Node Centrality

U. PORTO

Pedro Ribeiro

(DCC/FCUP \& CRACS/INESC-TEC)

(Heavily based on slides from Jure Leskovec and Lada Adamic @ Stanford University)

Star Wars IV Network

Are all nodes "equal"? How to measure their importance?

Star Wars IV Network

Size proportional to degree: is this the only way?

Star Wars IV Network

Size proportional to betweenness

Star Wars IV Network

Wingman	Jabba	Commander	Beru	ender C	Hure Human	G	Tarkin
Death Star Intercom Voice	Second Trooper	Dodonna	Man	Aunt Beru		${ }_{\text {Red }}^{\text {Reader }}$	$\substack{\text { First } \\ \text { rooper }}$
		irst					
Red Nine	Willard	Officer	Motti		Bigg		
		Fixer	Owen	Technician	Officer	Ben	Three
Tagge	Imperial						
	Officer	Red Ten	Leader	Chief	Trooper		
Greedo	Camie	Second Officer	Wedge	Vader	Han	Leia	
						Lu	ke

Size proportional to closeness

Why degree is not enough

Why degree is not enough

Stanford Social Web (ca. 1999)

network of personal homepages at Stanford
Pedro Ribeiro - Node Centrality

Different notions of centrality

- Node Centrality measures "importance"

In each of the following networks, X has higher centrality than Y according to a particular measure

indegree

outdegree

betweenness
closeness

Node Degree

- Let's put some numbers to it

Undirected degree: e.g. nodes with more friends are more central.

Assumption: the connections that your friend has don't matter, it is what they can do directly that does (e.g. go have a beer with you, help you build a deck...)

Node Degree

- Normalization: divide degree by the max. possible, i.e. ($\mathrm{N}-1$)

Pedro Ribeiro - Node Centrality

Node Degree

example financial trading networks

high in-centralization: one node buying from many others

Iow in-centralization: buying is more evenly distributed

What does degree not capture?

- In what ways does degree fail to capture centrality in the following graphs?

Brokerage not captured by degree

Brokerage: Concept

Brokerage: Concept

Capturing Brokerage

- Betweenness Centrality:
intuition: how many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

Betweenness: Definition

$$
C_{B}(i)=\sum_{j<k} \frac{g_{j k}(i)}{g_{j k}}
$$

Where:
$g_{\mathrm{jk}}=$ the number of shortest paths connecting nodes j and k $g_{\mathrm{jk}}(\mathrm{i})=$ the number that node i is on.

Usually normalized by:

$$
C_{B}^{\prime}(i)=\frac{C_{B}(i)}{(n-1)(n-2) / 2}
$$

number of pairs of vertices excluding the vertex itself

Betweenness: Toy Networks

- Non-normalized version:

Betweenness: Toy Networks

- Non-normalized version:

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)
- note that there are no alternate paths for these pairs to take, so C gets full credit

Betweenness: Toy Networks

- Non-normalized version:

Betweenness: Toy Networks

- Non-normalized version:

- why do C and D each have betweenness 1 ?
- They are both on shortest paths for pairs (A,E), and (B,E), and so must share credit:
$-1 / 2+1 / 2=1$

Betweenness: Toy Networks

- Non-normalized version:

Betweenness: Real Example

- Social Network (facebook) nodes are sized by degree, and colored by betweenness

Betweenness: Question

- Find a node that has high betweenness but low degree

Betweenness: Question

- Find a node that has low betweenness but high degree

Closeness Centrality

- What if it's not so important to have many direct friends?
- Or be "between" others
- But one still wants to be in the "middle" of things, not too far from the center

Closeness Centrality

- Need not be in brokerage position

Closeness: Definition

- Closeness is based on the length of the average shortest path between a node and all other nodes in the network

Closeness Centrality:

$$
C_{C}(i)=\frac{1}{\sum_{j=1}^{N} d(i, j)}
$$

Normalized Closeness Centrality:

$$
C_{C}^{\prime}(i)=C_{C}(i) \times(n-1)
$$

When graphs are big, the -1 can be discarded and we multiply by n

Closeness: Toy Networks

$$
C_{c}^{\prime}(A)=\left[\frac{\sum_{j=1}^{N} d(A, j)}{N-1}\right]^{-1}=\left[\frac{1+2+3+4}{4}\right]^{-1}=\left[\frac{10}{4}\right]^{-1}=0.4
$$

Closeness: Toy Networks

Closeness: Question

- Find a node which has relatively high degree but low closeness

Closeness: Question

- Find a node which has low degree but high closeness

Closeness: unconnected graph

-What if the graph is not connected?

$$
C_{C}(i)=\frac{1}{\sum_{j=1}^{N} d(i, j)}
$$

instead of null, we could also interpret it as 0 if infinity is the distance between unconnected nodes

Harmonic: Definition

- Replace the average distance with the harmonic mean of all distances

Harmonic Centrality:

$$
C_{H}(i)=\sum_{j \neq i} \frac{1}{d(i, j)}=\sum_{d(i, j)<\infty, j \neq i} \frac{1}{d(i, j)}
$$

- Strongly correlated to closeness centrality
- Naturally also accounts for nodes j that cannot reach i
- Can be applied to graphs that are not connected Normalized Harmonic Centrality:

$$
C_{H}^{\prime}(i)=C_{H}(i) /(n-1)
$$

Harmonic: Toy Networks

- Non-normalized version:
$c_{\text {harm }}=\frac{1}{1}+\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=2.5$

Closeness vs Harmonic

Closeness Centrality

$$
C_{C}(i)=\frac{1}{\sum_{j=1}^{N} d(i, j)}
$$

Harmonic Centrality

$$
C_{H}(i)=\sum_{j \neq i} \frac{1}{d(i, j)}
$$

Eigenvector Centrality

- How "central" you are depends on how "central" your neighbors are

Eigenvector Centrality

Eigenvector Centrality:

$$
C_{E}(i)=\frac{1}{\lambda} \sum_{j=1}^{n} A_{j i} \times C_{E}(j)
$$

where λ is a constant and
$\mathrm{A}_{i j}$ the adjacency matrix (1 if (i, j) are connected, 0 otherwise)
(with a small rearrangement) this can we rewritten in vector notation as in the eigenvector equation $A x=\lambda x$
where x is the eigenvector, and its i-th component is the centrality of node i

In general, there will be many different eigenvalues λ for which a non-zero eigenvector solution exists. However, the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron-Frobenius theorem) that only the greatest eigenvalue results in the desired centrality measure

```
Pedro Ribeiro - Node Centrality
```


Bonacich eigenvector centrality

also known as Bonacich Power Centrality

$c_{i}(\beta)=\sum\left(\alpha+\beta c_{j}\right) A_{j i}$

- α is a normalization constant
- β determines how important the centrality of your neighbors is
- \mathbf{A} is the adjacency matrix (can be weighted)

Bonacich eigenvector centrality

small $\beta \rightarrow$ high attenuation
only your immediate friends matter, and their importance is factored in only a bit
high $\beta \rightarrow$ low attenuation
global network structure matters (your friends,
your friends' of friends etc.)
$\beta=0$ yields simple degree centrality

$$
c_{i}(\beta)=\sum_{j}(\alpha \square) A_{j i}
$$

Eigenvector Variants

- There are other variants of eigenvector centrality, such as:
- PageRank
- (normalized eigen vector + random jumps) [we will talk in detail about that later]
- Katz Centrality
- (connections with distant neighbors are penalized)

$$
C_{\mathrm{Katz}}(i)=\sum_{k=1}^{\infty} \sum_{j=1}^{n} \alpha^{k}\left(A^{k}\right)_{j i}
$$

Centrality in Directed Networks

- Degree:
- in and out centrality
- Betweenness:
- Consider only directed paths:

$$
C_{B}(i)=\sum_{j \neq k} \frac{g_{j k}(i)}{g_{j k}}
$$

- When normalizing take care of ordered pairs

$$
C_{B}^{\prime}(i)=\frac{C_{B}(i)}{(n-1)(n-2)} \quad, \quad \begin{gathered}
\text { number of ordered pairs is } \\
2 x \text { the number of unordered }
\end{gathered}
$$

- Closeness
- Consider only directed paths
- Eigenvector (already prepared)

Centrality in Weighted Networks

- Degree:
- Sum weights (non-weighted equals weight=1 for all edges)
- Betweenness and Closeness:
- Consider weighted distance
- Eigenvector
- Consider weighted adjacency matrix

Node Centralities: Conclusion

- There are other node centrality metrics, but these are the "quintessential"

Finding Dominant Nodes Using Graphlets
David Aparício ${ }^{(\boxtimes)}$, Pedro Ribeiro, Fernando Silva, and Jorge Silva
CRACS \& INESC-TEC and the Department of Computer Science,
Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
\{daparicio,pribeiro,fds\}@dcc.fc.up.pt, jorge.m.silva@inesctec.pt

$$
D(o)=\left(\lambda \times \sum_{o_{i} \in \mathcal{I}(o)} \beta^{k-d\left(o, o_{i}\right)}\right)-\left((1-\lambda) \times \sum_{o_{j} \in \mathcal{S}(o)} \beta^{k-d\left(o_{j}, o\right)}\right)
$$

A subgraph-based ranking system for professional tennis players

- Which one to use depends on what you want to achieve or measure
- Worry about understanding the concepts
- They enlarge your graph vocabulary

Node Centralities: Conclusion

Betweenness

Degree

Closeness

Harmonic

Eigenvector

Katz

Node Centralities: Conclusion

- All (major) network analysis packages provide them:

The \#1 Database for Connected Data

Centrality algorithms are used to determi includes the following centrality algorithn

- Production-quality
- Page Rank
- Betweenness Centrality
- Alpha
- ArticleRank
- Closeness Centrality
- Harmonic Centrality
- Degree Centrality
- Eigenvector Centrality
- HITS

NetworkX
Network Analysis in Python
Centrality
Degree
defree.centrality (G)
-

Eigenvector

> eigenvector_ centrality (GI, max_Iter, tol.....) Compute the eigenvector centrality for the graph ©
> eisenvector_centrality numpy (GI, weight...1) Compute the eigenvector centraility for the graph G.
> katz. centrality (GI, appha, beta, max_Iter,..1) Compute the Katiz centrality for the nodes of the graph \subset
> katz. centrality mumpy (GI, alpha, beta, .1.) Compute the Katz centrality for the graph G.

Closeness
closeness.centrality (GI, , , distance, ...1) Compute closeness centrality for nodes.
incremental. closesess. centrality $(G$, edgel....1) Incremental closeness centrality for nodes.
Current Flow Closeness
current_flow_closeness_centrality (GI, ...])
Compute current-flow closeness centrality for nodes.
information_centrality (GI, weight, dtype, ...]) Compute current-flow closeness centrality for nodes.
8. Centrality Measures
8.1. igraph_closeness - Closeness centrality calculations for some vertices.
8.2. igraph_harmonic_centrality - Harmonic centrality for some vertices.
8.3. igraph_betweenness - Betweenness centrality of some vertices. 8.4. igraph_edge_betweenness - Betweenness centrality of the edges.
8.5. igraph pagerank algo $t-$ PageRank algorithm implementation 8.6. igraph_pagerank - Calculates the Google PageRank for the 8.6. igraph_pageran
specified vertices.
8.7. igraph_personalized_pagerank - Calculates the personalized 8.7. igraph_personalized_pagerank - Calculates the personalized
Google PageRank for the specified vertices. Google PageRank for the specified vertices.
8.8. igraph_personalized_pagerank_vs - Calculates the personalized Google PageRank for the specified vertices.
8.9. igraph_constraint - Burt's constraint scores.
8.10. igraph_maxdegree - The maximum degree in a graph (or set of vertices).
8.11. igraph_strength — Strength of the vertices, weighted vertex degree in other words.
8.12. igraph_eigenvector_centrality - Eigenvector centrality of the vertices

- Also all (major) network analysis and visualization platforms:

Gephi
makes graphs handy

