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Structure of the Web
● On this lecture we will talk about how 

does the Web graph look like:

1) We will take a real system: the Web

2) We will represent it as a directed graph

3) We will use the language of graph theory
  - Strongly Connected Components

4) We will design a computational 
experiment:
  - Find In-and Out-components of a given node v

5) We will learn something about the 
structure of the Web: BOWTIE!
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The Web as a Graph

Q: what does the Web “look like” at a 
global level?

● Web as a graph:
– Nodes = web pages
– Edges = hyperlinks

● Side issue: what is a node?
– Dynamic pages created on the fly
– “dark matter” – inaccessible database 

generated pages
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The Web as a Graph: Example
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The Web as a Graph: Example

● In early days of the Web links were navigational

● Today many links are transactional (used not to 
navigate from page to page, but to post, comment, 
like, buy, ...)
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The Web as a Directed Graph
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Other Information Networks

Citations Wikipedia
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What does the Web look like?
● How is the Web linked?
● What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:
– Given node v, what nodes can v reach?
– What other nodes can reach v?

For example:
In(A) = {A,B,C,E,G}
Out(A)={A,B,C,D,F}
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Reasoning About Directed Graphs
● Two types of directed graphs:

– Strongly connected:
● Any node can reach any node

via a directed path
In(A)=Out(A)={A,B,C,D,E}

– Directed Acyclic Graph (DAG):
● Has no cycles: if u can reach v,

then v cannot reach u

● Any directed graph (the Web) can be 
expressed in terms of these two types!
– Is the Web a big strongly connected graph or a DAG?
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Strongly Connected Component
● A Strongly Connected Component 

(SCC) is a set of nodes S so that:
– Every pair of nodes in S can reach each other
– There is no larger set containing S with this 

property

Strongly connected
components of the graph:
{A,B,C,G}, {D}, {E}, {F}



Pedro Ribeiro – Link Analysis: PageRank

Strongly Connected Component
● Fact: Every directed graph is a DAG on its SCCs

1)SCCs partition the nodes of G
- That is, each node is in exactly one SCC

2)If we build a graph G’ whose nodes are SCCs, and with 
an edge between nodes of G’ if there is an edge 
between corresponding SCCs in G, then G’ is a DAG

(1) Strongly connected components 
of graph G: {A,B,C,G}, {D}, {E}, {F}
(2) G’ is a DAG:
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Structure of the Web
● Broder et al.: Altavista web crawl (Oct ’99)

– Web crawl is based on a large set of starting points accumulated 
over time from various sources, including voluntary submissions.

– 203 million URLS and 1.5 billion links

Goal: Take a large snapshot of the Web and 
try to understand how its SCCs “fit 
together” as a DAG

Tomkins, 
Broder, and 
Kumar



Pedro Ribeiro – Link Analysis: PageRank

Graph Structure of the Web
● Computational issue:

– Want to find a SCC
containing node v?

● Observation:
– Out(v) ... nodes that can be reached from v (w/BFS)
– SCC containing v is:

Out(v) ∩ In(v) = Out(v,G) ∩ Out(v,G’),
where G’ is G with all edge directions flipped
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Out(v) ∩ In(v) = SCC
● Example:

– Out(A) = {A, B, D, E, F, G, H}
– In(A) = {A, B, C, D, E}
– So, SCC(A) = Out(A) ∩ In(A) = {A, B, D, E}
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Graph Structure of the Web
● There is a single giant SCC

– That is, there won’t be two SCCs

● Why only 1 big SCC? Heuristic argument:
– Assume two equally big SCCs.
– It just takes 1 page from one SCC to link to the 

other SCC.
– If the two SCCs have millions of pages the 

likelihood of this not happening is very very small.
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Structure of the Web
● Directed version of the Web graph:

– Altavista crawl from October 1999
● 203 million URLs, 1.5 billion links

Computation:
– Compute In(v) and Out(v)

by starting at random
nodes.

– Observation: The BFS
either visits many nodes
or very few
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Structure of the Web

● Result: Based on IN and OUT
of a random node v:
– Out(v) ≈ 100 million (50% nodes)

– In(v) ≈ 100 million (50% nodes)

– Largest SCC: 56 million (28% nodes)

● What does this tell us about the
conceptual picture of the Web Graph?
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Bowtie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]



  

How to Organize the Web?

Link Analysis
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How to Organize the Web?
● How to organize the Web?

– First try: Human curated

Web directories
● Yahoo, Sapo

– Second try: Web Search
● Information Retrieval: attempts

to find relevant docs in a small and
trusted set

– Newspaper articles, Patents, etc.

● But: Web is huge, full of untrusted
documents, random things, spam, etc.

● So we need a good way to rank webpages!
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Web Search: Challenges

2 challenges of web search

1) Web contains many sources of information
Who to “trust”?
.

- Insight: Trustworthy pages may point to each other!

2) What is the “best” answer to query “newspaper”

    - No single right answer

    - Insight: Pages that actually know about newspapers 
might all be pointing to many newspapers
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Ranking Nodes on the Graph
● Web pages are not equally “important”

– www.joe-nobody.com vs www.up.pt

● We already know: There
is a large diversity in the
web graph node
connectivity

● So, let’s rank the pages using the 
web graph link structure!
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Link Analysis Algorithms
● We will cover the following Link Analysis 

approaches to computing the importance of 
nodes in a graph:
– Hubs and Authorities (HITS)
– PageRank
– Topic-Specific (Personalized) PageRank



  

Hubs and Authorities
(HITS)
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Link Analysis
● Goal(back to the newspaper example):

– Don’t just find newspapers. Find “experts” – pages 
that link in a coordinated way to good newspapers

● Idea: Links as votes
– Page is more important if it has more links

● In-coming links? Out-going links?

● Hubs and Authorities
Each page has 2 scores:
– Quality as an expert (hub):

● Total sum of votes of pages pointed to

– Quality as an content (authority):
● Total sum of votes of experts

– Principle of repeated improvement
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Hubs and Authorities
Interesting pages fall into two classes:

1) Authorities are pages containing useful 
information
– Newspaper home pages
– Course home pages
– Home pages of auto

manufacturers

2) Hubs are pages that
link to authorities
– List of newspapers
– Course bulletin
– List of auto manufacturers
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Counting in-links: Authority
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Expert Quality: Hub
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Reweighting
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Mutually Recursive Definition
● A good hub links to many good 

authorities
● A good authority is linked from many 

good hubs
– Note a self-reinforcing  recursive definition

● Model using two scores for each 
node:
– Hub score and Authority score
– Represented as vectors  and , where the 𝒉 𝒂 i-th 

element is the hub/authority score of the i-th node
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Hubs and Authorities
● Each page  has 2 scores:𝒊

– Authority score: 𝒂𝒊
– Hub score: 𝒉𝒊

HITS algorithm:
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Hubs and Authorities Details
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Hubs and Authorities Details
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Hubs and Authorities Details



  

PageRank
(a.k.a., the Google Algorithm)
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Links as Votes
● Still the same idea: Links as votes

– Page is more important if it has more links
● In-coming links? Out-going links?

● Think of in-links as votes:
– www.up.pt has 42,000 in-links
– www.joe-nobody.com has 1 in-link

● Are all in-links equal?
– Links from important pages count more
– Recursive question!
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PageRank: the “Flow” Model
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PageRank: the “Flow” Model
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PageRank: Matrix Formulation
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Random Walk Interpretation
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The Stationary Distribution



  

PageRank

How to Solve?
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PageRank: How to Solve?



Pedro Ribeiro – Link Analysis: PageRank

PageRank: How to Solve?
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PageRank: How to Solve?
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PageRank: 3 Questions
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PageRank: Problems
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Does it converge to what we want?
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Does it converge to what we want?
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Solution to Spider Traps
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Solution to Dead Ends
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Final PageRank Equation
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The PageRank Algorithm
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Example
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NetLogo: PageRank

PageRank.nlogo



  

Random Walk Restarts and
Personalized PageRank
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Example Application: Graph Search
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Random Walk with Restarts
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Personalized PageRank
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PageRank: Applications
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Random Walk with Restarts
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Most Related Conferences to ICDM
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Personalized PageRank
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