Node Centrality

(Heavily based on slides from Jure Leskovec and Lada Adamic @ Stanford University)

Are all nodes "equal"? How to measure their importance?

Luke	Ben	Red Leader	Chief Bar	tender Creatu	ure Go Lea	old Ider H	luman
	Han	Tarkin	Intercom Voice	Owen ™	echnician	Beru	Camie
Threepio	Vader	Trooper	Wedge	Commander			
			A 4	Commander	Imperial Officer	Second Officer	Tagge
		First	Aunt	Dodonna	Death Star		and
Leia	Biggs	Trooper	Gantry	First	Voice	Tro	oper
		Officer		IMa] Ja Rec	bba Nine
			Motti	Fixer	Red.	Wi	llard
	Degree CI	loseness Betweenness Community					

Size proportional to degree: is this the only way?

Size proportional to betweenness

Wingman	Jabba	Commander	Beru	Bartender	Creature	Human	Gantry Officer	Tarkin
Death Star	Second	Dodonna	Man					
Voice	Trooper	First	Motti	Aun Berı	t J ^{Interd}	om Biaa	s . Red	First
Red Nine	Willard	Officer	mota		VOIC	e - 99	⁻ Leader	Trooper
	Villara	Fixer	Owen	Technic	ian	ficer		
PDPET	Imperial		Gold		0	nicer	Ben	Threepio
ragge	Officer	Red Ten	Leader	Chie	ef Tr	ooper		
Oraada	<u> </u>	Second		Vader			Leia Luke	
Greedo	Camie	Officer	Wedge		er	lan		
Degree Closeness Betweenness Community								

Size proportional to closeness

Why degree is not enough

Why degree is not enough

Stanford Social Web (ca. 1999)

network of personal homepages at Stanford

Different notions of centrality

Node Centrality measures "importance"

In each of the following networks, X has higher centrality than Y according to a particular measure

indegree outdegree betweenness closeness

Node Degree

• Let's put some **numbers** to it

Undirected degree:

e.g. nodes with more friends are more central.

Assumption: the connections that your friend has don't matter, it is what they can do directly that does (e.g. go have a beer with you, help you build a deck...)

Node Degree

• Normalization:

divide degree by the max. possible, i.e. (N-1)

Node Degree

example financial trading networks

high in-centralization: one node buying from many others

low in-centralization: buying is more evenly distributed

What does degree not capture?

 In what ways does degree fail to capture centrality in the following graphs?

Brokerage not captured by degree

Brokerage: Concept

Brokerage: Concept

Capturing Brokerage

• Betweenness Centrality:

intuition: how many **pairs of individuals** would have to go through you in order to reach one another in the **minimum number of hops**?

Betweenness: Definition

$$C_B(i) = \sum_{j < k} \frac{g_{jk}(i)}{g_{jk}}$$

Where:

 g_{jk} = the number of **shortest paths** connecting nodes *j* and *k* $g_{jk}(i)$ = the number that node *i* is on.

Usually normalized by:

$$C'_{B}(i) = \frac{C_{B}(i)}{(n-1)(n-2)/2}$$

number of pairs of vertices excluding the vertex itself

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)
 - note that there are no alternate paths for these pairs to take, so C gets full credit

- why do C and D each have betweenness 1?
- They are both on shortest paths for pairs (A,E), and (B,E), and so must share credit:
 - 1/2+1/2 = 1

Betweenness: Real Example

Social Network (facebook)

nodes are sized by degree, and colored by betweenness

Betweenness: Question

 Find a node that has high betweenness but low degree

Betweenness: Question

 Find a node that has low betweenness but high degree

Closeness Centrality

 What if it's not so important to have many direct friends?

• Or be "between" others

 But one still wants to be in the "middle" of things, not too far from the center

Closeness Centrality

Need not be in brokerage position

Closeness: Definition

 Closeness is based on the length of the average shortest path between a node and all other nodes in the network

Normalized Closeness Centrality: $C'_{C}(i) = C_{C}(i) \times (n-1)$ When graphs are big, the -1 can be discarded and we multiply by *n*

Closeness: Toy Networks

$$C_{c}'(A) = \left[\frac{\sum_{j=1}^{N} d(A, j)}{N-1}\right]^{-1} = \left[\frac{1+2+3+4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Closeness: Toy Networks

Closeness: Question

 Find a node which has relatively high degree but low closeness

Closeness: Question

 Find a node which has low degree but high closeness

Closeness: unconnected graph

What if the graph is not connected?

Harmonic: Definition

 Replace the average distance with the harmonic mean of all distances

Harmonic Centrality:

$$C_{H}(i) = \sum_{j \neq i} \frac{1}{d(i,j)} = \sum_{d(i,j) < \infty, j \neq i} \frac{1}{d(i,j)}$$

- Strongly correlated to closeness centrality
- Naturally also accounts for nodes j that cannot reach i
- Can be applied to graphs that are not connected

Normalized Harmonic Centrality: $C'_{H}(i) = C_{H}(i)/(n-1)$

Harmonic: Toy Networks

Closeness vs Harmonic

Closeness Centrality $C_{C}(i) = \frac{1}{\sum_{j=1}^{N} d(i, j)}$ Harmonic Centrality

 $C_{H}(i) = \sum_{i \neq i} \frac{1}{d(i, j)}$

Eigenvector Centrality

 How "central" you are depends on how "central" your neighbors are

Eigenvector Centrality

Eigenvector Centrality:

$$C_E(i) = \frac{1}{\lambda} \sum_{j=1}^n A_{ji} \times C_E(j)$$

where λ is a constant and A_{ij} the adjacency matrix (1 if (*i*,*j*) are connected, 0 otherwise)

(with a small rearrangement) this can we rewritten in vector notation as in the eigenvector equation

$$Ax = \lambda x$$

where x is the eigenvector, and its *i*-th component is the centrality of node *i*

In general, there will be many different eigenvalues λ for which a non-zero eigenvector solution exists. However, the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron–Frobenius theorem) that only the greatest eigenvalue results in the desired centrality measure

Bonacich eigenvector centrality

also known as Bonacich Power Centrality

 $c_i(\beta) = \sum (\alpha + \beta c_i) A_{ii}$

- α is a normalization constant
- $\beta \,$ determines how important the centrality of your neighbors is
- •A is the adjacency matrix (can be weighted)

Bonacich eigenvector centrality

also known as Bonacich Power Centrality

small $\beta \rightarrow$ high attenuation only your immediate friends matter, and their importance is factored in only a bit

high β → low attenuation global network structure matters (your friends, your friends' of friends etc.)

 β = o yields simple degree centrality

$$c_i(\beta) = \sum_j (\alpha \square) A_{ji}$$

Eigenvector Variants

 There are other variants of eigenvector centrality, such as:

- PageRank

 (normalized eigen vector + random jumps) [we will talk in detail about that later]

- Katz Centrality

(connections with distant neighbors are penalized)

$$C_{ ext{Katz}}(i) = \sum_{k=1}^\infty \sum_{j=1}^n lpha^k (A^k)_{ji}$$

Centrality in Directed Networks

• Degree:

- in and out centrality

Betweenness:

- Consider only directed paths:

$$_{B}(i) = \sum_{j \neq k} \frac{g_{jk}(i)}{g_{jk}}$$

- When normalizing take care of ordered pairs

$$C_{B}(i) = \frac{C_{B}(i)}{(n-1)(n-2)}$$

number of ordered pairs is 2x the number of unordered

C

Closeness

- Consider only directed paths
- Eigenvector (already prepared)

Centrality in Weighted Networks

• Degree:

- Sum weights (non-weighted equals weight=1 for all edges)

Betweenness and Closeness:

- Consider weighted distance

Eigenvector

- Consider weighted adjacency matrix

Node Centralities: Conclusion

 There are other node centrality metrics, but these are the "quintessential"

Finding Dominant Nodes Using Graphlets

David Aparício^(⊠), Pedro Ribeiro, Fernando Silva, and Jorge Silva

CRACS & INESC-TEC and the Department of Computer Science, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal {daparicio,pribeiro,fds}@dcc.fc.up.pt, jorge.m.silva@inesctec.pt

$$D(o) = \left(\lambda \times \sum_{o_i \in \mathcal{I}(o)} \beta^{k-d(o,o_i)}\right) - \left((1-\lambda) \times \sum_{o_j \in \mathcal{S}(o)} \beta^{k-d(o_j,o)}\right)$$

A subgraph-based ranking system for professional tennis players

David Aparício, Pedro Ribeiro and Fernando Silva

- Which one to use depends on what you want to achieve or measure
 - Worry about understanding the concepts
 - They enlarge your graph vocabulary

Node Centralities: Conclusion

Betweenness

Closeness

Eigenvector

Katz

Node Centralities: Conclusion

• All (major) network analysis packages provide them:

The #1 Database for Connected Data

Centrality algorithms are used to determi includes the following centrality algorithm

- Production-quality
 - Page Rank
 - Betweenness Centrality
- Alpha
 - ArticleRank
 - Closeness Centrality
 - Harmonic Centrality
 - Degree Centrality
 - Eigenvector Centrality
 - HITS

Centrality

Eigenvector

eigenvector_centrality (G[, max_iter, tol,])	Compute the eigenvector centrality for the graph $\ {\mbox{\scriptsize G}}$.
$\texttt{eigenvector_centrality_numpy} \; (\texttt{G}[, weight,])$	Compute the eigenvector centrality for the graph G.
<pre>katz_centrality (G[, alpha, beta, max_iter,])</pre>	Compute the Katz centrality for the nodes of the graph C
<pre>katz_centrality_numpy (G[, alpha, beta,])</pre>	Compute the Katz centrality for the graph G.

Closeness

closeness_centrality (G[, u, distance,])	Compute closeness centrality for nodes.
$\texttt{incremental_closeness_centrality} \; (G, \texttt{edge}[,])$	Incremental closeness centrality for nodes.

Current Flow Closeness

$\texttt{current_flow_closeness_centrality} \; \big(G[, \ldots] \big)$	Compute current-flow closeness centrality for nodes.
$\texttt{information_centrality} \; (G[, weight, dtype,])$	Compute current-flow closeness centrality for nodes.

(Shortest Path) Betweenness

betweenness_centrality (G[, k, normalized, ...]) Compute the shortest-path betweenness centrality for r

8. Centrality Measures

8.1. igraph_closeness — Closeness centralit vertices.	y calculations for some
8.2. igraph_harmonic_centrality — Harmon vertices.	ic centrality for some
8.3. igraph_betweenness — Betweenness cen 8.4. igraph_edge_betweenness — Betweennes	ntrality of some vertices. ss centrality of the
edges.	
8.5. igraph_pagerank_algo_t — PageRank al	gorithm implementation
8.6. igraph_pagerank — Calculates the Goog specified vertices.	le PageRank for the
8.7. igraph_personalized_pagerank — Calcu	lates the personalized
Google PageRank for the specified vertices.	
8.8. igraph_personalized_pagerank_vs — Ca	Iculates the personalized
Google PageRank for the specified vertices.	
8.9. igraph_constraint — Burt's constraint s	scores.
8.10. igraph_maxdegree — The maximum deg vertices).	gree in a graph (or set of
8.11. igraph_strength — Strength of the vert	tices, weighted vertex
degree in other words.	
8.12. igraph_eigenvector_centrality — Eigevertices	envector centrality of the

• Also all (major) network analysis and visualization platforms:

