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Network Properties:
how to measure a network?
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Plan: Key Network Properties

● (1) Degree distribution             P(k)

● (2) Path Length                          h

● (3) Clustering coefficient           C

● (4) Connected components        s
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(1) Degree Distribution
● Degree distribution P(k): probability that 

a randomly chosen node has degree k
Nk = # nodes with degree k

● Normalized histogram:
P(k) = Nk / N    →   plot
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(2) Paths in a Graph
● A path is a sequence of nodes in which 

each node is linked to the next one
Pn = {i0, i1, i2, … ,in}    or

Pn = {(i0, i1), (i1, i2), (i2, i3), …, (in-1, in),}

● A path can intersect itself
and pass trough the same
edge multiple times
– E.g. ACBDCDEG
– In a directed graph, a path

can only follow the direction
of the “arrow”
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Distance in a Graph

● Distance (shortest path, geodesic) 
between a pair of nodes is defined
as the number of edges along the 
shortest path connecting the nodes
– If the two nodes are not connected, the 

distance is usually defined as infinite

● In directed graphs paths need to 
follow the direction of the arrows
– Consequence: distance is

not symmetric: hB,C ≠ hC,B
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Network Diameter
● Diameter: The maximum (shortest path) 

distance between any pair of nodes in a 
graph

● Average path length for a connected 
graph (component) or a strongly connected 
(component of a) directed graph

– Many times we compute the average only over 
the connected pairs of nodes (that is, we ignore 
“infinite”length paths)

Where h
ij
 is the distance from node i to node j 

E
max

 is max number of edges (total number of 
node pairs) = n(n-1)/2
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(3) Clustering Coefficient
● Clustering coefficient:

– What portion of i’s neighbors are connected?
– Node i with degree ki

–

–

● Average clustering coefficient:

C i=
2 ei

k i(ki−1)

C i∈[0,1]

where e
i
 is the number of edges 

between the neighbors of node i

C=
1
N
∑
i

n

C i



Pedro Ribeiro – Measuring Networks and Random Graph Models

Clustering Coefficient
● Clustering coefficient:

– What portion of i’s neighbors are connected?
– Node i with degree ki

– C i=
2 ei

k i(ki−1)

where e
i
 is the number of edges 

between the neighbors of node i

k
B
=2,   e

B
=1,   C

B
 = 2/2 = 1

k
D
=4,   e

D
=2,   C

D
 = 4/12 = 1/3

Avg. Clustering: C = 0.33
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(4) Connectivity
● Size of the largest connected component

– Largest set where any two vertices can be 
joined by a path

● Largest component = Giant component

How to find connected components:

• Start from random node and perform
Breadth First Search (BFS)
• Label the nodes BFS visited
• If all nodes are visited, the network is connected
• Otherwise find an unvisited node and repeat BFS
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Summary: Key Network Properties

● (1) Degree distribution             P(k)

● (2) Path Length                          h

● (3) Clustering coefficient           C

● (4) Connected components        s



  

Measuring these properties
in a Real World Graph



Pedro Ribeiro – Measuring Networks and Random Graph Models

MSN Messenger

● MSN Messenger
– 1 month activity

● 245 million users logged in
● 180 million users engaged in 

conversations
● More than 30 billion 

conversations
● More than 255 billion 

exchanged messages

WWW 2008
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Spatial Network: Geography
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Communication → Connections

Network: 180M people, 1.3B edges
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Messaging as multigraph
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MSN: (1) Degree Distribution
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MSN: Log-Log Degree Distribution
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MSN: (2) Diameter 
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MSN: (3) Clustering Coefficient
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MSN: (4) Connected Components
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MSN: Key Network Properties

● (1) Degree distribution             

● (2) Path Length                          6.6

● (3) Clustering coefficient           0.11

● (4) Connected components        
giant 

component

Heavily skewed
avg. degree = 14.4

Are these values “expected”?
Are they “surprising”?

To answer this we need a null-model!
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Another Example: PPI Network
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Intermezzo: Network Datasets

http://konect.cc/
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Intermezzo: Network Datasets

http://networkrepository.com/



  

Erdös-Renyi
Random Graph Model
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Simplest Model of Graphs
● Erdös-Renyi

Random Graphs
[Erdös-Renyi, ‘60]

● Gn,p: undirected graph on n nodes and each 
(u,v) appears i.i.d. with probability p

● Gn,m: undirected graph with n nodes and m 
uniformly at random picked edges

What kind of networks do
such models produce?
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Random Graph Model
● n and p do not uniquely determine the graph!

– The graph is a result of a random process

● We can have many different realizations given
the same n and p
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Properties of Gn,p

● Degree distribution             P(k)

● Clustering coefficient           C

● Path Length                          h

● Connected components        s

What are the values of
these properties for G

n,p
 ?
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Gn,p: degree distribution
● Fact: Degree Distribution of Gn,p is binomial

● Let P(k) denote the fraction of nodes with degree k
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Intermezzo: NetLogo

Visualize some of the properties described in the lectures

https://ccl.northwestern.edu/netlogo/
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NetLogo: Gn,p and degree dist.

ErdosRenyiDegDist.nlogo



Pedro Ribeiro – Measuring Networks and Random Graph Models

Gn,p: clustering coefficient

● Remember:

● Edges in Gn,p appear i.i.d. with prob. p

● So, expected E[ei] is = 

● Therefore E[C] = 

C i=
2 ei

k i(ki−1)
where e

i
 is the number of edges 

between the neighbors of node i

p
k i(k i−1)

2
each pair is connected

with prob. p

number of distinct pairs of
neighbors of node i of degree k

i

p⋅k i(k i−1)

k i(ki−1)
=p=

k̄
n−1

≈
k̄
n

Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree k (that is we
set p = k  1/n⋅ ), then C decreases with the graph size n.
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Properties of Gn,p

● Degree distribution             

● Clustering coefficient           

● Path Length                          next!

● Connected components        

What are the values of
these properties for G

n,p
 ?

C=p≈
k̄
n
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Definition: expansion
● Graph G(V,E) has expansion α:

# of edges leaving 
● Or equivalently:

if ∀ S⊆V :

S≥α⋅min(|S|,|V ∖S|)
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Expansion: measures robustness
● Expansion is measure of robustness:

– to disconnect L nodes, we need to 

● Low expansion

● High Expansion

● Social Networks:
– “communities”

cut≥α⋅Ledges
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Expansion: Gn,p

● Fact: In a graph of n nodes with expansion α for all
pairs of nodes there is a path of length O((log n)/α).

● Random graph Gn,p:
For log n > np > c, diam(Gn,p) = O(log n / log (np))

– random graphs have good expansion, so it takes a 
logarithmic number of steps for BFS to visit all nodes
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Gn,p: average shortest path

Erdös-Renyi Random Graphs can grow very 
large but nodes will be just a few hops apart
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Properties of Gn,p

● Degree distribution             

● Clustering coefficient           

● Path Length                        O(log n)

● Connected components       next! 

What are the values of
these properties for G

n,p
 ?

C=p≈
k̄
n
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“Evolution” of a random graph
● Graph structure of Gn,p as p changes

● Emergence of a giant component

avg. degree k=2E/n or p=k/(n-1)
– k=1-ε: all components are of size Ω(log n)

– k=1+ε: 1 component of size Ω(n), others have size Ω(log n)
● Each node has at least one edge in expectation
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Gn,p Simulation Experiment

● Gn,p, n=106, k=p(n-1) = 0.5 ... 3
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NetLogo: Gn,p and giant component

GiantComponent.nlogo
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Gn,p - Erdös-Renyi Model

● Gn,p is a cool model!

But let’s compare it to real world networks

“[When asked why are numbers 
beautiful?]

It’s like asking why is Ludwig van 
Beethoven’s Ninth Symphony beautiful. If 
you don't see why, someone can't tell you. 
I know numbers are beautiful. If they 
aren't beautiful, nothing is.” 

― Paul Erdos 
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MSN vs Gn,p 

                                      MSN         Gn,p

● Degree distribution             

● Avg. Clustering coef.       0.11      

● Path Length                     6.6     O(log n) 

● Largest Conn. Comp.       99%   

k̄ /n

h ≈ 8.2

C ≈ 8·10 -8

GCC exists
when k̄>1

k̄≈14

n=180M
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Real Networks vs Gn,p 
● Are real networks like random graphs?

– Average Path Length

– Giant Connected Component

– Degree Distribution

– Clustering Coefficient

● Problems with the random networks model:
– Degree distribution differs from that of real networks

– Giant component in most real network does NOT

emerge through a phase transition

● Most important: Are real networks random?
– The answer is simply: NO!
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Real Networks vs Gn,p 

● If Gn,p is wrong, why did we spend time on it?
– It is the reference model
– It will help us calculate many quantities, that can 

then be compared to the real data
– It will help us understand to what degree is a 

particular property the result of some random 
process

So, while Gn,p is “WRONG”, it will turn out
            to be extremely USEFUL!
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Intermezzo: Configuration Model
● Goal: Generate a random graph with a 

given degree sequence k1, k2, ... kN

● Configuration Model:

● Useful as a “null” model of networks:
– We can compare the real network G and a “random” 

G’ which has the same degree sequence as G



  

The Small World
Random Graph Model

Can we have high clustering while also having short paths?
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The Small World Experiment
● What is the typical shortest path 

length between any two people?
– Experiment on the global friendship 

network
● Can’t measure, need to probe explicitly

● Small-world experiment
[Milgram’67] [Travers and Milgram ’69]

– Picked 296 people in Omaha, Nebraska 
and Wichita, Kansas

– Ask them to get a letter to a stock-broker 
in Boston by passing it through friends

● How many steps did it take?
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The Small World Experiment
● 64 chains completed:

(i.e., 64 letters reached the target)

– It took 6.2 steps on the
average, thus
“6 degrees of separation”

● Further observations:
– People who owned stock

had shorter paths to the
stockbroker than random
people: 5.4 vs. 6.7

– People from the Boston
area have even closer paths: 4.4

[Travers and Milgram ’69]
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6 degrees: Should we be surprised?
● Assume each human is connected to 100 other people

Then:
– Step 1: reach 100 people

– Step 2: reach 100*100 = 10,000 people

– Step 3: reach 100*100*100 = 1M people

– Step 4: reach 100*100*100*100 = 100M people

– In 5 steps we can reach 10 billion people!

● What’s wrong here? We ignore clustering!
– Not all edges point to new people

● 92% of FB friendships happen
through a friend-of-a-friend
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Clustering Implies Edge Locality
● MSN network has 7 orders of

magnitude larger clustering
than the corresponding Gn,p!

● Other Examples:
– Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61

– Electrical power grid: N = 4,941 nodes, k = 2.67

– Network of neurons: N = 282 nodes, k = 14

h ... Average shortest path length
C ... Average clustering coefficient
“actual” ... real network
“random” ... random graph with same avg. degree
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The “Controversy”
● Consequence of expansion:

– Short paths: O(log n)
● This is the smallest diameter we can

get if we have a constant degree.

– But clustering is low!

● However, networks
have “local” structure:
– Triadic closure:

● Friend of a friend is my friend

– High clustering but
diameter is also high

● How can we have both?
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Small-World: How?
● Could a network with high clustering also 

be “small world” (log n diameter)?
– How can we at the same time have

high clustering and small diameter?

– Clustering implies edge “locality”
– Randomness enables “shortcuts”
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Solution: The Small-World Model
Small-World Model
[Watts-Strogatz ‘98]

Two components to the model:
● (1) Start with a low-dimensional regular lattice

– (In our case we are using a ring as a lattice)
– Has high clustering coefficient

● Now introduce randomness (“shortcuts”)
● (2) Rewire:

– Add/remove edges to create
shortcuts to join remote parts
of the lattice

– For each edge with prob. p move
the other end to a random node
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The Small World Model
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The Small World Model
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NetLogo: Gn,p and Small-World

SmallWorldWS.nlogo
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Small-World: Summary
● Could a network with high clustering be at 

the same time a “small world”?
– Yes! You don’t need more than a few random links

● The Watts-Strogatz Model:
– Provides insight on the interplay between clustering 

and being “small-world”
– Captures the structure of many realistic networks
– Accounts for the high clustering of real networks
– Does not lead to the correct degree distribution

We usually call small world to networks which exhibit:
● Short avg. path length (log n)

● High clustering coefficient



  

Power Laws and
Degree Distributions
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Realistic Degree Distribution
Which interesting graph
properties do we observe
that need explaining?

● Small-world model:
– Diameter
– Clustering coefficient

● What about node degree distribution?
– What fraction of nodes has degree k (as a function of k)?

– Observation in real networks:
very often a power law:

– Small-World is similar to Gn,p: pronounced peak at k
does not result in realistic distributions...

P (k)∝k−α
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Realistic Degree Distribution
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Example: Flickr

[Leskovec et al. KDD ‘08]
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Example: Flickr

Same plot, but now on log-log scale
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● How to distinguish:
– Exponential:

vs
– Power-Law:  

Intermezzo: exponential vs power-law

gnuplot

P (k)∝k−α

P (k)∝ λ e−λ k

  plot [1:20] 2*exp(-2*x) lt rgb "#0000aa" lw 2, 0.4*x**-3 lt rgb "#aa0000" lw 2
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● Exponential:
vs

● Power-Law:  

Intermezzo: exponential vs power-law

P (k)∝k−α

P (k)∝ λ e−λ k

If y = f(x) = x-α, then
log(y) = -α log(x)

gnuplot   set logscale xy

Same plot, but now on log-log scale

On a log-log axis
a power law

looks like
a straight line

of slope -α
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● Exponential:
vs

● Power-Law:  

Intermezzo: exponential vs power-law

P (k)∝k−α

P (k)∝ λ e−λ k

gnuplot   plot [4:20] 1.5**-x, x**-1.5, x**-2

Above a certain x value,
the power law is

always higher than
the exponential
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● Power-Law:  

Intermezzo: power-law “slope”

P (k)∝k−α

gnuplot   plot [1:1000] x**-2 lw 2, x**-2.5 lw 2, x**-3 lw 2

lower alpha (α)
will mean less

pronounced slope
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Example: Internet Autonomous Systems

● First observed in Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]
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Example: World Wide Web
[Broder et al., 2000]
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Other Examples
[Barabasi-Albert, 1999]
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Interpreting Power-Laws
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Power-Law Degree Exponent
● Power-law degree exponent is typically:

● Examples
– Web graph:

● αin = 2.1, αout = 2.4 [Broder et al. 00]

– Autonomous systems:
● α = 2.4 [Faloutsos 3 , 99]

– Actor-collaborations:
● α = 2.3 [Barabasi-Albert 00]

– Citations to papers:
● α ≈ 3 [Redner 98]

– Online social networks:
● α ≈ 2 [Leskovec et al. 07]

2<α<3
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Power Laws are Everywhere

[Clauset, Shalizi, Newman, 2009]
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Power Laws are Everywhere

[Clauset, Shalizi, Newman, 2009]
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Not everyone likes Power Laws    



Pedro Ribeiro – Measuring Networks and Random Graph Models

Scale Free Networks
● Networks with a power-law tail in their 

degree distribution are often called 
“scale-free networks”

● Where does the term scale-free com from?
– Scale invariance: there is no characteristic scale

● means laws do not change if scales of length, energy, 
or other variables, are multiplied by a common factor

– Scale free function: f(λx) = C(λ) f(x) ∝ f(x)
● Power-law: f(x) = ax-α

                              f(λx) = a(λx)-α = λ-α(ax-α) = λ-α f(x) ∝ f(x)

C(λ) depends 
only on λ 

Log() or Exp() are not scale free
f(λx) = log(λx) = log(λ) + log(x) = log(λ) + f(x)
f(λx) = exp(λx) = exp(x)λ = f(x)λ
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Random vs Scale Free



  

Preferential Attachment
Model
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Rich Get Richer
● New nodes are more likely to link to nodes that 

already have high degree
● Herbert Simon’s result:

– Power-laws arise from “Rich get richer”
(cumulative advantage)

● Examples:
– Citations [de Solla Price ‘65]: New

citations to a paper are proportional to
the number it already has

● Herding: If a lot of people cite a paper, then it must be good,
and therefore I should cite it too

– Sociology: Matthew effect (http://en.wikipedia.org/wiki/Matthew_effect)

● “For whoever has will be given more, and they will have an abundance. 
Whoever does not have, even what they have will be taken from them.”

● Eminent scientists often get more credit than a comparatively unknown 
researcher, even if their work is similar
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Model: Preferential Attachment
● Preferential attachment:

[Barabasi-Albert ’99] (Barabasi-Albert model)

– Nodes arrive in order 1,2,...,n

– At step j, let di be the degree of a previous node i

– A new node j arrives and creates m out-links
– Probability of j linking to a previous node i is 

proportional to degree di of node i
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Results for Simple Model
● We analyze the following simple model:

– Nodes arrive in order 1,2,3, ... , n

– When node j is created it makes a
single out-link to an earlier node i chosen:

● 1) With prob. p, j links to i chosen uniformly at 
random (from among all earlier nodes)

● 2) With prob. 1 − p, node j chooses i uniformly at 
random & links to a random node v that i points to

– This is same as saying: With prob. 1 − p, node j links to 
node v with prob. proportional to dv (the in-degree of v)

● Our graph is directed: every node has out-degree 1
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Results for Simple Model
● Claim: The described model generates

networks where the fraction of nodes
with in-degree k scales as:

The model gives a power-law
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Preferential Attachment: The Good

● Preferential attachment gives
power-law in-degrees!

● Intuitively reasonable process

● Can tune model parameter p to get the
observed exponent
– On the web, P[node has in-degree k] ~ k-2.1

– 2.1 = 1+1/(1-p) →  p~0.1

p = 0 → P(d
i 
= k) ~ k-2 p = 0.5 → P(d

i 
= k) ~ k-3
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Preferential Attachment: The Bad

● Preferential attachment is not so good at 
predicting network structure
– Age-degree correlation

● Node degree is proportional to its age
● Possible Solution: Node fitness (virtual degree)

– Links among high degree nodes:
● On the web nodes sometimes avoid linking to each 

other

● Further questions:
– What is a reasonable model for how people sample 

network nodes and link to them?
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Origins of Preferential Attachment 
● Link Selection Model: perhaps the 

simplest example of a local or random 
mechanism capable of generating 
preferential attachment
– Growth: At each time step we add a new 

node to the network
– Link selection: We select a link at random 

and connect the new node to one of the 
nodes at the two ends of the selected link

● This simple mechanism generates 
preferential attachment
– Why? Because nodes are picked with probability 

proportional to their number  of edges
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Origins of Preferential Attachment 
● Copying Model:

– (a) Random Connection: with prob. p the new node 
links to random node v

– (b) Copying: With prob. 1 − p randomly choose an outgoing 
link of node v and connect the new node to the selected 
link's target

● The new node “copies” one of the links of an earlier node
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Origins of Preferential Attachment 
● Analysis of the copying model:

– (a) the probability of selecting a node is 1/N
– (b) is equivalent to selecting a node linked to a 

randomly selected link. The probability of selecting a 
degree-k node through the copying process of step (b) 
is k/2E for undirected networks

– Again, the likelihood that the new node will connect to 
a degree-k node follows preferential attachment

● Examples:
– Social networks: Copy your friend’s friends.
– Citation Networks: Copy references from papers we read
– Protein interaction networks: gene duplication
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Many models lead to power-laws
● Copying mechanism (directed network)

– Select a node and an edge of this node
– Attach to the endpoint of this edge

● Walking on a network (directed network)
– The new node connects to a node, then to every first, 

second, ... neighbor of this node

● Attaching to edges
– Select an edge and attach to both endpoints of this edge

● Node duplication
– Duplicate a node with all its edges
– Randomly prune edges of new node
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Distances in Preferential Attachment 
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Scale-Free Networks: Overview



Pedro Ribeiro – Measuring Networks and Random Graph Models

Scale-Free Networks: Ingredients
● Nodes appear over time (growth)

● Nodes prefer to attach to nodes with many 
connections (preferential attachment, 
cumulative advantage)
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NetLogo: Preferential Attachment

RAndPrefAttachment.nlogo



  

Fitting power-law 
distributions
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Simple Binning
● Most common and not very accurate method:

– Bin the different values of x and create a frequency 
histogram
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Example on an artificially generated data set

● Take 1 million random numbers from a 
distribution with α = 2.5

● Can be generated using the so- called 
“transformation method”

● Generate random numbers r on the unit 
interval 0 ≤ r <1

● Then x = (1- r)−1/(α−1) is a random power 
law distributed real number in the range 
1 ≤ x < ∞
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Linear scale plot of simple bin. of the data

● Number of times 1 or 3843 or 99723 occurred

● Power-law relationship not as apparent

● Only makes sense to look at smallest bins

Whole range

First few bins
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Log-log scale plot of simple bin. of the data

● Same bins, but plotted on a log-log scale
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Log-log scale plot of simple bin. of the data

● Fitting a straight line to it via least squares regression 
will give values of the exponent α that are too low
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What goes wrong with simple binning

● Noise in the tail skews the regression result
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First solution: logarithmic binning
● Bin data into exponentially wider bins:

– 1, 2, 4,  8, 16, 32, ...

● Normalize by the width of the bin

● Disadvantage: binning smoothes out data but also loses information
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Second solution: cumulative binning

● No loss of information
– No need  to bin, has value at each observed value 

of x

● But now have cumulative distribution
– i.e. how many of the values of x are at least X

● The cumulative probability of a power law 
probability distribution is also a power law but 
with an exponent  α -  1
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Fitting via regression to the cumulative distribution

● Fitted exponent (2.43) much closer to actual (2.5)



Pedro Ribeiro – Measuring Networks and Random Graph Models

Where to start fitting?
● some data exhibit a power law

only in the tail

● after binning or taking the cumulative 
distribution you can fit to the tail

● so need to select an xmin  the value of x 
where you think the power- law starts

● certainly xmin needs to be greater than 0 
because x−α is infinite at x = 0
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Example of power-law in tail
● Distribution of citations to papers
● Power-law is evident only in the tail

(xmin > 100 citations)
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Maximum likelihood fitting – best
● You have to be sure you have a power- law 

distribution (this will just give you an exponent but 
not a goodness of fit)

● xi are all your data points, and you have n of them

● for our data set we get α = 2.503 – pretty close!
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Some exponents for real world data
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Many real world networks are power-law
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Example on a real data set
● Number of AOL visitors to different

websites back in 1997



Pedro Ribeiro – Measuring Networks and Random Graph Models

Example on a real data set
● Direct fit is too shallow: α = 1.17 ...
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Example on a real data set
● Binning logarithmically helps
● Select exponentially wider bins

– 1, 2, 4, 8, 16, 32, ....
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Example on a real data set
● Fitting the cumulative distribution

– Shows perhaps 2 separate power- law regimes that  
were obscured by the exponential binning

– Power- law tail may be closer to 2.4
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Not everything is a power law!
● Number of sightings of 591 bird species in the  

North American Bird survey in 2003

● another example:
– size of wildfires (in acres)
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Not every network is power-law distributed

● Reciprocal, frequent email 
communication

● Power grid

● Company directors
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Another common distribution
● Power-law with an exponential cutoff

– p(x) ~ x- a e- x/κ

but could also be a lognormal or double exponential ...
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Example of exponential cutoff
● Time between edge initiations
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Power-Laws: Wrap Up
● Power-laws are cool and intriguing

● But make sure your data is actually 
power-law before boasting!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117

