Link Analysis: PageRank

(Heavily based on slides from Jure Leskovec and Lada Adamic @ Stanford University)

Web as a Graph

Structure of the Web

- On this lecture we will talk about how does the Web graph look like:
 - 1) We will take a real system: the Web
 - 2) We will represent it as a directed graph
 - 3) We will use the language of graph theory
 - Strongly Connected Components
 - 4) We will design a **computational experiment**:
 - Find In-and Out-components of a given node \boldsymbol{v}
 - 5) We will learn something about the **structure of the Web**: **BOWTIE**!

The Web as a Graph

Q: what does the Web "look like" at a global level?

- Web as a **graph**:
 - Nodes = web pages
 - Edges = hyperlinks

- Side issue: what is a node?
 - Dynamic pages created on the fly
 - "dark matter" inaccessible database generated pages

The Web as a Graph: Example

I'm giving a class on Network Science

Classes are on FC6 building

Computer Science Department at FCUP

University of Porto

The Web as a Graph: Example

- In early days of the Web links were navigational
- Today many links are transactional (used not to navigate from page to page, but to post, comment, like, buy, ...)

The Web as a Directed Graph

Other Information Networks

Citations

Wikipedia

What does the Web look like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a **directed graph** [Broder et al. 2000]:

- Given node **v**, what nodes can **v** reach?
- What other nodes can reach **v**?

For example: In(A) = $\{A, B, C, E, G\}$ Out(A)= $\{A, B, C, D, F\}$

Pedro Ribeiro – Link Analysis: PageRank

Reasoning About Directed Graphs

- Two types of directed graphs:
 - Strongly connected:
 - Any node can reach any node via a directed path In(A)=Out(A)={A,B,C,D,E}

- Directed Acyclic Graph (DAG):

 Has no cycles: if *u* can reach *v*, then *v* cannot reach *u*

- Any directed graph (the Web) can be expressed in terms of these two types!
 - Is the Web a big strongly connected graph or a DAG?

Strongly Connected Component

- A Strongly Connected Component (SCC) is a set of nodes **S** so that:
 - Every pair of nodes in **S** can reach each other
 - There is no larger set containing S with this property

Strongly connected components of the graph: {A,B,C,G}, {D}, {E}, {F}

Strongly Connected Component

• Fact: Every directed graph is a DAG on its SCCs

1)SCCs partition the nodes of **G** - That is, each node is in exactly one SCC

2) If we build a graph **G'** whose nodes are SCCs, and with an edge between nodes of **G'** if there is an edge between corresponding SCCs in **G**, then **G'** is a DAG

Structure of the Web

• Broder et al.: Altavista web crawl (Oct '99)

- Web crawl is based on a large set of starting points accumulated over time from various sources, including voluntary submissions.
- 203 million URLS and 1.5 billion links

<u>Goal</u>: Take a large snapshot of the Web and try to understand how its SCCs "fit together" as a DAG

Tomkins, Broder, and Kumar

Pedro Ribeiro - Link Analysis: PageRank

Graph Structure of the Web

Computational issue:

- Want to find a SCC containing node **v**?

• Observation:

- **Out(v)** ... nodes that can be reached from v (w/BFS)
- SCC containing \mathbf{v} is: $Out(v) \cap In(v) = Out(v,G) \cap Out(v,G')$, where G' is G with all edge directions flipped

Pedro Ribeiro - Link Analysis: PageRank

$Out(v) \cap In(v) = SCC$

- $Out(A) = \{A, B, D, E, F, G, H\}$
- $In(A) = \{A, B, C, D, E\}$
- So, SCC(A) = Out(A) ∩ $In(A) = \{A, B, D, E\}$

Graph Structure of the Web

• There is a single giant SCC

- That is, there won't be two SCCs
- Why only 1 big SCC? Heuristic argument:
 - Assume two equally big SCCs.
 - It just takes 1 page from one SCC to link to the other SCC.
 - If the two SCCs have millions of pages the likelihood of this not happening is very very small.

Structure of the Web

- Directed version of the Web graph:
 - Altavista crawl from October 1999
 - 203 million URLs, 1.5 billion links

Computation:

- Compute *In(v)* and *Out(v)* by starting at random nodes.
- Observation: The BFS either visits many nodes or very few

y-axis: number of reached nodes

Structure of the Web

- Result: Based on IN and OUT of a random node v:
 - **Out(v)** ≈ 100 million (**50%** nodes)
 - In(v) ≈ 100 million (50% nodes)
 - Largest SCC: 56 million (28% nodes)

x-axis: rank y-axis: number of reached nodes

• What does this tell us about the conceptual picture of the Web Graph?

Bowtie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]

Pedro Ribeiro - Link Analysis: PageRank

How to Organize the Web? Link Analysis

How to Organize the Web?

- How to organize the Web?
 - First try: Human curated
 Web directories
 - Yahoo, Sapo

N.

USEFUL TOOLS .Family Filter - Transle

TRY THESE

AI TAVISTA HIGHLIGHT

Google

Copyright ©1998 Google In

POWER SEARCH

iness & Financ

- Second try: Web Search
 - Information Retrieval: attempts to find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, spam, etc.
 - So we need a good way to rank webpages!

Web Search: Challenges

- 2 challenges of web search
- **1) Web contains many sources of information** Who to "trust"?
 - Insight: Trustworthy pages may point to each other!

2) What is the "best" answer to query "newspaper"

- No single right answer

- Insight: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- Web pages are not equally "important"
 - www.joe-nobody.com vs www.up.pt

 We already know: There is a large diversity in the web graph node connectivity

 So, let's rank the pages using the web graph link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches to computing the importance of nodes in a graph:
 - Hubs and Authorities (HITS)
 - PageRank
 - Topic-Specific (**Personalized**) **PageRank**

Hubs and Authorities (HITS)

Link Analysis

- Goal(back to the newspaper example):
 - Don't just find newspapers. Find "experts" pages that link in a coordinated way to good newspapers
- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Hubs and Authorities Each page has 2 scores:
 - Quality as an expert (hub):
 - Total sum of votes of pages pointed to
 - Quality as an content (authority):
 - Total sum of votes of experts

- Principle of repeated improvement

Pedro Ribeiro – Link Analysis: PageRank

Hubs and Authorities

Interesting pages fall into two classes:

1) Authorities are pages containing useful information

- Newspaper home pages
- Course home pages
- Home pages of auto manufacturers
- 2) Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of auto manufacturers

Counting in-links: Authority

(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and the authority score)

Pedro Ribeiro - Link Analysis: PageRank

Expert Quality: Hub

Reweighting

Mutually Recursive Definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
 - Note a self-reinforcing recursive definition
- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors *h* and *a*, where the *i*-th element is the hub/authority score of the *i*-th node

Hubs and Authorities

- Each page *i* has 2 scores:
 - Authority score: ai
 - Hub score: hi

Convergence criteria: $\sum_{i} \left(h_i^{(t)} - h_i^{(t+1)} \right)^2 < \varepsilon$ $\sum_{i} \left(a_i^{(t)} - a_i^{(t+1)} \right)^2 < \varepsilon$

HITS algorithm: Initialize: $a_j^{(0)} = 1/\sqrt{n}$, $h_j^{(0)} = 1/\sqrt{n}$

Then keep iterating until **convergence**: $\forall i$: Authority: $a_i^{(t+1)} = \sum_{j \to i} h_j^{(t)}$ $\forall i$: Hub: $h_i^{(t+1)} = \sum_{i \to j} a_j^{(t)}$ $\forall i$: Normalize: $\sum_i \left(a_i^{(t+1)}\right)^2 = 1, \sum_j \left(h_j^{(t+1)}\right)^2 = 1$

Hubs and Authorities Details

Hits in the vector notation:

Vector
$$\mathbf{a} = (a_1 \dots, a_n), \quad \mathbf{h} = (h_1 \dots, h_n)$$
Adjacency matrix $\mathbf{A} (n \times n)$: $A_{ij} = \mathbf{1}$ if $i \rightarrow j$

Can rewrite
$$h_i = \sum_{i \to j} a_j$$
 as $h_i = \sum_j A_{ij} \cdot a_j$

So: $h = A \cdot a$ And similarly: $a = A^T \cdot h$

Repeat until convergence:

$$\square h^{(t+1)} = A \cdot a^{(t)}$$

$$\square a^{(t+1)} = A^T \cdot h^{(t)}$$

■ Normalize $a^{(t+1)}$ and $h^{(t+1)}$

Hubs and Authorities Details

 \square What is $a = A^T \cdot h$? **Then:** $a = A^T \cdot (A \cdot a)$ ■ *a* is updated (in 2 steps): $a = A^T (A a) = (A^T A) a$ $\square h$ is updated (in 2 steps) $h = A (A^T h) = (A A^T) h$ **D** Thus, in 2k steps: $a = (A^T \cdot A)^k \cdot a$

 $h = (A \cdot A^T)^k \cdot h$

Repeated matrix powering

Hubs and Authorities **Details**

Definition: Eigenvectors & Eigenvalues

 Let R · x = λ · x for some scalar λ, vector x, matrix R
 Then x is an eigenvector, and λ is its eigenvalue

□ The <u>steady state</u> (HITS has converged):

 $\Box A^T \cdot A \cdot a = c' \cdot a$

Note constants *c',c"* don't matter as we normalize them out every step of HITS

• $A \cdot A^T \cdot h = c'' \cdot h$ • **So, authority** *a* is eigenvector of $A^T A$ (associated with the largest eigenvalue) Similarly: **hub** *h* is eigenvector of AA^T

PageRank (a.k.a., the Google Algorithm)

Links as Votes

- Still the same idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - <u>www.up.pt</u> has 42,000 in-links
 - www.joe-nobody.com has 1 in-link
- Are all in-links equal?
 - Links from important pages count more
 - Recursive question!

PageRank: the "Flow" Model

- A "vote" from an important page is worth more:
 - Each link's vote is proportional to the importance of its source page
 - If page *i* with importance *r_i* has *d_i* out-links, each link gets *r_i* / *d_i* votes
 - Page j's own importance r_j is the sum of the votes on its inlinks

PageRank: the "Flow" Model

- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $d_i \dots$ out-degree of node i

"Flow" equations: $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

PageRank: Matrix Formulation

Stochastic adjacency matrix M

Let page j have d_j out-links

If
$$j \rightarrow i$$
, then $M_{ij} = \frac{1}{d}$

M is a column stochastic matrix
 Columns sum to 1

Rank vector r: An entry per page

r_i is the importance score of page *i*

$$\sum_i r_i = 1$$

The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

М

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- Let:
 - *p(t)* ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*
 - So, p(t) is a probability distribution over pages

The Stationary Distribution

Where is the surfer at time t+1?

Follows a link uniformly at random $p(t + 1) = M \cdot p(t)$

$$p(t+1) = \mathbf{M} \cdot p(t)$$

Suppose the random walk reaches a state $p(t + 1) = M \cdot p(t) = p(t)$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

PageRank

How to Solve?

PageRank: How to Solve?

Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks

- Assign each node an initial page rank
- Repeat until convergence $(\sum_{i} |r_{i}^{(t+1)} r_{i}^{(t)}| < \varepsilon)$
 - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

d_i out-degree of node i

PageRank: How to Solve?

Power Iteration:

- Set $r_j \leftarrow 1/N$ • 1: $r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r ← r'
- If |r r'| > ε: goto 1
 Example:

 $\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \frac{1/3}{1/3}$

Iteration 0, 1, 2, ...

	у	а	m
У	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

PageRank: How to Solve?

а

Power Iteration:

- Set $r_j \leftarrow 1/N$ • 1: $r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$
- **2:** r ← r'

• If
$$|r - r'| > \varepsilon$$
: goto **1**
Example:

Iteration 0, 1, 2, ...

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

PageRank: 3 Questions

Does this converge?

- Does it converge to what we want?
- Are the results reasonable?

PageRank: Problems

Two problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

(2) Spider traps

(all out-links are within the group)

Eventually spider traps absorb all importance

Does it converge to what we want?

The "Spider trap" problem:

Does it converge to what we want?

The "Dead end" problem:

rh

Pedro Ribeiro - Link Analysis: PageRank

Solution to Spider Traps

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to a random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Solution to Dead Ends

 Teleports: Follow random teleport links with probability 1.0 from dead-ends

Adjust matrix accordingly

Final PageRank Equation

- Google's solution: At each step, random surfer has two options:
 - With probability β , follow a link at random
- With probability 1-β, jump to some random page
 PageRank equation [Brin-Page, '98]

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{n}_{d_{i} \dots \text{ out-degree}}_{d_{i} \dots \text{ of node } i}$$

The above formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends. See P. Berkhin, *A Survey on PageRank Computing*, Internet Mathematics, 2005.

The PageRank Algorithm

Input: Graph G and parameter β

- Directed graph G with spider traps and dead ends
- Parameter β
- Output: PageRank vector r

• Set:
$$r_j^{(0)} = \frac{1}{N}, t = 1$$

►
$$\forall j: \mathbf{r}'_{j}^{(t)} = \sum_{i \to j} \boldsymbol{\beta} \; \frac{r_{i}^{(t-1)}}{d_{i}}$$

 $\mathbf{r}'_{j}^{(t)} = \mathbf{0} \; \text{if in-deg. of } \mathbf{j} \text{ is } \mathbf{0}$

Now re-insert the leaked PageRank:

$$\forall j: r_j^{(t)} = r'_j^{(t)} + \frac{1-S}{N} \quad \text{where: } S = \sum_j r'_j^{(t)}$$

• while
$$\sum_{j} |r_{j}^{(t)} - r_{j}^{(t-1)}| > \varepsilon$$

Example

Node size proportional to the PageRank score

Pedro Ribeiro – Link Analysis: PageRank

NetLogo: PageRank

Pedro Ribeiro - Link Analysis: PageRank

Random Walk Restarts and Personalized PageRank

Example Application: Graph Search

Given:

Conferences-to-authors graph

Goal:

Proximity on graphs

Q: What is most related conference to ICDM?

Random Walk with Restarts

Personalized PageRank

- Goal: Evaluate pages not just by popularity but by how close they are to the topic
 Teleporting can go to:
 - Any page with equal probability
 - PageRank (we used this so far)
 - A topic-specific set of "relevant" pages
 - Topic-specific (personalized) PageRank (S ...teleport set)
 - $M'_{ij} = \beta M_{ij} + (1 \beta) / |S| \quad \text{if } i \in S$ $= \beta M_{ij} \qquad \text{otherwise}$
 - A single page/node (|S| = 1),
 - Random Walk with Restarts

PageRank: Applications

Graphs and web search:

Ranks nodes by "importance"

Personalized PageRank:

 Ranks proximity of nodes to the teleport set S

Proximity on graphs:

- Q: What is most related conference to ICDM?
- Random Walks with Restarts
 - Teleport back to the starting node:
 S = { single node }

Random Walk with Restarts

	Node 4	
Node 1	0.13	
Node 2	0.10	
Node 3	0.13	
Node 4	/	
Node 5	0.13	
Node 6	0.05	
Node 7	0.05	
Node 8	0.08	
Node 9	0.04	
Node 10	0.03	
Node 11	0.04	
Node 12	0.02	

S={4}

Notice: Nearby nodes have higher scores (are more red)

Ranking vector

Most Related Conferences to ICDM

Personalized PageRank

Graph of CS conferences

Q: Which conferences are closest to KDD & ICDM?

A: Personalized PageRank with teleport set S={KDD, ICDM}