o oho oo SR
III|I IIII !IIIIIIE II|I II|I II|I L

LY

I IIIIIII| | IIIIIII| I IIIIIII| I T T T TTH

r Note: We plotted the -
same data as on the™ 7
6 @@ previous slide, just

the axes are now
logarithmic.

n

W

b 1

R

% 3
0 | | '
O ] L 1 11111 1 L 1 11111 l L 1 11

10" 10" 102 10° 10%
Degree, k

Pedro Ribeiro - Measuring Networks and Random Graph Models



. Steps | #Nodes

MSN: (2) Diameter : 1

1 10

2 78
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MSN: (3) Clustering Coefficient
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MSN: (4) Connected Components
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MSN: Key Network Properties

» (1) Degree distribution R Ay

* (2) Path Length 6.6

» (3) Clustering coefficient 0.11

. giant
(4) Connected components component

Are these values “expected”?
Are they “surprising”?

To answer this we need a null-model!
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Another Example: PPl Network

a. Undirected network

101 i N=2,018 proteins as nodes
= “w E=2,930 binding interactions as links.
By, 1 - hubs
of il
g SR b. Degree distribution:
k Skewed. Average degree <k>=2.90

c. Diameter:

Avg. path length = 5.8

d. Clustering:

Avg. clustering =0.12
Connectivity: 185 components

the largest component 1,647
nodes (81% of nodes)

c' 0.25

0.2
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Intermezzo: Network Datasets

The KONECT Project

Jérome Kunegis

University of Namur b e G
rE Pl Bl - ;
n = Size EN » Fruchterman-Reingold graph drawing il -4 ' \E‘ :
= Volume EN s Degree distribution el 10
m = Unique edge count e e Cumulative degree distribution
| = Loop count ERN e Lorenz curve E.
— Wed t = e Spectral distribution of the adjacency matrix -
o s Spectral distribution of the normalized adjacer . g
z = Claw count EN « Spectral distribution of the Laplacian £ = -
X = Cross count EN * Spectral graph drawing based on the adjacenc ;
t = Triangle count EN e Spectral graph drawing based on the Laplaciar ©* w1
q = Square count = * Spectral graph drawing_based on the normaliz - | 7
T e Degree assortativity I o 1
T4 = 4-Tour count cERn e Zipf plot glu:[
dmax = Maximum degree EN » Hop distribution £ e b
e daacis c R+ s Double Laplacian graph drawing ’ b
Average degree * Delaunay graph drawing . B
p = Fill €10,1] .« njoutdegree scatter plot o W A
m = Average edge multiplicity € R+ * ltem rating_evolution
N = Size of LCC cen . E{Idae weithmfﬁultiDIitciév dis;ritbution Plots
i e e Clustering coefficient distribution
Ns = Size of LSCC EN « Average neighbor degree distribution In/outdegree scatter plot
6 = Diameter cen e Temporal distribution o
0.5 = 50-Percentile effective diameter € R+ * Temporal hop distribution o | &
B i i ) . s Diameter/density evolution 1= HM SR ‘ \H ;
0.9 = 90-Percentile effective diameter eER e Signed temporal distribution e ——— b L )
6m = Median distance ERN e Rating_class evolution =3 : . s § oy e 14
- f o e SynGraphy 3 - %o g Edge weight/multiplicity distribution
Om w en » Inter-event distribution = "f‘ 7 - . . ]
G = Gini coefficient €1[0,1] e Node-level inter-event distribution ST T e e e T H 1 o 1

P = Balanced inequality ratio € [0,1)] Lorenz curve
Her = Relative edge distribution entropy € [0, 1] i

http://lkonect.cc/
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Intermezzo: Network Datasets

sl Ty mhvia: interactive visual graph mining anc

Ell Amal
[||3[| Network Data Statistics
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— Int @ © big-CE-C> 15K | 246K | 375 32 034 | 7™ 442 14K 0.21 029 79 |43 3IMB & Download
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W L= m' © bio-CE-G 924 | 3K 151 7 018 | 12K 2 684 0.61 013 10 |8 30KB & Download
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Erdos-Renyi

Random Graph Model




Simplest Model of Graphs

ol - ON THE EVOLUTION OF RANDOM GRAPH!
* Erdaos-nenvi
P. ERDOS and A. RENYI

Dedicated rofessor P. Turdn at

his 50ch birikday.

Random Gra P hs T

nm ] { Our aim is to study the probable structure of a random graph I,
[ E rd O S - Re n I 6 O ] which has »n given labelled vertices Py, I, ..., P, and N edges; we suppose
y ) that these N edges are chosen at random among the ‘?:' possible edges,

» G, ,: undirected graph on n nodes and each
(u,v) appears i.i.d. with probability p

* G, »: undirected graph with n nodes and m
uniformly at random picked edges

What kind of networks do

such models produce?
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Random Graph Model

 n and p do not uniquely determine the graph!
- The graph is a result of a random process

 We can have many different realizations given
the same n and p

S IS
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Properties of G,

* Degree distribution P(k)
» Clustering coefficient C
» Path Length h
 Connected components S

What are the values of

these properties for G,?
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.+ degree distribution

n,

 Fact: Degree Distribution of G, , is binomial

* Let P(k) denote the fraction of nodes with degree k

g :
1 ; e
n k n—1-k g
P(k) = p (1-p) =5
k o : R
- Probability of o [ Y
Select k nodes F'ropability of missing the rest of 0 10 Kk “
out of n-1 having k edges the n-7-k edges
1/2
Mean, variance of a binomial distribution UT — 1- P 1 ~ 1
]; = p(n—-1) k p (n-1) (n-1)"
o p n By the law of large numbers, as the network size
5 increases, the distribution becomes increasingly
g = p(l - P)(” - 1) narrow—we are increasingly confident that the degree

of a node is in the vicinity of k.
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Intermezzo: NetLogo

Home NetLogo is a multi-agent programmable modeling environment. It is used by many
Download hundreds of thousands of students, teachers, and researchers worldwide. It also

Help powers HubNet participatory simulations. It is authored by Uri Wilensky and developed
Resources at the CCL. You can download it free of charge. You can also try it online through
Extensions NetLogo Web.

Visualize some of the properties described in the lectures

https://ccl.northwestern.edu/netlogo/
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NetLogo: G, A and degree dist.

normal speed W) vi
view updates —_—
g ' + |":h-|: Button vI I r D - : I Settings...
Edit Delete Add ticks: 1 continuous | ¥

|| GC size || av. deg

::aﬂ"a;a’éﬁél
redo layout
71 / youl =
w0 layout options
o -
L]
(=]
=
G
$
0
0 # neighbors 26
degree dist (log-log)
1.96 .
m -
]
=]
=
G
H
™
D -
0 logldegree) 1.43

)

' « ErdosRenyiDegDist.nlogo
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G, : clustering coefficient

n,

e Remember: C.= 2e, where e. is the number of edges
k. (ki— 1) between the neighbors of node i

- Edges in G, , appear i.i.d. with prob. p

: ki(ki_l)
¢ S0, expected E[e;] is =P =
each pair is connected _number of distinpt pairs of
with prob. p neighbors of node i of degree k.
ki(ki—1) kK Kk
» Therefore E[C] = EX05 /= = ~ D
[ci k(k—-1) P n=1 n

Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree k (that is we
set p = k - 1/n), then C decreases with the graph size n.
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Properties of G,

* Degree distribution P(k)=(”;Jp‘*(l—p)”“"
» Clustering coefficient CZpN%
» Path Length next!

 Connected components

What are the values of

these properties for G,?
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Definition: expansion
 Graph G(V,E) has expansion a: if VSCV:
# of edges leaving S=>a-min(|S|,|V\S|)
* Or equivalently:

#edges leaving S

2 =min

sy min(|.S,|PAST)
Vis

Pedro Ribeiro - Measuring Networks and Random Graph Models



Expansion: measures robustness

* Expansion is measure of robustness:
- to disconnect L nodes, we need to cut=>a-Ledges

* Low expansion M
» High Expansion @

e Social Networks:
- “communities”
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Expansion: G

np

* Fact: In a graph of n nodes with expansion a for all
pairs of nodes there is a path of length O((log n)/a).

 Random graph G, .:
For log n > np > ¢, diam(G,, ;) = O(log n /log (np))

- random graphs have good expansion, so it takes a
logarithmic number of steps for BFS to visit all nodes

J

S nodes S edges

S’ nodes a-S’ edges
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G, . average shortest path

n,

Erdos-Renyi Random Graphs can grow very
large but nodes will be just a few hops apart

- o

o™

15
|
0

average shortest path
5 10
I |

| | | I [
200000 400000 600000 800000 1000000

num nodes Here n - p =constant
That is, avg deg k is const

O — ODOOOODOGOGOOQO
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Properties of G,

* Degree distribution P(k)=(”;Jp‘*(l—p)”“"
» Clustering coefficient CZpN%
* Path Length O(log n)
 Connected components next!

What are the values of

these properties for G,?
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“Evolution” of a random graph

» Graph structure of G, ,as p changes

‘ Avg deg = 1 |
p=| | | | | |
1/(n-1) c/(n-1) log(n)/(n-1) 2*log(n)/(n-1)
0 Giant component  Avg. deg const. Fewer isolated  No isolated nodes.
Empty appears Lots[?{l;;zus!ated nodes. Complete
graph graph

* Emergence of a giant component
avg. degree k=2E/n or p=k/(n-1)

- k=1-¢: all components are of size Q(log n)

- k=1+¢: 1 component of size Q(n), others have size Q(log n)
 Each node has at least one edge in expectation
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Simulation Experiment

Fraction of nodes in largest CC

Fraction of nodes in the
largest component

pk(n-1)

* G,,, Nn=10s, k=p(n-1) =0.5... 3
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NetlLogo: G,  and giant component

setup num-nodes 294

on =
R Ehea % 4 Tﬂﬁ layout?

Giant component ...
280

redo layout o

Growth of the giant component
1 " o
"
£ .
1] =
g |
B |
o /
(] J'
s |
o |
- .
c i
e |
3] f|
&
L |J
Il
8] Connections per node 14.7

) = GiantComponent.nlogo
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G, , - Erdos-Renyi Model

“When asked why are numbers
beautiful?]

It's like asking why is Ludwig van
Beethoven’s Ninth Symphony beautiful. If
| you don't see why, someone can't tell you.
| | know numbers are beautiful. If they
aren't beautiful, nothing is.”

— Paul Erdos

* G, , Is acool model!

But let’'s compare it to real world networks
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MSN vs Gn’ >

n=180M

MSN G

n,p

Prafr| 15)
0.2
0.15 I o
0.1 i
0.05
12345676 6101112131415

e Avg. Clustering coef. 0.11 kin

C=810°

* Degree distribution

* Path Length 6.6 O(log n) v,

h=8.2

» Largest Conn. Comp.  99% oo $5F°

k~14
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Real Networks vs G, |

* Are real networks like random graphs?
Average Path Length @

Giant Connected Component
Degree Distribution (%
Clustering Coefficient €

* Problems with the random networks model:

Degree distribution differs from that of real networks
Giant component in most real network does NOT

 Most important: Are real networks random?

emerge through a phase transition

- The answer is simply: NO!
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Real Networks vs G, |

 If G, , Is wrong, why did we spend time on it?

- It is the reference model

- It will help us calculate many quantities, that can
then be compared to the real data

- It will help us understand to what degree is a
particular property the result of some random
process

So, while G, , is “WRONG”, it will turn out
to be extremely USEFUL!
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Intermezzo: Configuration Model

* Goal: Generate a random graph with a
given degree sequence k;, k,, ... kK

 Configuration Model:

—t 1 "
>

X o e T
\/Bi' 00— AT | c D £ s

Randomly pair up
“mini”-nodes

Nodes with spokes Resulting graph

e Useful as a “null” model of networks:

- We can compare the real network G and a “random
G’ which has the same degree sequence as G

144
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The Small World

Random Graph Model

Can we have high clustering while also having short paths?



The Small World Experiment

 What is the typical shortest path
length between any two people?

- Experiment on the global friendship
network

« Can’'t measure, need to probe explicitly

« Small-world experiment The Small-World Problem
[Milgram’67] [Travers and Milgram '69] An Experimental Study of the
- Picked 296 people in Omaha, Nebraska T
and Wichita, Kansas Sireacd Uokredly

AND
STANLEY MILGRAM

- Ask them to get a letter to a stock-broker i cuivesis of Now vor
iIn Boston by passing it through friends

« How many steps did it take?
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The Small World Experiment

* 64 chains completed:
(i.e., 64 letters reached the target) 20

- It took 6.2 steps on the

average, thus
“6 degrees of separation”

[Travers and Milgram '69]

L4 ]

NUMBER OF CHAINS
o

e Further observations:

- People who owned stock
had shorter paths to the
stockbroker than random
people: 5.4 vs. 6.7

- People from the Boston
area have even closer paths: 4.4
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6 degrees: Should we be surprised?

 Assume each human is connected to 100 other people

Then:

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people s
Step 3: reach 100*100*100 = 1M people

Step 4: reach 100*100*100*100 = 100M people

In 5 steps we can reach 10 billion people!

What's wrong here? We ignore clustering!

- Not all edges point to new people

« 92% of FB friendships happen
through a friend-of-a-friend
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Clustering Implies Edge Locallty

MSN network has 7 orders of
magnitude larger clustering
than the corresponding G, ;!

Other Examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61

Electrical power grid: N = 4,941 nodes, k = 2.67

Network of neurons: N = 282 nodes, k = 14

Network Nactual Nrandom  Cactual Crandom
Film actors 3.65 299 0.79 0.00027
Power Grid 18.70 12.40 | 0.080 0.005
C. elegans 2.65 2.25| 0.28 0.05

h ... Average shortest path length
C ... Average clustering coefficient
.. real network

‘actual”
“random”

.. random graph with same avg. degree
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The “Controversy”

» Conseqgquence of expansion:
- Short paths: O(log n)

* This is the smallest diameter we can
get if we have a constant degree.

- But clustering is low!

Low diameter

e However, networks Low clustering coefficient
have “local” structure:

- Triadic closure:

* Friend of a friend is my friend

- High clustering but
diameter is also high

High clustering coefficient
High diameter

« How can we have both?
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Small-World: How?

* Could a network with high clustering also
be “small world” (log n diameter)?

- How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

- Clustering implies edge “locality”
- Randomness enables “shortcuts”

Pedro Ribeiro - Measuring Networks and Random Graph Models



Solution: The Small-World Model

Small-World Model Collective dynamics of
[Watts-Strogatz ‘98] ‘small-world’ networks
Duncan J. Watts* & Steven H. Strogatz
Department o f Theoretical and Applied Mechanics, Kimball Hall,
Two components to the model: Cormek Universiy, Iihacs, N Esek: 146, TSA

« (1) Start with a low-dimensional regular lattice
- (In our case we are using a ring as a lattice)
- Has high clustering coefficient

* Now introduce randomness (“shortcuts”)
e (2) Rewire:

- Add/remove edges to create
shortcuts to join remote parts
of the lattice

- For each edge with prob. p move
the other end to a random node
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The Small World Model

REGULAR HETWIORK SMALL WORLD HETWORK RANHDOM HETLUJORK

P=0 s INCREASING RANDOMHESS ¥ P=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 1 r
sapill A log N k
0g N

Rewiring allows us to “interpolate” between
a regular lattice and a random graph
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The Small World Model

| = Al R s o= | R AU Y —— Intuition: It takes a
e ™ lot of randomness to
- T ruin the clustering,
O but a very small
PN i —— mean vertex-vertex distance amount to create
—l e ——— clustering coefficient shortcuts.

N

Parameter region of high \
clustering and low path length

Clustering Coefficient, C =

(scaled) Average Path Length

0 1 IIIIII| | | IIIII]| - |
0.001 0.01 0.1 ]

Prob. of rewiring, p
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NetLogo: G, A and Small-World

initial setup

rewirg-once

vary rewiring prob. from 0.0 to 1.0

rewiring-probability 0.10
num-nodes 100
average-path-length | | clust-coeff
5.78 0.4223
do-layout o
Clustering coefficient a...
M cc
M av-path

= malized cc and avf —

4] rewiring-probability 1

Pedro Ribeiro - Measuring Networks and Random Graph Models

|
i

SmallWorldWS.nlogo



Small-World: Summary

* Could a network with high clustering be at
the same time a “small world”?

- Yes! You don’'t need more than a few random links

* The Watts-Strogatz Model:

- Provides insight on the interplay between clustering
and being “small-world”

- Captures the structure of many realistic networks
- Accounts for the high clustering of real networks @
- Does not lead to the correct degree distribution @

We usually call small world to networks which exhibit:

* Short avg. path length (log n)
* High clustering coefficient
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Power Laws and

Degree Distributions




Realistic Degree Distribution

Which interesting graph
properties do we observe
that need explaining?

« Small-world model:
- Diameter v)
- Clustering coefficient @

« What about node degree distribution?
- What fraction of nodes has degree k (as a function of k)?

- Observation in real networks:
very often a power law: P(k)ock™“

- Small-World is similar to G, ,: pronounced peak at k
does not result in realistic distributions...
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P(k)

Realistic Degree Distribution

Expected based on G,

Found in data
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Example: Flickr

Probability: p(k) = P(X =k)

0.7
0.6
0.5
0.4
0.3
0.2

0.1 |
() m—l———ke e ] | |

Plot: fraction of nodes
with degree k: -
[{uld, =k}

k) =
p(k) N _

0 500 1000 15002000 2500 3000 3500 4000

Degree, k

Flickr social
network
n= 584,207,
m=3,555,115

[Leskovec et al. KDD ‘08]
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Example: Flickr

0
10 _ | F1|||[|| | T 1T T i _i;s T I T T 177170
R P(k) o k275 menl T
10! = .
Q'-I 4 L 1‘9 -
” 10 o .
i *, Slope &
= 103 L N
Q. N \ i
_;:3; 4T Flickr social !
E 10 i network 5
o | n=584,207, _
S 107 ~3.555115 .
ﬂi: 10 B m=J, :| :
10" 10! 10

Same plot, but now on log-log scale
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Intermezzo: exponential vs power-law

 How to distinguish:

- Exponential: P(k)cAe ™"
Vs
- Power-Law: P(k)ock “

0.4

0.35 |

0.3

0.25
0.2

0.15 |

0.1
0.05 |
0 . !

2 4 6 8 10 12 14 16 18 20

m plot [1:20] 2*exp(-2*x) It rgb "#0000aa" Iw 2, 0.4*x**-3 It rgb "#aa0000" lw 2
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Intermezzo: exponential vs power-law

* Exponential: p(k)ucie

VS
[ ] —a
 Power-Law: P(k)ck
1 T T T T T T L 3
2 -2 ¥ —_—
- g — Ify = f(x) = x, then
log(y) = -alog(x)
0.0001 ,, §
« .
110 On a log-log axis
o a power law
" looks like
1x10°10 ; a straight line
L1012 E g of slope -a .
1x10°14 Same plot, but now on log-log scale ;
1x10°16 :
1x10-18 : : : —
1 10
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Intermezzo: exponential vs power-law

* Exponential: p(k)ucie

VS
- Power-Law: P(k)ck “

e T

0.16

0.14
Above a certain x value,

the power law is
always higher than
A the exponential

0.12

0.1

0.08

0.06

0.04

0.02

18 20

m plot [4:20] 1.5**-x, x**-1.5, x**-2
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Intermezzo: power-law “slope”

 Power-Law: P(k)x<k “

0.1 X¥*+-2.5 ]
X3 e ]

0.01 -

0.001 ]
0.0001 _ lower alpha (o)

will mean less

1x10°5 pronounced slope

1x10°6
1x10°7 4

1108 .

1x10° S E— S —
1 10 100 1000

m plot [1:1000] x**-2 Iw 2, x**-2.5 lw 2, x**-3 Iw 2
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Example: Internet Autonomous Systems

First observed in Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Domain 2

o 10000

™ Domain 3 *371108.out"
/ exp(7.68585) * x ** ( -2.15632 )

@~ - ] Host
11 LAN ® Router
LD ) Domain 1 e R S s
' 1 10 100

Internet domain topology

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos Petros Faloutsos Christos Faloutsos *
U.C. Riverside U. of Toronto Carnegie Mellon Univ.
Dept. of Comp. Science Dept. of Comp. Science Dept. of Comp. Science
michalis@cs.ucr.edu pfal@cs.toronto.edu christos@cs.cmu.edun
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Example: World Wide Web

number of pages

[Broder et al., 2000]

In-degree (May 99, Oct 99> distr. Out-degree (May 99, Oct 99) distr.

le+18 T I 1 le+10 I I I
1e+089 | In-degree (May 99) 0B o 1e+89 |
1e+88 gr In-degree (Oct 99) + < . le+B8 [
1]
le+@? gt- le+87 -

m
le+86 L 1e+86
190000 S 100000 -
10600 E 10000 |
1006 § 1000 |
186 168
16 16 -
1 1 .

1

18

1 18 188 10886

188 166666 out-degree

in-degree

Graph structure in the Web

Andrei Broder®, Ravi Kumar®*, Farzin Maghoul *, Prabhakar Raghavan ®,
Sridhar Rajagopalan b Raymie Stata “, Andrew Tomkins b Janet Wiener©

“ AltaVista Company, San Mateo, CA, USA
Y IBM Almaden Research Center, San Jose, CA, USA
¢ Compag Svstems Research Center, Pale Alto, CA, USA
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Other Examples

P(k)

[Barabasi-Albert, 1999]

Actor collaborations

Emergence of Scaling in
Random Networks

Albert-Laszloé Barabasi* and Réka Albert

.
N
-\
L ]
‘!\
o \_\.
.\\i\
-\\
i ..J...II. .......lz. Lasuul l‘:_ﬁ.m
10° 10° 10° 10° 10
K
Web graph

10

1
10 \
* kt
P
A\

a4 L

Power-grid
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Interpreting Power-Laws

Bell Curve - Power Law Distribution
® ~ - | 1
E : ._E. :- Very many nodes
~< N Most nodes have = % with only a few links
= *'. ./ the same number of links £ || 4
5 | 7 2 4y
5 »ad g |d\
LI . E
= No highly B4 A few hubs with
L ! : ’ runnr‘grrﬂ modes B U large number of links
< 4 O |e o
[ =
B L : P —B ‘l- I L]
g 2 > rF Arvmie '
z. L S — - r A . in b AN P L . v
Number of links (k) Number of links (k)
. -
- . . N
. . (7 :H‘ S ra
- - 3 e - ".-
— L =
\ ' A4 ( N ST
- 3 - 4 k"". 3 s . l'." &
. . - ' . . . f V)
. * . W
= ~\X y 2%
4 .
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Power-Law Degree Exponent

* Power-law degree exponent is typically:

2<a<3

- %
* Examples VRN Iy
- Web graph: bt g
e a,, = 2.1, a,,, = 2.4 [Broder et al. 00] o _gjjj{,'
- Autonomous systems: | Zi
« a = 2.4 [Faloutsos 3, 99] o o
- Actor-collaborations: S \ L
e a=2.3 [Barabasi-AIbert OO] gi ] Fi o
" " g 1 ém-'
- Citations to papers: | \
 a = 3 [Redner 98] ey B

|
- Online social networks: 3,};‘ 3} :

e a = 2 [Leskovec et al. 07]
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Pix)

Pix)

Pix)

Power Laws are Everywhere
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Power-Law Distributions in
Empirical Data*

Aaron Clausetf
Cosma Rohilla Shalizi*
M. E. J. Newman®

[Clauset, Shalizi, Newman, 2009]
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Power Laws are Everywhere
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Power-Law Distributions in
Empirical Data*

Aaron Clausetf
Cosma Rohilla Shalizi*
M. E. J. Newman®

[Clauset, Shalizi, Newman, 2009]
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Not everyone likes Power Laws ®
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Scale Free Networks

 Networks with a power-law tail in their
degree distribution are often called

3

“scale-free networks”

e Where does the term scale-free com from?

- Scale invariance: there is no characteristic scale

 means laws do not change if scales of length, energy,
or other variables, are multiplied by a common factor

- Scale free function: f(Ax) = C(A) f(x) « f(x) < depends

e Power-law: f(x) = ax™®
f(Ax) = a(Ax)* =A% ax?) = A%f(x) « f(x)

Log() or Exp() are not scale free
f(Ax) = log(Ax) = log(A) + log(x) = log(A) + f(x)
f(Ax) = exp(Ax) = exp(x)* = f(x)’
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Random vs Scale Free

Random network
(Erdos-Renyi random graph)

Scale-free (power-law) network

. Degree

. distribution is

_ \ Power-law
Degree distribution is Binomial T —

Pedro Ribeiro - Measuring Networks and Random Graph Models



Preferential Attachment

Model




Rich Get Richer

* New nodes are more likely to link to nodes that
already have high degree

e Herbert Simon’s result:

- Power-laws arise from “Rich get richer” e T 4, SN0
(cumulative advantage)

 Examples:
= - . / Networks of Scientific Papers
— Citations [de Solla Price ‘65]: New -
C itati O n S to a pa pe r a re p ro po rti O n a I to the nature of the scientific rescarch front.

Derek J. de Solla Price

the number it already has

 Herding: If a lot of people cite a paper, then it must be good,
and therefore | should cite it too

- Sociology: Matthew effect (http:/en.wikipedia.org/wiki/Matthew_effect)

* “For whoever has will be given more, and they will have an abundance.
Whoever does not have, even what they have will be taken from them.”

 Eminent scientists often get more credit than a comparatively unknown
researcher, even if their work is similar
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Model: Preferential Attachment

* Preferential attachment: Emergence of Scaling in

Random Networks

[Barabasi-Albert '99] (Barabasi-Albert model) s b anise aser
- Nodes arrive in order 1,2,...,n
- At step J, let d; be the degree of a previous node i

- A new node j arrives and creates m out-links

- Probability of j linking to a previous node i is
proportional to degree d; of node i

P(j—i)=

Zd
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Results for Simple Model

* \We analyze the following simple model: :’dl

- Nodes arrive in order 1,2,3, ..., n ‘\.X
o

- When node j is created it makes a
single out-link to an earlier node I chosen:

« 1) With prob. p, j links to I chosen uniformly at
random (from among all earlier nodes)

e 2) With prob. 1 — p, node j chooses i uniformly at
random & links to a random node v that i points to

- This is same as saying: With prob. 1 — p, node j links to
node v with prob. proportional to d, (the in-degree of v)

 OQur graph is directed: every node has out-degree 1
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Results for Simple Model

 Claim: The described model generates
networks where the fraction of nodes
with in-degree k scales as:

(14
Pd =k)ock ¢

where q=1-p

So we get power-law 1

degree distribution ¢y — 14
with exponent: 1 _ p

The model gives a power-law
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Preferential Attachment: The Good

* Preferential attachment gives
power-law in-degrees!

* Intuitively reasonable process

 Can tune model parameter p to get the
observed exponent

- On the web, P[node has in-degree k] ~ k**
- 2.1 =1+1/(1-p) » p~0.1

p=0 - P(d=k) ~ k? p=0.5 - P(d = k)~ k?
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Preferential Attachment: The Bad

* Preferential attachment is not so good at
predicting network structure

- Age-degree correlation
 Node degree is proportional to its age
* Possible Solution: Node fitness (virtual degree)

- Links among high degree nodes:

* On the web nodes sometimes avoid linking to each
other

 Further questions:

- What is a reasonable model for how people sample
network nodes and link to them?
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Origins of Preferential Attachment
* Link Selection Model: perhaps the

simplest example of a local or random NEW NODE
mechanism capable of generating
preferential attachment

- Growth: At each time step we add a new *—@

node to the network &
- Link selection: We select a link at random
and connect the new node to one of the @
nodes at the two ends of the selected link
® O
* This simple mechanism generates o

preferential attachment

- Why? Because nodes are picked with probability
proportional to their number of edges
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Origins of Preferential Attachment
 Copying Model:

— (a) Random Connection: with prob. p the new node
links to random node v
- (b) Copying: With prob. 1 — p randomly choose an outgoing

link of node v and connect the new node to the selected
link's target

« The new node “copies” one of the links of an earlier node
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Origins of Preferential Attachment

* Analysis of the copying model:
- (@) the probability of selecting a node is 1/N

- (b) is equivalent to selecting a node linked to a
randomly selected link. The probability of selecting a
degree-k node through the copying process of step (b)
IS k/2E for undirected networks

- Again, the likelihood that the new node will connect to
a degree-k node follows preferential attachment

 Examples:
- Social networks: Copy your friend’s friends.
- Citation Networks: Copy references from papers we read
- Protein interaction networks: gene duplication

Pedro Ribeiro - Measuring Networks and Random Graph Models



Many models lead to power-laws

Copying mechanism (directed network)
- Select a node and an edge of this node
- Attach to the endpoint of this edge

Walking on a network (directed network)

- The new node connects to a node, then to every first,
second, ... neighbor of this node

Attaching to edges
- Select an edge and attach to both endpoints of this edge

Node duplication
- Duplicate a node with all its edges
- Randomly prune edges of new node

Pedro Ribeiro - Measuring Networks and Random Graph Models



Ultra
small
world

- |
||
M

Small

Distances in Preferential Attachment

const

loglogn
log(a-1)

log n
loglogn

world

logn

Avg. path
length

o=2

2<a<3

o>3

Degree
exponent

Size of the biggest hub is of order O(N). Most nodes can
be connected within two steps, thus the average path
length will be independent of the network size n.

The avg. path length increases slower than logarithmically
with n. In G,, all nodes have comparable degree, thus
most paths will have comparable length. In a scale-free
network vast majority of the paths go through the few high
degree hubs, reducing the distances between nodes.

Some models produce a = 3. This was first derived by
Bollobas et al. for the network diameter in the context of a
dynamical model, but it holds for the average path length
as well.

The second moment of the distribution is finite, thus in
many ways the network behaves as a random network.
Hence the average path length follows the result that we
derived for the random network model earlier.
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Scale-Free Networks: Overview

metabolic collaboration

internet
web web

J' actor 1 citation
| Ry !

>

(k?) finite

Average (k) finite

~ Utasmalwordbehavior  Smallworid

The scale-free behavior is Behaves like a
relevant random network
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Scale-Free Networks: Ingredients

* Nodes appear over time (growth)

* Nodes prefer to attach to nodes with many
connections (preferential attachment,
cumulative advantage)

A
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NetLogo: Preferential Attachment

# of nodes

0 0
setup TOPF plot? EUPF layo... || 01

go-once 90 | prob-pref 0.90
redo lay..o m i

Degree Distribution

n
rJ
=

# of nodes

[

degree 39

Degree Distribution (log-loqg)

=

ha
o ogl# of nodes 5

0 logldegree) ~  1.97

) = RAndPrefAttachment.nlogo
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Fitting power-law

distributions




Simple Binning

» Most common and not very accurate method:

- Bin the different values of x and create a frequency
histogram

F'y
N
A In(x) is the natural
In(# of times Qo logarithm of x,
x occurred) e but any other base of
A the logarithm will give
) the same exponent

\'{Q of o because
"o l0go(x) = In(x)/In(10)

In(x)

X can represent various quantities, the indegree of a node, the magnitude of
an earthquake, the frequency of a word in text
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Example on an artificially generated data set

e Take 1 million random numbers from a
distribution with a = 2.5

* Can be generated using the so-called
“transformation method”

e Generate random numbers r on the unit
Interval 0 < r <1

* Then x = (1-r)""*" is a random power
law distributed real number in the range
l = X<
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Linear scale plot of simple bin. of the data

* Number of times 1 or 3843 or 99723 occurred
 Power-law relationship not as apparent

* Only makes sense to look at smallest bins

frequency
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5
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=
L ol
=
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Log-log scale plot of simple bin. of the

 Same bins, but plotted on a log-log scale

frequency

106E’ O - AL - T = - - ---k - T = = - ==
: here we have tens of thousands of observations
ofl when x <10
10*L .
[~ .
0L ‘\
\ Noise in the tail:
ol Here we have 0, 1 or 2 observations
g of values of x when x > 500
10|
10°¢ -
10° 10'

integer value
Actually don' t see all the zero

values because log(0) = o
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Log-log scale plot of simple bin. of the data

* Fitting a straight line to it via least squares regression
will give values of the exponent a that are too low

frequency

10° 10 10° 10
integer value
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What goes wrong with simple binning

* Noise in the tail skews the regression result

have few bins
here

- ] data
a = 1.6 fit

have many more bins here
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First solution: logarithmic binning

* Bin data into exponentially wider bins:
-1,2,4, 8,10, 32, ...
* Normalize by the width of the bin

10°

) i e data
o =241 fit

10° |

evenly
spaced « T
datapoints 10° |

_ less noise
in the tail
of the
distribution

10 |

107 |

10"

10° 10' 10° 10° 10°

« Disadvantage: binning smoothes out data but also loses information
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Second solution: cumulative binning

e No loss of information

- No need to bin, has value at each observed value
of x

e But now have cumulative distribution
- I.e. how many of the values of x are at least X

 The cumulative probability of a power law
probability distribution is also a power law but
with an exponent a - 1

_ C o
fcxa= x(al)
|-
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Fitting via regression to the cumulative distribution

* Fitted exponent (2.43) much closer to actual (2.5)

10 3 = % BT,
5 - e data
" » o-1 = 1.43 fit
5 L
10 - B
>< e L
A
o 10°L
= -
E
» 10°L
> :
Q -
o
S 90k
D' =
D
=
10" L
100:-:) 5 = = 4
10 10 10 10 10
X
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Where to start fitting?

* some data exhibit a power law
only in the tail

» after binning or taking the cumulative
distribution you can fit to the tail

e SO nheed to select an x,,,, the value of x
where you think the power-law starts

e certainly x,,,, needs to be greater than 0
because x % is infinite at x = 0
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Example of power-law In tail

* Distribution of citations to papers

 Power-law is evident only in the tall
(X,.;, > 100 citations)

Xmin

O

10
Power laws, Pareto distributions and Zipf’s law

4
10 M.EJ. NEWMAN#*

2
10

0 B -
10 0 2 4

10 10 10
citations
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Maximum likelihood fitting - best

* You have to be sure you have a power-law
distribution (this will just give you an exponent but
not a goodness of fit)

0{=1+n-iln
_i=1

« X; are all your data points, and you have n of them

1
X;

xmin

* for our data set we get a = 2.503 - pretty close!
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Some exponents for real world data

Xmin exponent o
frequency of use of words 1 2.20
number of citations to papers 100 3.04
number of hits on web sites 1 2.40
copies of books sold in the US 2 000 000 3.51
telephone calls received 10 2.22
magnitude of earthquakes 3.8 3.04
diameter of moon craters 0.01 3.14
intensity of solar flares 200 1.83
intensity of wars 3 1.80
net worth of Americans $600m 2.09
frequency of family names 10 000 1.94
population of US cities 40 000 2.30
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Many real world networks are power-law

exponent o
(infout degree)

film actors 2.3
telephone call graph 2.1
email networks 1.5/2.0
sexual contacts 3.2
WWW 2.3/2.7
internet 2.5
peer-to-peer 2.1
metabolic network 2.2
protein interactions 2.4
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Example on a real data set

* Number of AOL visitors to different

websites back in 1997

3000 . . : , : 10— . . ;
- AOL users to sites
2500} - it
g2 ' g10° |
3 |
'E15nn; E :
: | ol
= 1000 2
10'|
500 1 ...
100 3 - a
500 1000 1500 2000 2500 3000 1;“ . .“l]! I 1;]4
number of users number of users
simple binning on a linear simple binning on a log-log scale

scale
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Example on a real data set

e Direct fitis too shallow: a=1.17 ...

AOL users to sites

number of sites
=
[ — ]

2
10
number of users
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Example on a real data set

 Binning logarithmically helps
» Select exponentially wider bins
-1,2,4,8, 16, 32, ....

0 T T

10 & 'AOLusersl:tosites‘ |
: Y
\.\ SLOPE = -2.07
2
10° | .
e
7.0 | e
"510 B %
: \.\
T
210 ’\\
=
3
10 \.\
. o~ :
=10 \.
10— : T ' i v
10 10 "

number of users
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Example on a real data set

* Fitting the cumulative distribution

- Shows perhaps 2 separate power-law regimes that
were obscured by the exponential binning

- Power-law tail may be closer to 2.4

® usage data

g —— Pareto CDF with k = 1.16 {a = 2.16)
% 10" & —— Pareto CDF with k = 1.07 (a = 2.07)
=
=
n
-,
g
£
F10°}
5
:
S
=
2107}
=
E 1 [ ]
" " 2 s

10 10 10

¥ (number of visitors)
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Not everything is a power law!

« Number of sightings of 591 bird species in the
North American Bird survey in 2003

1000 —

cumulative 100 =

distribution Power laws, Pareto distributions and Zipf’s law

10 = . M.E.J. NEWMAN®

l——l'l'rn111|—|'|'m'rrr|—|'|'rn11]—l'n111r|—l'|'m11l|"'l
10" 10° 10"

abundance

 another example:
- size of wildfires (in acres)
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Not every network is power-law distributed

» Reciprocal, frequent email
communication

* Power grid

Degree distribution Cumulative degree distribution

||:|f'

!
=
=107
&

10

10 10"
Dwgres (d) [vertices)

 Company directors
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Another common distribution

* Power-law with an exponential cutoff
- p(X) ~ x? ™k

starts out as a power law

o
7

10° 1 ends up as an exponential

Pl

pX)

107°L.

10_15 - - PR Py ) o i e e e uuk - = PR S S,
10° 10’ 10° 10°

X

but could also be a lognormal or double exponential ...
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Example of exponential cutoff

 Time between edge initiations

0 -1

10 e 10" — ; T
< 3 -O_"@'G\. 1
= -1 P, =1 = Gﬂc{ T 1
510 e, : 5 102 . -
a a 3
_é- 10'2 - = é- 1
g s §10°F :
'g- 10™ - 'g 3
a a 104 - [ ] —
g 10* . 3 °
o o
10-5' ] wl ] 10°8 . | wanlt
10° 10’ 102 10% 10° 10! 10% 10°
Gap, 8(1) Gap, 8(1)
(a) FLICKR (b) DELICIOUS
100 st T 5 s Lt ‘|C|':J T | R R
e T
= 10-1 -6 — Loy 10 - e
= &
L a 102 |
2107 F . -3
B 5 10° |
8 103 L ] a
g = € 10tk
g 104 - . § S
o o ] O 10° |
10-5 ree | i | ; 10—6 it
10° 10’ 102 10% 10° 10° 102 10°
Gap, &(1) Gap, 8(1)
(c) ANSWERS (d) LINKEDIN

Microscopic Evolution of Social Networks

* i - 1 .t
Jure Leskovec Lars Backstrom'  Ravi Kumar® _Andrew Tomkins®
“Carnegie Mellon University 'Cornell University “Yahoo Research
jure@cs.cmu.edu  lars@cs.cornell.,edu  {ravikuma, atomkins} @ yahoo-inc.com
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Power-Laws: Wrap Up

* Power-laws are cool and intriguin

Power-law distributions in empirical data

Aaron Clauset,™? Cosma Rohilla Shalizi,® and M. E. J. Newman*

!Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

?Department of Computer Science, University of New Mexico, Albuguerque, NM 87131, USA

*Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109,
USA

Power-law distributions occur in many situations of scientific interest and have significant conse-
quences for our understanding of natural and man-made phenomena. Unfortunately, the empirical
detection and characterization of power laws is made difficult by the large fluctuations that cccur
in the tail of the distribution. In particular, standard methods such as least-squares fitting are
known to produce systematically biased estimates of parameters for power-law distributions and
should not be used in most circumstances. Here we describe statistical techniques for making
accurate parameter estimates for power-law data, based on maximum likelihood methods and the
Kolmogorov-Smirnov statistic. We also show how to tell whether the data follow a power-law dis-
tribution at all, defining quantitative measures that indicate when the power law is a reasonable
fit to the data and when it is not. We demonstrate these methods by applying them to twenty-
four real-world data sets from a range of different disciplines. Each of the data sets has been
conjectured previously to follow a power-law distribution. In some cases we find these conjectures
to be consistent with the data while in others the power law is ruled out.

 But make sure your data is actuall
power-law before boasting!

ARTICLE
https://doi.org/10.1038/541467-019-08746-5 OPEN

Scale-free networks are rare

Anna D. Broido' & Aaron Clauset® 234

Real-world networks are often claimed to be scale free, meaning that the fraction of nodes
with degree k follows a power law k~, a pattern with broad implications for the structure and
dynamics of complex systems. However, the universality of scale-free networks remains
controversial. Here, we organize different definitions of scale-free networks and construct a
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