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Web as a Graph



Structure of the Web

 On this lecture we will talk about how
does the Web graph look like:

1) We will take a real system: the Web
2) We will represent it as a directed graph

3) We will use the language of graph theory
- Strongly Connected Components

4) We will design a computational
experiment: @

- Find In-and Out-components of a given node v

5) We will learn something about the "‘?
structure of the Web: BOWTIE! O

Pedro Ribeiro - Link Analysis: PageRank



The Web as a Graph

Q: what does the Web “look like” at a
global level?

* Web as a graph: .
- Nodes = web pages Fd &
- Edges = hyperlinks H g R

* Side Issue: what is a node?
- Dynamic pages created on the fly

- “dark matter” - inaccessible database
generated pages

Pedro Ribeiro - Link Analysis: PageRank



The Web as a Graph: Example

I’'m giving
a class on
Network
Science

Classes are
on FC6
building

Computer
Science
Department
at FCUP
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The Web as a Graph: Example

I’'m giving

a class on
Network
Science N

N

Classes are
on FC6

building ™

N

Computer
Science
Department
at FCUP N

™~

University
of
Porto

* In early days of the Web links were navigational

 Today many links are transactional (used not to
navigate from page to page, but to post, comment,
like, buy, ...)
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The Web as a Directed Graph

I'm a student
at Univ. of X

I'm applying to
college

College
Rankings
| teach at
Univ. of X
USNews
Featured
Colleges

Netwo
class b

]

Blog post about
college rankings

Blog post
about
Company Z
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Other Information Networks

Kossinets-
Watts 2006

Citations Wikipedia
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What does the Web look like?

 How is the Web linked?
 What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:
- Given node v, what nodes can v reach?
- What other nodes can reach v?

E

B F

D C G

In(v) = {w | w can reach v} ::ncz'ra\)eiag\pllse:c E,G}

Out(v) = {w | v can reach w/ Out(A)={A,B,C,D,F}
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Reasoning About Directed Graphs
» Two types of directed graphs:

- Strongly connected: ;

 Any node can reach any node

via a directed path
In(A)=0ut(A)={A,B,C,D,E}

- Directed Acyclic Graph (DAG): -~ :

 Has no cycles: if u can reach v,

then v cannot reach u
D c

 Any directed graph (the Web) can be
expressed in terms of these two types!

- |s the Web a big strongly connected graph or a DAG?
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Strongly Connected Component

* A Strongly Connected Component
(SCC) Is a set of nodes S so that:

- Every pair of nodes in S can reach each other

- There is no larger set containing § with this
property

Strongly connected
components of the graph:
{A,B,C,G}, {D}, {E}, {F}
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Strongly Connected Component

« Fact: Every directed graph is a DAG on its SCCs

1)SCCs partition the nodes of G
- That is, each node is in exactly one SCC

2)If we build a graph G’ whose nodes are SCCs, and with
an edge between nodes of G’ if there is an edge
between corresponding SCCs in G, then G’ is a DAG

(1) Strongly connected components
of graph G: {A,B,C,G}, {D}, {E}, {F}
(2) G’ is a DAG:

{F}

{A,B,C,G}

G’

{D}
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Structure of the Web

* Broder et al.: Altavista web crawl (Oct '99)

- Web crawl is based on a large set of starting points accumulated
over time from various sources, including voluntary submissions.

- 203 million URLS and 1.5 billion links

Goal: Take a large snapshot of the Web and
try to understand how its SCCs “fit
together” as a DAG

s Broder, and
L . I. 'Ii"L' | I ¥ Ku mar
AL Vel
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Graph Structure of the Web

« Computational issue:

- Want to find a SCC
containing node v?

« Observation: =

- Out(v) ... nodes that can be reached from v (w/BFS)

- SCC containing v is:
Out(v) n In(v) = Out(v,G) n Out(v,G’),
where G’ is G with all edge directions flipped

In(v)

v
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Out(v) n In(v) = SCC

 Example:

- Out(A) = {A, B, D, E, F, G, H}
- In(A) = {A, B, C, D, E}
- S50, SCC(A) = Out(A) n In(A) = {A, B, D, E}
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Graph Structure of the Web

* There is a single giant SCC
- That is, there won't be two SCCs

* Why only 1 big SCC? Heuristic argument:
- Assume two equally big SCCs.

- |t just takes 1 page from one SCC to link to the
other SCC.

- If the two SCCs have millions of pages the
likelihood of this not happening is very very small.

o—®
o—®

Giant SCCa Giant SCC2
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Structure of the Web

* Directed version of the Web graph:

- Altavista crawl from October 1999
e 203 million URLs, 1.5 billion links

Reachability using outlinks
T T

Com pUtation: E 1e+89 | Outlink reachability — _
g 1e+88 - —

- Compute In(v) and Out(v) : [ _
by starting at random £ 100000 | -
nodes. || ]

- Observation: The BFS : ™| / |
either visits many nodes ‘.= =5,

frac. of starting nodes

or very few

x-axis: rank
y-axis: number of reached nodes

Pedro Ribeiro - Link Analysis: PageRank



Structure of the Web

* Result: Based on IN and OQUT  jump o e —
of a random node v: s '
- Out(v) = 100 million (50% nodes)

(b)

- In(v) = 100 million (50% nodes)
- Largest SCC: 56 million (28% nodes)

X-axis: rank
y-axis: number of
reached nodes

« What does this tell us about the
conceptual picture of the Web Graph?
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Bowtie Structure of the Web

IN

i ..”
44 Million nodes

56 Million nodes

S
Qo

D ~——_ Disconnected components

203 million pages, 1.5 billion links [Broder et al. 2000]
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How to Organize the Web?
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How to Organize the Web?

» How to organize the Web?
. © -5 YAHOO!& o &
- First try: Human curated  sswwee--

oviom

- A * Hews (on]
L N L Vol [Diraf], Duty, Tt Dvat,

Web directories _—— =

* Bdwiation » Brgiomd
Chuiwnciting, K-11, Cowvan, Conmiries, Bnpiens, U Bbas,

* Enwrtadame st (D] » Scknce
. TV, Marvies, Wi, Mapeition, . Py, Atmea . Eafmewing.
a O O a p O * Coverament ® Jocial Sciescs
* Health ® Sockty asd Cultuse
Medwise, D, Dimans, Trsass, Prople, Torrrane, Bubiion, ISPs, ...

- Second try: Web Search

* Information Retrieval: attempts
to find relevant docs in a small and
trusted set

- Newspaper articles, Patents, etc.

 But: Web is huge, full of untrusted
documents, random things, spam, etc.

- So we need a good way to rank webpages!
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Web Search: Challenges

2 challenges of web search

1) Web contains many sources of information
Who to “trust”?

- Insight: Trustworthy pages may point to each other!

2) What is the “best” answer to query “newspaper”
- No single right answer

- Insight: Pages that actually know about newspapers
might all be pointing to many newspapers
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Ranking Nodes on the Graph

* Web pages are not equally “important”
- WWW.joe-nobody.com vs www.up.pt

* We already know: There
Is a large diversity in the
web graph node
connectivity

* So, let’s rank the pages using the
web graph link structure!
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Link Analysis Algorithms

 We will cover the following Link Analysis
approaches to computing the importance of
nodes in a graph:

- Hubs and Authorities (HITS)
- PageRank
- Topic-Specific (Personalized) PageRank

Sidenote: Various notions of node centrality: Node u
O Degree centrality = degree of u

O Betweenness centrality = #shortest paths passing
through u

O Closeness cenirality = avg. length of shortest paths
from u to all other nodes of the network

O Eigenvector centrality = like PageRank
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Hubs and Authorities

(HITS)




Link Analysis

* Goal(back to the newspaper example):
- Don’t just find newspapers. Find “experts” - pages
that link in a coordinated way to good newspapers
 |dea: Links as votes
- Page is more important if it has more links

* |In-coming links? Out-going links?

e Hubs and Authorities NYT: 10
Each page has 2 scores:

_ Ebay: 3

- Quality as an expert (hub): SR
« Total sum of votes of pages pointed to e
CNN: 8

- Quality as an content (authority):
« Total sum of votes of experts WSJ: 9

- Principle of repeated improvement
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Hubs and Authorities

Interesting pages fall into two classes:
1) Authorities are pages containing useful
Information
- Newspaper home pages
- Course home pages . " o .Aum,,t,

Site
- Home pages of auto
manufacturers Hub ®

2) Hubs are pages that
link to authorities e
- List of newspapers
— Course bulletin
- List of auto manufacturers
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Counting in-links: Authority

(0 @
® ge

<>
E. 3

_ @ Each page starts with hub score 1
@ Authorities collect their votes

(Note this is idealized example. In reality graph is not bipartite and
each page has both a hub and the authority score)
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Expert Quality: Hub

1"

i <>
4 votes
&»
(5 ) \
(6 )

Facebook

o 1 vote

. @ 3 votes Hubs collect authority scores
@ 3 votes

(Note this is idealized example. In reality graph is not bipartite and
each page has both a hub and authority score)
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Reweighting

A

% new score: 19
11

? <
_ new score: 31
€p
(6 ) o O \
A Ty new score: 24

Facebook
o new score: 5
@ new score: 15

Authorities collect hub scores
@ new score: 12

(Note this is idealized example. In reality graph is not bipartite and
each page has both a hub and authority score)
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Mutually Recursive Definition

* A good hub links to many good
authorities

* A good authority is linked from many
good hubs

- Note a self-reinforcing recursive definition

 Model using two scores for each
node:

- Hub score and Authority score

- Represented as vectors k and a, where the /-th
element is the hub/authority score of the j-th node
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Hubs and Authorities

e Each page 1 has 2 scores: Convergence criteria:
: Z (h@ - h(t“))z <¢€
- Authority score: ai AL

L

- Hub score: hi Y (a® - a0 <

[
i

HITS algorithm:
OInitialize: aj(o) = 1/4/n, hj(o) =1/4y/n

OThen keep iterating until convergence:
O vi: Authority: af ™ = %, ht"
0 vi: Hub: hgt“) = Disj aj(t)
O vi: Normalize:

5 (6) =13, (5 -
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Hubs and Authorities <Letails}

O Hits in the vector notation:
O Vectora = (ay..,a,), h = (hy..,h,)
O Adjacency matrix A (n xn): A;j=1 if i—j

O Can rewrite h; = Zi—)j a; ds h; = Z]AU © A
OSo: h=A-a Andsimilarly: a = A" - h

O Repeat until convergence:
n h(t-l_l) = A . a(t)
0 q0EtD = AT . (O
O Normalize a®*D and pt+D
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Hubs and Authorities (Letails !
OWhatisa = AT - h?

OThen: a=A4"-(4:a)
%_J
new h ,

Oais updc:’re'gf‘(i% 2 steps):
a=A"(Aa) = (ATA) a

O 7 is updated (in 2 steps)
h=A(ATh) = (AAT) h

O Thus, in 2k steps:
a=(AT - A a

h=(A-ATY< h Repeated matrix powering
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Hubs and Authorities <Letails}

O Definition: Eigenvectors & Eigenvalues

OletR- x=4-x
for some scalar 4, vector x, matrix R
O Then x is an eigenvector, and 4 is its eigenvalue

O The steady state (HITS has converged):

Note constants c’¢c”

OAT-A-a=c-a don't matter as we
T o normalize them out
OA-A"-h=c -h every step of HITS

= So, authority a is eigenvector of ATA
(associated with the largest eigenvalue)
Similarly: hub h is eigenvector of AAT
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PageRank

(a.k.a., the Google Algorithm)




Links as Votes

 Still the same idea: Links as votes

- Page is more important if it has more links
* |In-coming links? Out-going links?

* Think of in-links as votes:

- www.up.pt has 42,000 in-links
- www.joe-nobody.com has 1 in-link

* Are all in-links equal?

- Links from important pages count more
- Recursive guestion!
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PageRank: the “Flow” Model

A “vote” from an important
page is worth more:

* Each link’s vote is proportional
to the importance of its source

Page

“ If page i with importance r; has
d; out-links, each link gets r; / d.
votes

“ Page j's own importance r; is
the sum of the votes on its in-
links
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PageRank: the “Flow” Model

A page is important if it is
pointed to by other important
pages

Define a “rank” r; for node j

J Ny d “Flow" equations:
l
J Iy ST, (2

d; ... out-degree of node i r =r./2+r
a y m

I .
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PageRank: Matrix Formulation
J

Stochastic adjacency matrix M
Let page j have d; out-links

i u
1
Ifj - i then M;; =— /]

. e I
= M is a column stochastic matrix ~

1
= Columns sumto 1 1/3 *[F
M

Rank vector r: An entry per page
r; is the importance score of page 1

2T =1
The flow equations can be written

r = M- r rjzzg
= i
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Random Walk Interpretation

Imagine a random web surfer:
At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random r=y ’i
J d

Ends up on some page j linked from i i~y Ao (1)

Process repeats indefinitely
Let:

p(t) ... vector whose it" coordinate is the
prob. that the surfer is at page i at time ¢t

So, p(t) is a probability distribution over pages
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The Stationary Distribution

Where is the surfer at time 7+1? /K{

* Follows a link uniformly at random

p(t+1)= M- p(t) pt+1)=M-p(z)
Suppose the random walk reaches a state
p(t+1)= M- -p(t) = p(¥)

then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

" So, r is a stationary distribution for
the random walk
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PageRank

How to Solve?



PageRank: How to Solve?

Given a web graph with n nodes, where the
nodes are pages and edges are hyperlinks

Assign each node an initial page rank
Repeat until convergence (Z, |r{# - r.t)] < g)

= Calculate the page rank of each node
(t+1) Z
I—] i

d; .... out-degree of node i
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PageRank: How to Solve?

Power Iteration:
" Setr; « 1/N

“If |[r—1| > ¢€:goto 1

Example:

ry" 1/3
r, | = 1/3
T 1/3

lteration 0, 1, 2, ...

Pedro Ribeiro - Link Analysis: PageRank
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PageRank: How to Solve?

Power lteration: % £ =
y| Vs 0
" Set g « 1/N al | o | 1
m| O Ve 0

Pl g

" r e r, =r,/2+r,
“If |[r—71| > €:goto 1 Iy =T, /2
Example:
8,1 /3 13 512 924 6/15
r | = /3 36 13 1124 ...  6/15
s, 13 16  3/12 1/6 3/15

lteration 0, 1, 2, ...
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PageRank: 3 Questions

(t+1) V.
r] o Z ;1 equi\?glently r — Mr

[—> ] 1
Does this converge?

Does it converge to what we want?

Are the results reasonable?
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PageRank: Problems
Two problems: \ ““““““ wd

{ 2

( 1) S 0 m e pa ges a re N :lrjtmngly Connected Cm-\}*DUT

[T - - ~

* Such pages cause
importance to “leak out”

(2) Spider traps
(all out-links are within the group)
" Eventually spider traps absorb all importance
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Does it converge to what we want?

The “Spider trap” problem:

il r(f)
+l) _ i
0—0° -

=] 1
Example:
Iteration: O, 1, 2, 3...
G _ ] | 0 | 0 | 0
Iy 0 1 ] 1
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Does it converge to what we want?

The “Dead end” problem:

_— r(t)
" i
o o rj _Z d
3]
Example:
Iteration: O, 1, 2, 3...
r, 1 | 0 | 0 | 0
r, 0 1 0O [0
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Solution to Spider Traps

The Google solution for spider traps: At each
time step, the random surfer has two options

= With prob. g, follow a link at random
= With prob. 1-£, jump to a random page

* Common values for # are in the range 0.8 t0 0.9
Surfer will teleport out of spider trap within a
few time steps
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Solution to Dead Ends

Teleports: Follow random teleport links with
probability 1.0 from dead-ends

= Adjust matrix accordingly

)

y a m

o

2

72

/2

72

olo|lo|B

]

72

72

s

/2

0

s

0

72

s
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Final PageRank Equation

Google’s solution: At each step, random
surfer has two options:

= With probability B, follow a link at random

= With probability 7-8, jump to some random page
PageRank equation [Brin-Page, ‘98]

> BTt (1-)-
’r'. — — — —
J . . dl n d; ... out—degree-

l—] of node i

The above formulation assumes that M has no dead ends. We can
either preprocess matrix M (bad!) or explicitly follow random teleport
links with probability 1.0 from dead-ends. See P. Berkhin, A Survey
on PageRank Computing, Internet Mathematics, 2005.
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The PageRank Algorithm

Input: Graph G and parameter 8
* Directed graph G with spider traps and dead ends

* Parameter f3
Output: PageRank vector r

" Set: r-(o) = l, t=1
J N
* do:

r(t
v =% B L

’} ) =0 if in-deg. of jis 0

* Now re-insert the leaked PageRank:

, 1-S .
Vj: r(t) 1@ + where: S = Z; (£)

-t=t+1
" while }; ‘rj(t) (t_l)l > €

(t 1)

[
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Node size proportional to the PageRank score
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NetLogo: PageRank
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Random Walk Restarts and

Personalized PageRank




Example Application: Graph Search

Given:

Conferences-to-authors

graph
Goal:

Proximity on graphs

* Q: What is most related
conference to ICDM?

< TCAI >

-
rd

S

\\)
rd
/ 5,
//

L4
et

p—,
i
",
",

< AAAI ;‘;;

< NIPS >

Conference
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KDD
SDM

< PhilipS. Yu

.

'-.:.’:.; Ning Zhong H;

(_R. Ramakrishnan )
o =

—_—

e —,

-
¢
.,

—

}\_fl Jorda_r}_#__)

Author



Random Walk with Restarts

2.
O
O mS

he
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Personalized PageRank

Goal: Evaluate pages not just by popularity
but by how close they are to the topic
Teleporting can go to:

Any page with equal probability

* PageRank (we used this so far)

A topic-specific set of “relevant” pages
= Topic-specific (personalized) PageRank (S ...teleport set)

A single page/node (|S| = 1),
= Random Walk with Restarts
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PageRank: Applications

Graphs and web search:

* Ranks nodes by “importance”
Personalized PageRank: -
= Ranks proximity of nodes

// Y
™,
< KDD >
" g

to the teleport set S <
Proximity on graphs: < SDM
* Q: What is most related < anar >

w7

conference to ICDM?

* Random Walks with Restarts

= Teleport back to the starting node: Conference
S = { single node }

e .,
- .,
< NIPS >
. S
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S ___—"“m‘
khh_lihng Zhong )

//d—d__ - ___HH"\
(_R. Ramakrishnan )

(: M. Jordan J\

Author



Random Walk with Restarts

0.10
0.13

S={4}
Notice: Nearby nodes have higher
scores (are more red)

Node 4

Node 1 0.13
Node 2 0.10
Node 3 0.13
Node 4 /

Node 5 0.13
Node 6 0.05
Node 7 0.05
Node 8 0.08
Node 9 0.04
Node 10 0.03
Node 11 0.04
Node 12 0.02

Ranking vector
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Most Related Conferences to ICDM
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Personalized PageRank

Q: Which conferences
are closest to KDD &
ICDM?

A: Personalized
PageRank with

Graph of CS conferences teleport set Sz{KDD;
ICDM}
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