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Motivation and the

“small world” phenomenon
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k61 Stanley Milgram

* People chosen at random on a US State

* Request to send a letter to a given final person in another state :
If you know the final person, send directly to him
If not, send to someone you think it is more likely to know him

An Experimental Study of the
Small World Problem™
JEEFREY TRAVERS
Harvard University
AND
STANLEY MILGRAM
The City University of New York

Avbitrarily selected individuals (N—=296) in Nebraska and Boston are asked
to geiterate acquaintance chains to a target person in Massachusetts, employ-
ing “the small world method” {Milgram, 1947 ). Sixty-four chains reach
the target person. Within this group the mean number of intermediaries be-
tween staviers and bargets is 5.2. Boston starting chains reach the target
person with fewer intermediaries than those stavting in Nebraska; subpopula-
tions in the Nebraska group do not differ among themselves. The funneling
of chains through sociometric “stars’ is noled, with 48 per cent of the chains
passing through three persons before veacking the target. Applications of the
method to studies of large scale social siructure are discussed.
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COLUMBIA

e Ul “Small World” Project

* More than 20.000 chains of emails to 18 persons of 13 countries

An Experimental Study of Search
in Global Social Networks

Peter Sheridan Dodds,’ Roby Muhamad,? Duncan J. Watts'-2*

Al B 150
. . . . ~ 100 :
We report on a global social-search experiment in which more than 60,000 205 T
e-mail users attempted to reach one of 18 target persons in 13 countries by 50 H 1
forwarding messages to acquaintances. We find that successful social search is . 0 _.ﬂ S
o B = o . 12 3 4 5 6 7 8 9 101 12 3 4 5 6 7 8 9 10
conducted primarily through intermediate to weak strength ties, does not L c
require highly connected “hubs” to succeed, and, in contrast to unsuccessful Fig. 1. Distributions of message chain lengths. 15000
. . - - . - . (A) Average per-step attrition rates (circles) _
social search, disproportionately relies on professional relationships. By ac- and 95% confidence interval (triangles). (B) 10000
H S H H H Histogram representing the number of chains
counting for t!‘le attrltlop of message chc:uns, we estimate that SOCIE;II searches that ore completed in L steps (<t> = 401), 5000
can reach their targets in a median of five to seven steps, depending on the (€) “Ideal” histogram of chain lengths recov-
N . e . N ered from (B) by accounting for message attri-
separation of source and target, although small variations in chain lengths and tion (A). Bars represent the ideal histogram 123456783810
. - H H HH _ recovered with average values of r [circles in
participation rates generate large differences in target I'EEChablllt}'. We con (A)] for the histogram in (B); lines represent a decomposition of the complete data into chains that
clude that ﬂlthOngh glObﬂl social networks are, in principle searchable actual start in the same country as the target (circles) and those that start in a different country
! ! ! (triangles).

success depends sensitively on individual incentives.
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Planetary-Scale Views on a Large
Instant-Messaging Network

*
Jure Leskovec Eric Horvitz
Carnegie Mellon University Microsoft Research
jure@cs.cmu.edu horvitz@microsoft.com
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ZAON8 Facebook Friendships

* 69 hillions of friendships between 721 millions of persons
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T Computer Science > Social and Information Networks
N Four Degrees of Separation
pl Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, Sebastiano Vigna
Al {Submitted on 19 Nov 2011 (v1), last revised 5 Jan 2012 (this version, v3))
<
Frigyes Karinthy, in his 1929 short story "L\'aancszemek" ("Chains") suggested that any two persons are distanc
/x individuals, one of whom is a personal acquaintance, he could contact the selected individual [...]". It is not comp
S 1 & o h‘.,__ 5 = @ graph theory, but the "six degrees of separation” phrase stuck after John Guare's 1990 eponymous play. Followi
= one", where "distance” is the usual path length-the number of arcs in the path.) Stanley Milgram in his famous e

average number of intermediaries on the path of the postcards lay between 4.4 and 5.7, depending on the samg
We report the results of the first world-scale social-network graph-distance computations, using the entire Facek
corresponding to 3.74 intermediaries or "degrees of separation”, showing that the world is even smaller than we
interesting geographic subgraphs, looking also at their evolution over time.

The networks we are able to explore are almost two orders of magnitude larger than those analysed in the previ
very accurate.

Pedro Ribeiro - An Introduction to Network Science

distance



ZAOKNsY Facebook Friendships

* 1.59 billions of persons

My degrees of separation

ﬂ Pedro Ribeiro's average degrees of separation from everyone is 3.43.

1254

Three and a half degrees of separation

Blog
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T T Sergey Edunov, Carlos Diuk, Ismail Onur Filiz, Smriti Bhagat, Moira Burke
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How to explain this?
* Imagine that a person has, on average,

100 friends

- 0 intermediates: 100
- 1 intermediate: 1002 = 10.000
- 2 Intermediates: 1003 = 1.000.000

- 3 intermediates: 1004 = 100.000.000

- 4 intermediates: 1005 = 10.000.000.000

- 5 Intermediates: 1006 = 1.000.000.000.000

* |n practice, not all friends are new, but still
there is a very fast growth
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More examples of “Small World”

* The six degrees of Kevin Bacon

- How many connections to link Kevin Bacon
to any other actor, director, producer...

- “Game” Initiated in 1994

Digcowver -"“‘"““"""tﬁ;”vﬁmwmmul

i your BOUE A
T R E el |
g hie tnasters of the game!

Six Degrees of

. Bacor

With an Introduction by Kevin Baeon

_.-----——__----_——_.---

Cra gF , Briamdisncle, & Mike Ginelli
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Joaquim
de Almeida



Joaquim
de Almeida

(Bacon Number: 2)

BURNINGPLAN

Kevin Bacon

/)  APOLLO 13




Joaquim

de Almeida

(Bacon Number: 2)

Joaquim de Almeida

The Burning Plain

Brett Cullen

Apollo 13

Kevin Bacon

Joaquim de Almeida
The Death and Life of Bobby Z
Laurence Fishburne
Quicksilver

Kevin Bacon

Joaquim de Almeida
One Man's Hero
Stephen Tobolowsky
Murder in the First

Kevin Bacon

Joaquim de Almeida
Moscow Zero
Rade SerbedZija
X-Men: First Class

Kevin Bacon




Nicolau
Breyner



Nicolau

Breyner
(Bacon Number: 3)

Nicolau Breyner

Night Train to Lisbon

Christopher Lee

Alice in Wonderland

Michael Sheen

Frost/Nixon

Kevin Bacon




|| & - "
Marilyn Charlie
Monroe Chaplin




o~

Marilyn
Monroe Chaplin
(Bacon Number: 2) (Bacon Number: 2)

Charlie Chaplin
Marilyn Monroe

Some Like It Hot A Countess from Hong Kong

Jack Lemmon Tippi Hedren

JFK Jayne Mansfield's Car

Kevin Bacon Kevin Bacon




More examples of “Small World”
* The six degrees of Kevin Bacon

Kevin Bacon Number # of persons

0 1
3150
373876
1340703
340756
28820
3383
451
52
8
1

© 00 N O O B W DN P

=
o

Pedro Ribeiro - An Introduction to Network Science


https://oracleofbacon.org/

T b, .
<ALR

XN

“People would start to come up to
me In the subway and literally go...”



“Zero! Zero! Zero! Zero!”



More examples of “Small World”

_

= 3

Paul Erdos
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More examples of “Small World”

* Erdos number;
- Scientific articles and very prolific

mathematician

http://wwwp.oakland.edu/enp/

Home
®
0%,®
. : .... AMERICAMN MATHEMATICAL SCICLET\_'
% MATHSCINET
'.- MATHEMATICAL REVIEWS
| Search MSC Collaboration Distance Current Journals Current Publications

MR Erdos Number = 4

Frererences | Free Tﬂﬂl!l

Pedro Ribeiro coauthored with | Srinivasan Parthasarathy! | MR3385657
Srinivasan Parthasarathy! | coauthored with | Yusu Wang MR3685725
Yusu Wang coauthored with | Boris Aronov MR2347131
Boris Aronov coauthored with | Paul Erdas! MR1289067

Change First Author Change Second Author |

New Search |
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Emergence of

Network Science




Complexity

“I think the
nhext century
will be the

century of
complexity”

Stephen Hawking (Jan, 2000)
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The Real World is Complex

World Population: 8 billions
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The Real World is Complex

World Population: 7.6 billions

i Human Brain Neurons:
&N 100 billions
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The Real World is Complex

World Population: 7.6 billions

Human Brain Neurons:
100 billions
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Complex Systems -» Complex Networks

Duration of Travel

[ Fgrg
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Complex Networks are Ubiquitous

Social

Pedro Ribeiro - An Introduction to Network Science



Complex Networks are Ubiquitous

Facebook
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Complex Networks are Ubiquitous

WY
CarlgsSimoes Y, ‘ LucRagadt

Ly Crigfinajeira o
e MichelFerreira
JorgeVigira —

Facebook Co-authorship
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Complex Networks are Ubiquitous

CarlgsSimoes

- Cri {na\;ﬁeira e
e MichelFerreira
JorgeVigira —

Facebook Co-authorship

Biological
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Complex Networks are Ubiquitous

Co-authorship

Brain
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Complex Networks are Ubiquitous

Biological

Brain
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P,y ¥
CarlosSimoes dia, Lu:E:F:agdt

Ly Crigfinajeira o
s MichelFerreira
JorgeVigira o

Co-authorship

Mefabolism
(proteins)



Complex Networks are Ubiquitous

Spatial
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Complex Networks are Ubiquitous

Spatial
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Complex Networks are Ubiquitous

Spatial
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Complex Networks are Ubiquitous

Spatial

Software
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Complex Networks are Ubiquitous

Spatial

Software \[../ / J [fm]\”

Module
Dependency
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Complex Networks are Ubiquitous

Spatial

Software | “\[../ / H\}J Text

Module
Dependency
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Spatial

Software

Dependency

Semantic
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Complex Networks are Ubiquitous

* (GRAPHS EVERYWHERE
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Network Science

Behind many complex systems there

IS a nhetwork that defines the Interactions
between the components

C N

In order to understand the systems...
we need to understand the networks!

A )
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Network Science

* Network Science has been emerging on
this century as a new discipline;

- Origins on graph theory and social network research

600 ]Y
500 —— "™ Erdos-Renyi

1959 l
400 -+ Granovetter

1973 /
300

200

100

0
N

©
© e 2
NN N

N N

N

° B L O
NN NN

©
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Image: Adapted from (Barabasi, 2015)
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* Two main contributing factors:

Pedro Ribeiro - An Introduction to Network Science



* Two main contributing factors:

1) The emergence of network maps
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* Two main contributing factors:

1) The emergence of network maps

* Movie actor network: 1998
* World Wide Web: 1999
 Citation Network: 1998

* Metabolic Network: 2000

* PPI Network: 2001
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* Two main contributing factors:

1) The emergence of network maps

_ * 436 nodes - 2003
* Movie actor network: 1998 (email exchange, Adamic-Adar, SocNets)

* World Wide Web: 1999 * 43,553 nodes - 2006
. Citation Network: 1998 (email exchange, Kossinets-Watts, Science)

. _ * 4.4 million nodes - 2005
* Metabolic Network: 2000 (friendships, Liben-Nowell, PNAS)

* PPI Network: 2001 - 800 million nodes - 2011

(Facebook, Backstrom et al.)
size matters®
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* Two main contributing factors:

2) Universality of network characteristics

Image: Adapted from (Newman, 2005)
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* Two main contributing factors:

2) Universality of network characteristics

* The architecture and topology of networks from different
domains exhibit more similarities that what one would
expect

Pedro Ribeiro - An Introduction to Network Science



* Two main contributing factors:

2) Universality of network characteristics

« The architecture and topology of networks from different
domains exhibit more similarities that what one would

6

10°4 - (a) L (b)

1 10"
.o
107
2
10°

Many real world networks are power law

exponent a
(in/out degree)
47 K 1o film actors 2.3
10° 10° 10' 10° 10° 10t 1w 10 10 telephone call graph 2.1
word frequency citations web hits ‘a\NS email networks 1.5/2.0
© 4 E.Q- pO\Ner sexual contacts 3.2
10° Www 2.3/2.7
. 10° internet 25
0 10° peer-to-peer 2.1
i ! metabolic network 2.2
10° 10’ 100 10 10t w0 2 3 45 6 7 protein interactions 24
books sold telephone calls received earthquake magnitude
Image: Adapted from (Newman, 2005) Image: Adapted from Leskovec, 2015
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Impact of Network Science: Economic
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Impact of Network Science: Scientific

- Joumalof
Complex Networks

nature
LA

GENETICS

L Applied
Network
Science

(o]

W . .
N Northeastern University
0~ "o Network Science Institute

Winter School on
‘ﬂ’h Network Science

GEMS LAB

SI
I m I I n d [a n a U n |Ve rs | ty Graph Exploration & Mining at Scale
Network Science Institute
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Impact of Network Science: Societal

—
SO

Network Science
for Military Coalition
Operations

Information Exchange and Interaction

Network Science Center
West Point %

CONNECTED

3
T ™ r
\(r,..

Connected
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Reasoning about Networks

- What do we hope to achieve from
studying networks?

- Patterns and statistical properties of
network data

- Design principles and models

- Algorithms and predictive models to
answer questions and make predictions

Pedro Ribeiro - An Introduction to Network Science



Mining and Learning with Graphs

« How do we mine networks?

- Empirically: Study network data to find
organizational principles

« How do we measure and quantify networks?
- Mathematical models: Graph theory and

statistical models

« Models allow us to understand behaviors and
distinguish surprising from expected phenomena

- Algorithms for analyzing graphs

« Hard computational challenges

Pedro Ribeiro - An Introduction to Network Science



Network Science Topics

* Some possible tasks:

Pedro Ribeiro - An Introduction to Network Science



Network Science Topics

* Some possible tasks:

- General Patterns
e Ex: “scale-free”, “small-world”

1251 Three and a half degrees of separation
Blo

70\1 00

f o

9

Esn

®

(0]
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S 501

o

o]

(O]

(&)

©

[T 25 4

. - Se llllllllllllllllllllllllllllllllllllllllllllllllllllllll
25 2.7 2.9 3.1 3.3 3.5 3.7 39 41 4.3 4.5 4.7 e _
Average degrees of separation il
[ costo | partinar SRR
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Network Science Topics

* Some possible tasks:

- General Patterns
e Ex: “scale-free”, “small-world”

- Community Detection
 What groups of nodes are “related”?

friends under the same advisor

CS department friends

-
\g_

v’ ~7

N)“
X A

highschool friends

Discover circles and why they exist
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Network Science Topics

* Some possible tasks:
- General Patterns

”n '

e Ex: “scale-free”, “small-world”

- Community Detection
 What groups of nodes are “related”?

- Node Classification
* Importance and function of a certain node?

Closeness Betweenness Eigenvector
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Network Science Topics

* Some possible tasks:
- General Patterns

”n '

e Ex: “scale-free”, “small-world”

- Community Detection
 What groups of nodes are “related”?

- Node Classification
* Importance and function of a certain node?

- Network Comparison
 What is the type of the network?

[ —

1]

NormalNetwok | Breastcancer Network

i52:4

Neuroblastoma Network. Lung cancer Network

IERREEE R RS
IEEEEEE]
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Network Science Topics

* Some possible tasks:
- General Patterns

”n '

e Ex: “scale-free”, “small-world”

- Community Detection
 What groups of nodes are “related”?

- Node Classification
* Importance and function of a certain node?

A il

- Network Comparison o RE
+ What is the type of the network? *
- Information Propagation
- Epidemics? Robustness? Rl Y
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Network Science Topics

* Some possible tasks:

- General Patterns
e Ex: “scale-free”, “small-world”

- Community Detection
 What groups of nodes are “related”?
- Node Classification

* Importance and function of a « S
- Network Comparison St ___><'""==i

« What is the type of the netwo|  '"Prediction &5 >< ?E;
- Information Propagation T N

« Epidemics? Robustness? ‘ o

- Link prediction

* Future connections? Errors in graph constructions?

Pedro Ribeiro - An Introduction to Network Science



Brief Introduction to

Graph Theory and
Network Vocabulary




Terminology

 Objects: nodes, vertices |74
* Interactions: links, edges E
« System: network, graph G(V,E)

Pedro Ribeiro - An Introduction to Network Science



Networks or Graphs?

* Network often refers to real systems
- Web, Social network, Metabolic network
- Language: Network, node, link

 Graph is a mathematical representation of a
network

- Web graph, Social graph (a Facebook term)
- Language: Graph, vertex, edge

We will try to make this distinction whenever it is appropriate, but
in most cases we will use the two terms interchangeably

Pedro Ribeiro - An Introduction to Network Science



Choosing the Network

« If you connect individuals that work with each other, you
will explore a professional network

* If you connect those that are friends, you will be exploring
a friendship network

* If you connect scientific papers that cite each other, you
will be studying the citation network

« Another example: if you connect all papers with the
same word in the title, what will you be exploring?

 There might be several possible representations

The choice of the network representation of a given

fomain determines our ability to use it successfully

Pedro Ribeiro - An Introduction to Network Science



Simple and multi-graphs

* In general, graphs may have self-loops and
multi-edges

- A graph with either is called a multi-graph
09 ) O
Q@ 0@

- We will mostly work with simple graphs,
with no self-loops or multi-edges

e 2 %0

-0 -0
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Network Types

oK PR

Undirected

« co-authorship networks  www hyperlinks

* actor networks * phone calls
» facebook friendships e roads network

Pedro Ribeiro - An Introduction to Network Science



Network Types

« Examples:
- Weight (duration call, distance road, ...)
- Ranking (best friend, second best friend, ...)

- Type (friend, relative, co-worker, ...)
[colored edges]

- We can have a set of multiple attributes

Node Attributes

* Examples:
- Type (nationality, sex, age, ...) [colored nodes]

- We can have a set of multiple attributes
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Network Types

* Different layers (types) of connections

a. Grain movement
network

b. Management
communication network

c. Insect and fungus
movement network

Pedro Ribeiro - An Introduction to Network Science



Network Types

Temporal Networks

« Evolution over time

-
-
'\“H (__f"-'
" . o

Original graph An edge added A node removed
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Node Properties

 From immediate connections

- Outdegree \O:

. . Outdegree=3
how many directed edges originate at node

- Indegree /d

. .. Indegree=2
how many directed edges are incident on a node

Pos

- Degree (in or out) Degree=5
number of outgoing and incoming edges
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Node Properties

 Degree related metrics:

- Degree sequence

* In-degree sequence:
« QOut-degree sequence: [3, 2, 2, 1, 0]
« Degree sequence:

In-degree Distribution

an ordered list of the (in,out) degree of each node

[4I 2’ 1' 1’ O]

[4, 3, 3, 3, 3]

- Degree Distribution

a frequency count of the occurrences of each degree
[usually plotted as probability - normalization]

Out-degree Distribution

2.5
2
15
1
0.5
0
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Sparsity of Networks

 Real Networks are usually very Sparse!

Network Dir/lUndir Nodes Edges Avg. Degree
Internet Undirected 192,244 609,066 6.33
WWW Directed 325,729 1,479,134 4.60
Power Grid Undirected 4,941 6,594 2.67
Mobile Phone Calls Directed 36,595 91,826 2.51
Email Directed 57,194 103,731 1.81
Science Collaboration  Undirected 23,133 93,439 8.08
Actor Network Undirected 702,388 29,397,908 83.71
Citation Network Directed 449,673 4,689,479 10.43
E. Coli Metabolism Directed 1,039 5,082 5.58
Protein Interactions Undirected 2,018 2,930 2.90

- A graph where every pair of nodes is connected
Is called a complete graph (or a clique)

Table: Adapted from (Barabasi, 2015)
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Connectivity
* Not everything is connected

Pedro Ribeiro - An Introduction to Network Science
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Bipartite

A bipartite graph is a graph whose nodes
can be divided into two disjoint sets U and V

such that every edge connects a node in U
toonein V.

Projection U

Projection V

Example:

- Actor Network
. U = Actor
.V = Movies

Image: Adapted from Leskovec, 2015

Pedro Ribeiro - An Introduction to Network Science



Bipartite Network Projections
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Bipartite - Human Disease Network
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@ Bone
@ Cancer

@ Cardiovascular
@ Connective tissue
@ Dermatological
@ Developmental
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