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Star Wars IV Network

moviegalaxies.com

Are all nodes “equal”? How to measure their importance?
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Star Wars IV Network

Size proportional to degree: is this the only way?
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Star Wars IV Network

Size proportional to betweenness
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Star Wars IV Network

Size proportional to closeness
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Why degree is not enough
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Why degree is not enough
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Different notions of centrality
● Node Centrality measures “importance”
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Node Degree
● Let’s put some numbers to it

Undirected degree:
e.g. nodes with more friends are more central.

Assumption: the connections that your friend has don't
matter, it is what they can do directly that does (e.g. go
have a beer with you, help you build a deck...)
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Node Degree
● Normalization:

divide degree by the max. possible, i.e. (N-1)
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Node Degree

example financial trading networks

high in-centralization:
one node buying from
many others

low in-centralization:
buying is more evenly
distributed
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What does degree not capture?
● In what ways does degree fail to capture 

centrality in the following graphs?
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Brokerage not captured by degree
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Brokerage: Concept
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Brokerage: Concept
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Capturing Brokerage
● Betweenness Centrality:

intuition: how many pairs of individuals would have to 
go through you in order to reach one another in the 
minimum number of hops?
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Betweenness: Definition

Where:
   g

jk
 = the number of shortest paths connecting nodes j and k

   g
 jk

(i) = the number that node i is on.

Usually normalized by:

CB(i)=∑
j<k

g jk (i)

g jk

CB
'
(i)=

CB(i)

(n−1)(n−2)/2
number of pairs of vertices
excluding the vertex itself
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Betweenness: Toy Networks
● Non-normalized version:
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Betweenness: Toy Networks
● Non-normalized version:

– A lies between no two other vertices

– B lies between A and 3 other vertices: C, D, and E

– C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)
● note that there are no alternate paths for these pairs 

to take, so C gets full credit
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Betweenness: Toy Networks
● Non-normalized version:
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Betweenness: Toy Networks
● Non-normalized version:

● why do C and D each have 
betweenness 1?

● They are both on shortest 
paths for pairs (A,E), and (B,E), 
and so must share credit:

- 1⁄2+1/2 = 1



Pedro Ribeiro – Node Centrality

Betweenness: Toy Networks
● Non-normalized version:

What is the betweenness 
of node E?
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Betweenness: Real Example
● Social Network (facebook)

nodes are sized by degree, and colored by betweenness
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Betweenness: Question
● Find a node that has high betweenness 

but low degree
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Betweenness: Question
● Find a node that has low betweenness but 

high degree
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Closeness Centrality

● What if it’s not so important to have 
many direct friends?

● Or be “between” others

● But one still wants to be in the “middle” 
of things, not too far from the center
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Closeness Centrality
● Need not be in brokerage position  
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Closeness: Definition
● Closeness is based on the length of the 

average shortest path between a node 
and all other nodes in the network

Closeness Centrality:

Normalized Closeness Centrality:

CC (i)=
1

∑
j=1

N

d (i , j)

CC
'
(i)=CC (i)×(n−1) When graphs are big, the 

-1 can be discarded and 
we multiply by n
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Closeness: Toy Networks
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Closeness: Toy Networks
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Closeness: Question
● Find a node which has relatively high degree 

but low closeness
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Closeness: Question
● Find a node which has low degree but

high closeness
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Closeness: unconnected graph
● What if the graph is not connected?

instead of null, we could also interpret 
it as 0 if infinity is the distance 
between unconnected nodes

CC (i)=
1

∑
j=1

N

d (i , j)
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Harmonic: Definition
● Replace the average distance with the harmonic 

mean of all distances

Harmonic Centrality:

– Strongly correlated to closeness centrality

– Naturally also accounts for nodes j that cannot reach i

– Can be applied to graphs that are not connected

Normalized Harmonic Centrality:

CH (i)=∑
j≠i

1
d (i , j)

= ∑
d(i , j)<∞ , j≠i

1
d (i , j)

CH
'
(i)=CH (i)/(n−1)
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Harmonic: Toy Networks
● Non-normalized version:
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Closeness vs Harmonic

Closeness Centrality Harmonic Centrality

CH (i)=∑
j≠i

1
d (i , j)

CC(i)=
1

∑
j=1

N

d (i , j)
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Eigenvector Centrality
● How “central” you are depends on how “central”

your neighbors are 
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Eigenvector Centrality
Eigenvector Centrality:

where λ is a constant and
Aij the adjacency matrix (1 if (i,j) are connected, 0 otherwise)

(with a small rearrangement) this can we rewritten
in vector notation as in the eigenvector equation

where x is the eigenvector, and its i-th component is the centrality of node i

CE(i)=
1
λ ∑
j=1

n

A ji×CE( j)

Ax=λ x

In general, there will be many different eigenvalues λ for which a non-zero eigenvector solution exists. However, 
the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron–Frobenius 

theorem) that only the greatest eigenvalue results in the desired centrality measure
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Bonacich eigenvector  centrality
also known as Bonacich Power Centrality



Pedro Ribeiro – Node Centrality

Bonacich eigenvector  centrality
also known as Bonacich Power Centrality
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Eigenvector Variants
● There are other variants of eigenvector 

centrality, such as:

– PageRank
● (normalized eigen vector + random jumps)

[we will talk in detail about that later]

– Katz Centrality
● (connections with distant neighbors are penalized)
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Centrality in Directed Networks
● Degree:

– in and out centrality

● Betweenness:
– Consider only directed paths:

– When normalizing take care of ordered pairs

● Closeness
– Consider only directed paths

● Eigenvector (already prepared)

CB
'
(i)=

CB(i)

(n−1)(n−2) number of ordered pairs is 
2x the number of unordered

CB(i)=∑
j≠k

g jk(i)

g jk
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Centrality in Weighted Networks

● Degree:
– Sum weights (non-weighted equals weight=1 for all edges)

● Betweenness and Closeness:
– Consider weighted distance

● Eigenvector
– Consider weighted adjacency matrix



Pedro Ribeiro – Node Centrality

Node Centralities: Conclusion
● There are other node centrality metrics,

but these are the “quintessential” 

● Which one to use depends on what you want to 
achieve or measure
– Worry about understanding the concepts
– They enlarge your graph vocabulary
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Node Centralities: Conclusion

Betweenness Closeness Eigenvector

Degree Harmonic Katz
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Node Centralities: Conclusion
● All (major) network analysis packages provide them:

● Also all (major) network analysis and visualization platforms:
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