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Star Wars IV Network

moviegalaxies.com
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 Tarkin |

Are all nodes “equal™? How to measure their importance?
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Star Wars IV Network
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Size proportional to degree: is this the only way?
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Star Wars IV Network

Red
| eader

Ben

Tarkin Officer

Threepio

Intercom Voice

Degree | Closeness | Betweenness | Community

Size proportional to betweenness

Pedro Ribeiro - Node Centrality



Star Wars IV Network
: ~kha |Commander Y10
JAUMMC - Bartender Creature Human g?f::;[g: Tarkin

B IGRSIE Il SRR Dodonna
Intercom e | Aunt

Voice ‘00pe ~ _ Red HEN
~£f: Mot Beru Biggs Leaeder

AN \Willard

Fixer Owen

Imperial Rl Ben e
Tagge Red Ten Gold  chief
eia
do Wer 3@ Second Wedge

Officer Luke

Degree [ Clogeness | Betweenness | Community

Size proportional to closeness

Pedro Ribeiro - Node Centrality



Why degree is not enough
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Why degree is not enough

Stanford Social Web (ca. 1999)

network of personal homepages at Stanford
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Different notions of centrality

* Node Centrality measures “importance”

In each of the following networks, X has higher
centrality than Y according to a particular measure

Y
%Q O%é %O—OG
X
X
Y Y

Indegree outdegree = betweenness closeness

O

< O
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Node Degree

» Let’'s put some numbers to it

Undirected degree:
e.g. nodes with more friends are more central.

®

@ °©

®

Assumption: the connections that your friend has don't
matter, it is what they can do directly that does (e.g. go
have a beer with you, help you build a deck...)

0,

®
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Node Degree

* Normalization:
divide degree by the max. possible, i.e. (N-1)
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Node Degree

example financial trading networks

high in-centralization: low in-centralization:
one node buying from buying is more evenly
many others distributed
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What does degree not capture?

* In what ways does degree fail to capture
centrality in the following graphs?
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Brokerage not captured by degree
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Brokerage: Concept

| O
BUS INESS ONLY
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Brokerage: Concept
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Capturing Brokerage

- Betweenness Centrality:

intuition: how many pairs of individuals would have to
go through you in order to reach one another in the
minimum number of hops?

A—b——(o—d
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Betweenness: Definition

Cali)=y, 2

i<k Yk
Where:
g, = the number of shortest paths connecting nodes j and k
g,(1) = the number that node / is on.

Usually normalized by:

¢ (i) Cali
B n—1)(n—2)/2|~

number of pairs of vertices
excluding the vertex itself
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Betweenness: Toy Networks

* Non-normalized version:

©

:

®
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Betweenness: Toy Networks

* Non-normalized version:

@ @® © e o

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E

- C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)

* note that there are no alternate paths for these pairs
to take, so C gets full credit
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Betweenness: Toy Networks

* Non-normalized version:

© ©
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Betweenness: Toy Networks

* Non-normalized version:

@  why do C and D each have
betweenness 1?7
C * They are both on shortest

paths for pairs (A,E), and (B,E),
and so must share credit:
-12+1/2 =1
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Betweenness: Toy Networks

* Non-normalized version:

®

C

® @ What is the betweenness
of node E?
A B

®

D
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Betweenness: Real Example

* Social Network (facebook)
nodes are sized by degree, and colored by betweenness
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Betweenness: Question

* Find a node that has high betweenness
but low degree
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Betweenness: Question

* Find a node that has low betweenness but
high degree
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Closeness Centrality

 What if it's not so important to have
many direct friends?

e Or be “between” others

* But one still wants to be in the “middle”
of things, not too far from the center
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Closeness Centrality

* Need not be in brokerage position

. ' 4 .
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Closeness: Definition

* Closeness is based on the length of the
average shortest path between a node
and all other nodes in the network

Closeness Centrality:
. 1
Cc ( l ) —

> dli,j

Normalized Closeness Centrality:
2\ . Wh h big, th
C.(i)=C.(i)x(n—1) When araphs are blg, the

we multiply by n
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Closeness: Toy Networks

@

N
Ed(A,]) ] I
C (A)=|2! _ 1+2+3+4 _ Q _04
‘ N-1 4 | |4 |
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Closeness: Toy Networks
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Closeness: Question

* Find a node which has relatively high degree
but low closeness

e
Q’A \17
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Closeness: Question

 Find a node which has low degree but
high closeness

e
Q’A \17

Pedro Ribeiro - Node Centrality



Closeness: unconnected graph

 What if the graph is not connected?

(o (o 1

Cc(i): N

2 dli,])
J=1
() om)
@ instead of null, we could also interpret

Wit il vooed T at wodes it as O if infinity is the distance
if the graph is not connected! between unconnected nodes
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Harmonic: Definition

* Replace the average distance with the harmonic
mean of all distances

Harmonic Centrality:
Cali)=Y ez > -
j#i ’ d(i,j)<o,j#i )
d(i,j) aij d(i, j)
- Strongly correlated to closeness centrality

- Naturally also accounts for nodes j that cannot reach i
- Can be applied to graphs that are not connected

Normalized Harmonic Centrality:
Cyli)=Cyli)/(n—1)
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Harmonic: Toy Networks

* Non-normalized version:

1 1 1 1 1
Charm:I+E+§+§+Z=2.5
\

2 ® O O
waa
SENOR0 ®
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Closeness vs Harmonic

Closeness Centrality

1

> dli. )

j=1

Cc(i>:
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Eigenvector Centrality

« How “central” you are depends on how “central”
your neighbors are

Cli)=wy: G
W), ¢ ak)
Tw e, Qo)
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Eigenvector Centrality

Eigenvector Centrality:

N 1x .
CE(I)ZIZ AjiXCE(.])
i=1

where A is a constant and
A; the adjacency matrix (1 if (i,j) are connected, O otherwise)

(with a small rearrangement) this can we rewritten
In vector notation as in the eigenvector equation

AX=AX

where X is the eigenvector, and its i-th component is the centrality of node j

In general, there will be many different eigenvalues A for which a non-zero eigenvector solution exists. However,
the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron—Frobenius
theorem) that only the greatest eigenvalue results in the desired centrality measure
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Bonacich eigenvector centrality

also known as Bonacich Power Centrality

c.(p)= E(a +pc)A,

* o is a normalization constant

* 3 determines how important the centrality of your neighbors
IS

* A is the adjacency matrix (can be weighted)
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Bonacich eigenvector centrality

also known as Bonacich Power Centrality

small 3 =» high attenuation

only your immediate friends matter, and their
importance is factored in only a bit

high § =» low attenuation

global network structure matters (your friends,
your friends' of friends etc.)

B = o yields simple degree centrality

¢;(p) = 2(0‘ )A;
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Eigenvector Variants

 There are other variants of eigenvector
centrality, such as:

- PageRank

* (normalized eigen vector + random jumps)
[we will talk in detail about that later]

- Katz Centrality
* (connections with distant neighbors are penalized)

Craa(i) = 3.3 k()

k=1 j=1
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Centrality Iin Directed Networks

- Degree:
- In and out centrality

- Betweenness: |
- Consider only directed paths: CB(i):Z 9ﬂ<<l>

i=k 9k
- When normalizing take care of ordered pairs
o ()= Gl
2] s
 Closeness
- Consider only directed paths

 Eigenvector (already prepared)
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Centrality in Weighted Networks

* Degree:
- Sum weights (non-weighted equals weight=1 for all edges)

- Betweenness and Closeness:
- Consider weighted distance

 Eigenvector
- Consider weighted adjacency matrix
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Node Centralities: Conclusion

 There are other node centrality metrics,
but these are the “quintessential”

a e f )
Finding Dominant Nodes Using Graphlets bg W’ h‘%’
Gy 8 Gy k -

David Aparicio'®’, Pedro Ribeiro, Fernando Silva, and Jorge Silva d C
abced eefg hiijk
CRACS & INESC-TEC and the Department of Computer Science. al-T1]2]3 e[-]-T-]- h[-T1]2]3
Faculty of Sciences, University of Porto. 4169-007 Porto, Portugal bi-[-[1]2 el=l=1-1- 1jag-11g2
{daparicio,pribeiro,fds}@dcc.fc.up.pt, jorge.m.silva@inesctec.pt fl - l ; ]I ]I - l Llc l i — l
Do) = [ A % Z gr—dlew) | _ [ (1 - 1) x Z gk—d(o;.0) A subgraph-based ranking system for
o ET(o) I e professional tennis players

David Aparicio, Pedro Ribeiro and Fernando Silva

 Which one to use depends on what you want to
achieve or measure

- Worry about understanding the concepts
- They enlarge your graph vocabulary
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Node Centralities: Conclusion

Harmonic
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Node Centralities: Conclusion

All (major) network analysis packages provide them:

@neog]

The #1 Database for Connected Data

Centrality algorithms are used to determi

includes the following centrality algorithn

® Production-quality
¢ Page Rank

¢ Betweenness Centrality

® Alpha
© ArticleRank
¢ Closeness Centrality
¢ Harmonic Centrality
¢ Degree Centrality
© Eigenvector Centrality

& HITS

NetworkX

(® Network Analysis in Python

Centrality

Degree

degree_centrality (G) Compute the degree centrality for nodes.

in_degree_centrality (G) ‘Compute the in-degree centrality for nodes.
out_degree centrality (G) Compute the out-degree centrality for nodes.

Eigenvector
eigenvector_centrality (G[, max_iter, tol,..]) Compurte the eigenvector centrality for the graph e .
eigenvector_centrality_numpy (G[, weight, ..]) Compute the eigenvector centrality for the graph G.
katz_centrality (G, alpha, beta, max_iter, ...]) Compute the Katz centrality for the nodes of the graph C

katz_centrality numpy (G[, alpha, beta, ..]) Compute the Katz centrality for the graph G.

Closeness

closeness_centrality (G[, u, distance, ..]) Compute closeness centrality for nodes.

incremental closeness centrality (G, edgel, ..]) Incremental closeness centrality for nodes.

Current Flow Closeness

current_flow closeness_centrality (G[, ...]) Compute current-flow closeness centrality for nodes

information centrality (G[, weight, dtype, ...]) Compute current-flow closeness centrality for nodes.

(Shortest Path) Betweenness

betweenness_centrality (G[, k, normalized, ...]) Compute the shortest-path betweenness centrality for r

igraph

8. Centrality Measures

8.1. igraph_closeness — Closeness centrality calculations for some
vertices.

8.2. igraph_harmonic_centrality — Harmonic centrality for some
vertices.

8.3. igraph_betweenness — Betweenness centrality of some vertices.
8.4. igraph_edge betweenness — Betweenness centrality of the
edges.

8.5. igraph_pagerank_algo_t — PageRank algorithm implementation
8.6. igraph_pagerank — Calculates the Google PageRank for the
specified vertices.

8.7. igraph_personalized pagerank — Calculates the personalized
Google PageRank for the specified vertices.

8.8. igraph_personalized_pagerank_vs — Calculates the personalized
Google PageRank for the specified vertices.

8.9. igraph_constraint — Burt's constraint scores.

8.10. igraph_maxdegree — The maximum degree in a graph (or set of
vertices).

8.11. igraph_strength — Strength of the vertices, weighted vertex
degree in other words.

8.12. igraph_eigenvector_centrality — Eigenvector centrality of the
vertices

Also all (major) network analysis and visualization platforms:
Gephi

W makes graphs hz
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