4 occurrences of the motif: |
{1,2,6}, {1,6,7}, {1,7,11}, {4,8,9}1
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1) MOTIVATION



Network Metrics

J There are many available metrics at the node level:
— E.g. degree, betweenness, closeness

J There are also many metrics at the global level:
— E.g. diameter, avg. distance, density, clustering coefficient

J What about something inbetween?

> (2> e
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Building Blocks of Networks

J Subnetworks, or subgraphs, are the building

=
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Building Blocks of Networks

’ Subnetworks, or subgraphs, are the building

blocks of networks ——
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Building Blocks of Networks

J Subnetworks, or subgraphs, are the building

blocks of networks _*
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Building Blocks of Networks

J Subnetworks, or subgraphs, are the building

blocks of networks ——

=
A= 4=
4=

J They have the power to characterize and
discriminate networks
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Building Blocks of Networks
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Example Application

4 Consider all possible directed
subgraphs of size 3

2B EL R LR
AR D
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Example Application

4 For each subgraph type:
— Metric capable of classifying subgraph “significance”
[more about that later]

— Values in interval [-1,1]
* Negative values indicate underepresentation
* Positive values indicate overrepresentation

4 With this you could create a
network fingerprint:
— Feature vector with all subgraph significances
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Example Application

4 Consider the following varied
types of networks:
— Regulatory Network (gene regulation)
— Neuronal Network (synaptic connections)
— World Wide Web (hyperlinks between pages)
— Social network (friendships)
— Semantic Networks (word adjacency)

* What happens when we look at their
fingerprints as defined before?
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Example Application

Triad Significance Profile
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Different networks have similar fingerprints!
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Example Application

Correlation

TRANSC-COLI
TRANSC-YEAST
TRANSC-YEAST2
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404
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Image: (Milo et al., 2004)

Different networks have similar fingerprints!
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Example Application

o What about undirected networks?

4 Consider the following
types of networks:
— Power Grid (electrical geographical power grid)
— Protein Structure (seconday structure adjacency
— Autonomous Systems (internet)

* What happens when we look at their
fingerprints as defined before?
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Example Application

Subgraph Ratio Profile
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Different networks have similar fingerprints! Image: (Milo et al., 2004)

Subgraphs: fundamental ingredients of networks Pedro Ribeiro



Subgraphs are powerful

/Subgraphs have the power to\
characterize and discriminate
S networks p

Their applicability is general
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2) CONCEPTS



Network Motifs

J Milo et al. (2002) came up with the definition of
network motifs:

— “recurring, significant patterns of interconnections”

J How to define:
— Pattern: induced subgraph
— Recurring: found many times, i.e., high frequency

— Significant: more frequent than it would be expected in
similar networks (same degree sequence)

1) PTOb(f-ra-ndom(GK) > fo-r'igina.l(GK))SP

(Over-representation) Parameters P, UD, N
2) foriginal(Gr)=U control the definition

(Minimum frequency) . (Milo et al., 2002, used
3) fo-r'i-g'inal (GI() _fra’n-do-m(GI{) > Dx f'ra-nd.om-(GI{) {001 ) 4’ 0.1 ) 1000})

(Minimum deviation)
Image: Adapted from (Milo et al., 2004)
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Subgraph concepts - Induced

J Induced Subgraphs

e cbr
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Subgraph concepts - Frequency

J How to count?
— Allow overlapping

— 4 occurrences:

{1,2,3,4,5}

{1,2,3,4,6}

{1,2,3,4,7}
{1,2,3,4,8}
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Subgraph concepts - Significance

Traditional Null Model — keep Degree Sequence

Random Networks .

12
Original Network Image: Adapted from (Milo et al., 2002)
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Network Motifs Applicability

Original Network

“Canon definition: oqrf‘,o o
— Directed and Undirected + 5
— Colored and uncolored @ @
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Network Motifs Applicability

Original Network

“Canon definition: : 3 o
— Directed and Undirected + 5
— Colored and uncolored @ @

Example application of colored motifs: [Ribeiro & Silva, Complenet'’2014]

Flights | Blogs I DBLP
||||||||| Domestic I O Liberal . Middle — Middle
‘ Top 1% w TOP 1%
Motif A Motif B | Motif C  Motif D Motif E Motif F MotlfG MotifH Motifl  Motif] Motif K

land Kare overrepresented
Gand Hareunderrepresented
J is almost neutral

Overrepresentation of A Overrepresentation of C Eis overrepresented
much larger than B I much larger than D Fis underrepresentedl
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Network Motifs Applicability

‘Variations on the concept

— Different frequency concepts

— Different significance metrics

— Under-Representation (anti-motifs)
— Weighted networks

— Different constraints for the null model
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Network Motifs Applicability

‘Variations on the concept

— Different frequency concepts

— Different significance metrics

— Under-Representation (anti-motifs)
— Weighted networks

— Different constraints for the null model

Ex. application of different null model: [Silva, Paredes & Ribeiro, Complenet'2017]

Keep K — 1
Keep Deg. Seq. Change Deg. Seq. ER

q\i 61.20% -2.29 FL -4.41
Q>

Macaque | 4 M 182.30 6.19 2.47 12.66

Cortex
i:i — 1| 1" 12.01 10.64 15.20

Network | K | Subgraph | Original

Random networks with prescribed degree frequencies
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Graphlet Degree Distribution

III

JWhat about a "node-level” subgraph metric?

JThe degree distribution is in a way measuring
participation in subgraphs of size 2 Q/Q

— Can we generalize this?
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Graphlet Degree Distribution

JWhat about a "node-level” subgraph metric?

JThe degree distribution is in a way measuring
participation in subgraphs of size 2 Q/Q

— Can we generalize this?

G
/\ /\ The same degree distribution

can correspond to very

/\ /\ different networks!
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Graphlet Degree Distribution

III

JWhat about a "node-level” subgraph metric?

JThe degree distribution is in a way measuring
participation in subgraphs of size 2 Q/Q

— Can we generalize this?

H

G
/\ /\ The same degree distribution

can correspond to very

/\ /\ different networks!

J Przulj (2006) came up with the definition of
graphlet degree distribution:

— Where does the node appear in orbits of subgraphs?
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Graphlet Degree Vector

JAn automorphism “orbit” takes into account the
symmetries of the graph

JThe graphlet degree vector is a feature vector with
the frequency of the node in each orbit position

I 1AM

orbit

GDV (v)

Subgraphs: fundamental ingredients of networks

< d.d
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Graphlet Degree Distribution

Equivalent to “degree distribution”

2-nod _

staphlet - Dode g"aphlets % 4-node graphlets
G{} G I 2 G G4
159

5- node graphlets

L

16
17Q
21 ’_%_Q
19

Gq Gl(J G|| G]’) G]% G14

% ’2 s 63
SJE 5 ; ‘ E
49
53
5!‘ g; ‘
Gy G,, G ) Gn Gy, >
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3) COMPUTATIONAL CHALLENGE




Computational Problem

JIn its core, finding motifs and graphlets its all
about finding and counting subgraphs.

’“Just knowing if a certain subgraph exists is
already an hard computational problem!

— Subgraph isomorphism is NP-complete

J Execution time grows exponentially as the size
of the graph or the motif/graphlet increases

— Feasible motif size is usually small (3 to 8) and
network size in the order of hundreds or
thousands of nodes
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What we have been doing

J Our primary goal was to improve efficiency in
network motif detection.

J How?
— Novel data structures for the graphs and subgraphs
— Novel faster algorithms
— Sampling techniques
— Parallel approaches (with different paradigms)
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Previous Approaches

J Network-centric approaches:

— Enumerate all k-connected sets of nodes and then
compute isomorphisms (ex: ESU/Fanmod, Kavosh)

|
| ; I ooy

({1}.]{2,3}l ({2},{3}) ({3}.{4.5}) ({4}.9) ({519

v v
({1,2},{3})  ({1,3}.{4,5}) ({2.3}.{4,5}) ({3.4}.{5}) ({3.5}.0)

& &b Ad &

J Subgraph-centric approaches:
— Find one subgraph at a time (ex: Grochow and Kellis)
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A set-centric approach

J Key insight: can we do better looking for a
given set of subgraphs?

— All k-subgraphs — even “uninteresting” subgraphs

— One at a time — no re-usage of computation

— Can we find what is common between subgraphs and
use that?

J Set-centric approach:

— Find a custom set of subgraphs
(maybe one, maybe all, maybe something in between)
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J Sequences and prefix trees

C
—l'_"'-.-_ ---""-_
) h (s
chin | L
coal i a I

coat | ,
cold n I \ t d

chin coal coat cold

’ Can this concept be extended?
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Motivation and Concept

J Subgraphs have common substructure

J Create a tree where each tree node
corresponds to a single graph vertex

L G-Tries } (etimology: Graph RetTRIEval)

Subgraphs: fundamental ingredients of networks Pedro Ribeiro



The G-Trie data structure

J G-Tries: (customized) collections of subgraphs
— Common substructures are identified
— Information is “compressed”

S 7 m

37 EREERE

#1 #2 #3 #4 #5 #6
[Ribeiro & Silva, DMKD,2014]
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The G-Trie data structure

J G-Tries: also valid for directed networks

Lb
I

#1 #2 #3 #4
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The G-Trie data structure

J G-Tries: also valid for colored/labeled networks

[ G-Trie ]

Subgraph Set

Node types: @ @ QO

Subgraphs

|

|

EdgE t‘ypes: IIIIII |
I

|

|

[Ribeiro & Silva, Complenet'2014]
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The G-Trie data structure

J G=Tries: can also incorporate orbit information

% ) .;\
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Creating a G-Trie

J Iterative insertion

Start with an empty g-trie

F=——-

INSERT INSERT INSERT

0111 0111 0111
1011 1010
#2 1000
#1 1101 I 1101 %2 1000
1110 1010 1000

; o o

E 0 E | ° 0 ° i o E
I _|.> | I > 1 . o
j 20 | o {10 {10

I- = ] 1 n
:11110; :1010;
iisGraph! lisGraph!

85.& Re| im0l o
P it e
| 3| 2[5

1110 :1010i :1000:
....... usGraph! lisGraph! lisGraph!

2l
S I R ey
32

z
%:

#1 #1 #1 #2 #1 #32 #1 #2 #3 #1 #2 #3
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The Need for a Canonical Form

“There are different node orderings representing
the same subgraph

0 1 0111 2 3 0010 3 > 0001
1000 0010 0001
1000 1101 0001
2 3 1000 1 0 o010 0 1 1110

JCanonical form for a getting an unique g-trie

‘'Different canon will give origin to different g-
tries
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Impact of Canonical Form

#1 #2 #3 #4 #5 #6
Graph
0111 0111 0111 0111 0110 0110
lexicographically 1011 1011 1010 1000 1001 1001
larger 1101 1100 1100 1000 1001 1000
1110 1100 1000 1000 0110 0100
0111 0011 0001 0001 0011 0001
bl :&":ﬁ:’!““” 1011 0011 0011 0001 0011 0010
1101 1101 0101 0001 1100 0101
1110 1110 1110 1110 1100 1010
lexicographically lexicographically
larger smaller
| |
[ ] [ ]
0 ]
| e
: : :
®
10 00
S EES ce| |o
8y oe
1 110 110 010 000
1110 1100 mu-uH iono 0100 1110 | | 1110 | | 1100 1110 | | 1010 1110
#1 #6 #1 #2 #5 #3 #6 #4
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Custom Canonical Form

J Connectivity

— Path induces connected subgraph
J Compressibility

— More common substructure, less g-tries nodes
J Constraining

— As many connections as possible to ancestor nodes
(limit possible matches)

GTCanon
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GTCanon Example

by
ﬂf\?&
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Searching with G-Tries

’ Backtracking Procedure
— Searching at the same time for several subgraphs

0 1 2
0111
1011
T m G
1110
3 4 5

| aapeed Candidates for node 1: {0, 1, 2, 3, 4, 5}
o | i Try 0: Match = {0}, Neighb. = {1,3,4}
;0 Try 1: Match = {0,1}, Neighb. = {2,3,4,5}
I Try 2: no edge from 2 to 0! FAIL
& 10 | Try 3: no edge from 3 to 1! FAIL
Try 4: Match = {0, 1, 4} FOUND!
A - Try 5: no edge from 5 to 1! FAIL
! 110 |
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Searching with G-Tries

’ The same subgraph could be found several
times due to automorphisms (symmetries)

0111 ~ - 2
T A0 NN 6
e 1S TS
i
[— :III2 | We would not only find {0,1,4} but also:
®lio i {0, 4, 1}
g e
f {10 "1, 4,0}
o] °{4,0, 1}
L *{4,1,0)
& 51105 |
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Symmetry Breaking Conditions

J Conditions on node labels

Symmetry Breaking Conditions: {a<b, b<c}
b C
0 3 5 Possible Matches of {a,b,c} in the graph of size 7:
2 {2,3,4} - OK! {3,4,2}- No match (b>c)
~2:4,3}- No match (b>c) {4,2,3}—- No match (a>b)
1 4 6 {3,2,4}-No match (a>b) <{4,3,2}- No match (a>b, b>c)

o Augment g-trie with these conditions

— Match only when conditions of at least one descendant
are respected

J Filter conditions to ensure minimum work

— EX: transitive property (a<b,a<c,b<c leads to a<b, b<c);
assured descendants, only store relevant to node, etc
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Complete G-Trie Example

All six
g undirected 4-subgraphs

a<b a<b
°"8>o 8@ OR

b<c b<c

4f”’)1‘\\‘~,_ _ng;=1‘=;$==___

|88 |30||55||28| |35

a<b a<b b<c b<c a<b a<b
b<c c<d c<d a<d
c<d b<c




Complete G-Trie Example

All 21 undirected 5-subgraphs

M \ 0<1, 2<3

ar ar

Q\. Q Q O\. =1 :?: 1<2 %

] 1<2 ] = ! 1<2, 2<3
'- 0=3 \ ar '- ¥

ci>§ 2¢3  |[O® d??' a! Eal £ 2::3 A

| el | e NS ey

SN 7 e e N i 5 s e e S s e

3=4 3<=4 1=2 0=1 1=2 1=2 0=<1 1<2 1<2 0=1 2<3 D=1 1<2 0=1 0<1 1=2 1<2 0=<1 D=1 0=1
0=3 <4 3<4 1=3 2<3 2<3 l=4 2<3 2<3 l<? l=2
0=4 3=4 2<4 2=3 3=4 2=3
1<2 3=4
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Sequential version: some results

J Comparison with main competing algorithms
— ESU & Kavosh (network-centric)
— Grochow and Kellys (subgraph-centric)

’J Implemented in common framework
— Implementation at least as efficient as original
— C++ as the programming language
— Efficient graph primitives
— More “fair” comparison

Subgraphs: fundamental ingredients of networks Pedro Ribeiro



Sequential version: some results

J Set of 12 representative networks

dolphins social
circuit physical
neural biological
metabolic biological
links social
coauthors social
ppi biological
odlis semantic
power physical
company social

foldoc Semantic

internet Physical

Subgraphs: fundamental ingredients of networks

no
yes
yes
yes
no
no
yes
no
yes
yes

no

252
297
453
1,490
1,589
2,361
2,909
4,941
8,497
13,356
22,963

399
2,345
2,025

19,022
2,742
6,646

18,241
6,594
6,724

120,238
48,436

5.1
3.2
14.5
8.9
22.4
3.5
5.6
11.3
2.7
1.6
13.7
4.2

Nr. Nelghbours

Average

12
14
134
237
351
34
64
592
19
552
728
2,390
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Sequential version: some results

’ On both directed and undirected graphs we
were from 1 to 2 orders of magnitude faster
than existing state of the art at that time

— From 10x to 200x

Example results for full census of size k
(speedup on a set of undirected networks)

Network k Kavosh Grochow

dolphins
circuit

8

9
coauthors 6
o]s] 5
power Vs
4

internet
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Sequential version: some results

’ On both directed and undirected graphs we
were from 1 to 2 orders of magnitude faster
than existing state of the art at that time

— From 10x to 200x

Example results for full census of size k
(speedup on a set of directed networks)

mn Kavosh Grochow

neural

5
metabolic 5
links 4
odlis 4
company 4
foldoc 4
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Sequential version: some results

’ On both directed and undirected graphs we
were from 1 to 2 orders of magnitude faster
than existing state of the art at that time

— From 10x to 200x

3 4 9 6 7 8
subgraph size

10 * O — dolphins & ppi

: : : Fal circuit * —— power

9] coauthors < internet

2 @ =4 4 —4—4
2 g = —— ﬁb B
o) Ak E ; ; :
1 ;

9

(a) vs ESU on undirected networks
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Speedup

o
=
3]

—
=

"1 0 — neural

<& —— odlis

M —— metabolic % —— company
) —— links 4 —— foldoc
,a-"’:?J-'i—— = E
-.--"‘—:_____-%Ij ______.E:|
e i
T :
4 D

subgraph size

(b) vs ESU on directed networks
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Sequential version: some results

’ Speedup also when looking for different sets of
subgraphs (other than full census of size k)

- Better speedup as more subgraphs are being
searched at the same time (set-centric)

Subgraphs: the building blocks of complex networks Pedro Ribeiro



Sequential version: some results

J Speedup also when using colored networks

Node types: (O
Edge types: —

Node types: @ @
Edge types: === i

Execution Time (seconds) Speedup
network |k ESU (via Fanmod) G-Tries G-Tries
Original Avg.Random Total |Original Avg.Random Total| vs ESU
3 2.1 2.1 209.06 0.73 0.29 29.13
blogs |4] 232.10 263.45 26,577.10 53.04 15.10 1,563.04
3 0.50 0.25 2550 0.15 0.02 2,15
dblp 4 8.11 11.80 1,188.11 1.90 0.17 18.90
5 276.03 479.57 48,233.03| 70.02 5.50 620.02
D 1.50 1.63 164.59 0.48 0.05 5.48
flights (4] 139.36 187.00 18,839.36] 35.01 423  458.01
3] 23.02 33.55 3,378.02 7.51 70 17721
elections|4(6,987.34 7,434.25 750,412.02| 800.86 256.68 26,468.85

Subgraphs: the building blocks of complex networks
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Dynamic G-Tries

J Speedup also when adapting to
network-centric methodology

- Use as base any enumeration method (e.g. ESU)
A While enumerating, embed
2 5 mrt occurrences in a g-trie!

| ' Different leafs may represent the same

({1}.{2.3}) ({2},{3}) ({3}

+— subgraph due to symmetries! }
§ 4 Use nauty for discovering isomorphic
@&) @{@g &@{%@ A classes of leafs (but occurrences are

({12}{3}1 ({1,3}.{4,5}) {23}{45}) ({34}{5}-) (1351 &)
grouped, avoiding redundancy)

FaSE — Fast Subgraph Enumeration

[Paredes & Ribeiro, ASONAM' 2013]

Pedro Ribeiro
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Graph Representations

’ Core graph primitive is edge verification
- Adjacency Matrix (AdjMat) gives that in O(1)
- Used when O(n?) fits in memory

J For larger sparse graphs we use an hybrid
representation:

- Combine linear search + hash tables + trie

- Low-level optimizations (cache, bitwise ops, ...)
[Paredes & Ribeiro, NetSciX'2016]

’ Overhead with AdjMat is small !
- From 4x more with binary search

e

- Less than 1.5x on average with hybrid approach
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Iterative updates

J Update subgraph counts after edge deletion or
removal

— Take into account only the subgraphs that
touch(ed) that particular edge

[Silva, Paredes & Ribeiro, Complenet'2017]

’ Add the capability of following the isomorphic
type of a set of nodes

— Edge updates change the type of subgraph

Automaton to keep subgraph type as "state”

[Paredes & Ribeiro, Complenet'2018]
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Improve motif discovery

J Iterative deepening of subgraph size
— Start with smaller sizes and keep incrementing

— Discard supergraphs that contain non-interesting
subgraphs (ex: frequency = 0)

— Generate only supergraphs of interesting subgraphs

100
90
80
70
60
50

Avoided (%)

-i- karate
2l —4—circuit

30 =¥— euroroa d
20

10

0
4 5 6 7 8 9 10 11

size of subgraphs (k)

Improve candidate subgraph generation

[Gracio & Ribeiro, Complenet'2019]
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Improve motif discovery

4 Combinatorial optimizations
— Lossless compression of original graph
— Count on reduced graph; extrapolate results

o g 9 9 @ Condensation
19 9.9 @ : {1:{01

3-subgraphs | 4-subgraphs 5-subgraphs 6-subgraphs

|
: |
Condensed Graph : : | Q
(5) (0) Possible | | !
Extensions |
up to size 6 : : I
|
(0) :> | | |
| | |
| | |
I I

(o) () () ()

1 occurrence 5 occurrences 10 occurrences 10 occurrences

Account for multiple occurrences once

[Martins & Ribeiro, Complenet'2020]
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Extending existing metrics

’ Extending the applicability of graphlets to
directed networks

3-node Directed Graphlets

2-node
Directed o@ 5 8 10 13 14 17 18 20 22 24 25 27 29
Graphlets Si V W 9|¢fu\, 11&2 q(\‘::/'.15;:' 16 219 ../O\b:n b3 %2&3&1
s .2 ® * G3 G G Gﬁ G? GS G9 10 Gll GlZ GlB Gl4
1 & G, ’ 4-node Directed Graphlets

2 34 60 64 6l 72 73 74

35 50 /e
42 i iZi 51 56 58
33 63
GlS Gl6 Gl? GlS Gl9 G20 GZl 22 G23 G24 G25 G

AT 86 87 100 101 106 107 108 @110
77 78 90 %111
/ E\% 113
- 82 88 89 93 98 99 4102 {103 r 109

GZ? GZS Gz9 GBO GSl GBZ G33 G34 G35 G?,é GS7 G
114 115 125 131 132 135 137 141 142 145 146
| 1 28
”6% éﬁm& A”%&” §133A13%§\. é 1
134
GS9 G40 G44 G45 G G G

[Aparicio, Ribeiro & Silva, TCBB, 2017]
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Temporal networks

J Study evolution of subgraphs

Network G

: Now Disconnected : : From Disconnected 1

Mh A ]

Graphlet-Orbit Transitions (GoT): fingerprints
for temporal network comparison
[Aparicio, Ribeiro & Silva, PloS One, 2018]
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Temporal networks

J Counting in streaming networks

@ ,—’ (8) .
S ' 2 @ S1 S2 S3 @

1 2 @
ONOIONOBONO,

(5

o(3)=1{1}
o(4) = {1,2}
o(3) = {2}

StreamFaSE: An online algorithm for

subgraph counting in dynamic networks
[Branquinho, Gracio and Ribeiro, CNA, 2020]
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Spatial Networks

J Networks with spatial features

Towards the Concept of Spatial Network Motifs

[Ferreira, Barbosa and Ribeiro, CNA, 2022]
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Multilayer Networks

J Motifs in networks with multiple layers

o
o © o
A -
©® o ® o o o
e © o e © o -
B *® =
e o
e © g

Journal submission being prepared

[Meira & Ribeiro, in preparation]
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4) SAMPLING APPROACH



Approximating results

J Sample subgraph occurrences
— Compute approximate results

— Trade accuracy for speed

Match 1 || Match 2 || Match 3 || Match 4 || Match 5
Match 6 || Match 7 || Match 8 || Match 9 M?E)Ch
Match Match Match Match Match
11 12 13 14 15
Match Match Match Match Match
16 17 18 19 20

Subgraphs: fundamental ingredients of networks
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Sampling approach

J Backtracking procedure produces search tree

{}
—T
@
I(J
{1} {2} [ 1 I
\ | \ | ) .
- \ o
210

|
I 1
110 010
! 1

1110 1010 1000 0100 1010 1000
#1 #2 #3 #4 #5 #6

{1,2,4} | |{1,2,5} [ 1 {1,2,3} [
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Sampling approach

J Original: unbalanced search tree
J Goal: uniform sampling of occurrences

=

. O O ooooooo
0 O OO0 oo ]
. O O

Subgraph Occurrences on k-census are in the last tree level
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Sampling approach

J Original: unbalanced search tree
J Goal: uniform sampling

Associate a probability with traversing

each search tree depth
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Sampling approach

’ Probabilities associated with each depth:
- {P,P,P, ...,P

max}

o Sampling is uniform:
— Probability of finding any occurrenceis P, x P, xP,x ... xP

max

" We can produce an unbiased estimator:

— Estimate of frequency of subgraph S =
Nr of sampled occurrences of S
P, xP, xP,x...xP,__
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Sampling approach

’ The probabilities P, control the search

’ Regarding accuracy: avoid small values of
probability close to the root

— Entire search branches disregarded — more variance

’ Regarding execution times: avoid high values
if probability close to the root

— More search branches explored — more time

J Choice should be balanced
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Sampling approach: some results

% 90% accuracy for motif detection in less than
20% of time [Ribeiro & Silva, WABI'2010]

J First sampling process for customized sets of
subgraphs

- Only sample the subgraphs we want

’ Many parametrization choices
— Adaptable for different use cases

— Possible to refine prediction for desired set of
subgraphs
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Adaptive sampling: ongoing work

J Adapt the sampling process:
— To the network
— To the subgraphs being searched
— To the available running time

’ High level ideas of the algorithm:

— Do several sampling iterations and look at how
estimations are converging
Ex: frequent subgraphs are easier to estimate

— Change sampling weights
— Changesubgraphs in the g-trie
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5) PARALLEL APPROACH



Opportunities for parallelization

4 Sequential version produces a
tree-shaped search tree

4 Search tree nodes are independent
from each other

. {0,1,3} e

0 010
o
10 If we know where we are,

m we can continue from there

110 010

Tree Nodes -> Work Units

1110 1010 1000 0100 1010 1000
#1 #2 #3 #4 #5 #6
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Initial Parallel Problem

o Input: set of work units
— G-Trie: (Network, G-Trie Node, Partial Match)
— ESU: (Network, Partial Match, Possible Extensions)

J Goal: efficiently distribute work units
among processors

JInitial target: distributed memory with
message paSSing [Ribeiro, Silva & Lopes, Cluster'2010]

J Constraints: Tree highly unbalanced
— Pre-determined static allocation is very hard!
— Requires dynamic load balancing
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Distributed Snhapshot

Receiver-Initiated Strategy

1) While computation not ended
- If work units available
. Process work unit
- Someone asked for work?

> Stop my computation
> Divide work in 2 similar halves
> Send half to requester
> Return to computation

Else
* Request work units from other processor

Subgraphs: fundamental ingredients of networks Pedro Ribeiro



Running Computation

Example Computation I G-Trie Node

I Graph Vertex
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Running Computation

Example Computation I G-Trie Node

I Graph Vertex
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Running Computation

Example Computation I G-Trie Node

I Graph Vertex
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Running Computation

Example Computation I G-Trie Node

I Graph Vertex
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Stopping Computation

Example Computation I G-Trie Node

Graph Vertex

Current Work Unit

D Explored Work Units
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Dividing Computation

III

J Goal: divide work in two “equal” halves

’ We create a compact representation of the
search staten (tree-shaped)

— Take advantage of common substructure in work units

— Efficient methods for: stopping, dividing, resuming

J We stop dividing when units are too small
— Threshold in distance to search tree leaf

’ We do a diagonal split

— Round-robin scheme
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Dividing Computation

Example Computation I G-Trie Node

Graph Vertex

Current Work Unit

D Explored Work Units
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Dividing Computation

Example Computation
Keep

Give to requester

Both
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Work Request

’ When we do not have work, which processor
should we contact?

— No data locality
— Search trees completely unbalanced

Ask a random processor!
— Random polling ([Sanders 1994])
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Some Parallel Results

' Absolute Speedup (distributed snapshots)

#CPUs: Speedup
32 64 128

30.8 59.4
31.3 61.7

—
o

dolphins

| —
[EY

circuit
neural
metabolic
links
coauthors
ppi
odlis
power
company
foldoc

A U1 O A OO O O

internet

Almost linear speedup up to 128 cores!
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Some Parallel Results

. _ [Aparipio, Rib_eiro _& Silva, ISPA'2014]
Shared memory implementation with similar results

et Subgraph #Subgraphs Sqquential #Threads: speedup Mahme with 32 real cores
size searched | time (s) 8 16 32 64 time (s) 8 16
polblogs 6 1,530,843 || 91,190.73 | 7.87 | 15.69 | 31.31 | 52.96 || 222,210.76 | 7.91 | 15.78
netsc 9 261,080 || 46648 | 7.90 | 1578 | 30.91 | 51.09 || 2,030.39 | 7.91 | 15.74
facebook b 21 || 6,043.90 | 675 | 14.72 | 30.23 | 5247 || 17851.16 | 6.78 | 14.67
routes S 21 || 4936.54 | 653 | 14.52 | 30.34 | 4876 || 20,706.67 | 6.80 | 14.67
company 6 1,530,843 || 26,955.71 | 6.74 | 14.54 | 29.99 | 45.12 || 94.384.39 | 6.69 | 14.61
blogcat 4 6 (| 541045 | 7.72 | 1437 | 24.92 | 25.69 || 15,666.05 | 7.88 | 1540
enron 4 199 || 1,038.60 | 6.23 | 12.69 | 23.78 | 2441 || 2,768.74 | 6.42 | 13.69
Network Subgraph | #Leafs | #Subgraph |Sequential #Threads: speedup
size found |types found| time (s) | & 16
jazz 6 3,113 112 295.95 16.75|14.86029.9219.74
polblogs 6 409,845 9,360 1,722.55 |7.85(15.56 30.04 17.48
netsc 9 445,410 14,151 295.12 |7.83|15.05)23.82(R6.54
facebook 5] 125 19 3,098.41 |7.67(15.34 31.00 51.81
company 6 1,379 310 739.12 |7.94|15.81§31.0218.
astroph 4 17 6 17947 16.62|13.60824.69
enron 4 17 6 1,370.46 |7.70(13.32§25.44]

Almost linear speedup up to 32 cores!
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Final Improvements

[G-Trie Complete Sequential Improvement}

+

[ Time Gains of Sampling Approach ]

+

[ Scalability of Parallel Approach ]
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6) EXAMPLE APPLICATIONS



Co-Authorship Networks

Undirected Network Motifs

L ]
9 Networks 5 9 Networks
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o _| |~ Chemistry o _| |~®— Environment Ecology
Clinical Medicine —=— Materials Science
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1 /)
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ol Molecular Biology Genetics I ol
Multidisciplinary ¥
o Neuroscience Behavior )
= g ; s o 4 ®
s T Physics = o
0 —e— Plant Animal Science 4 8 ¥
= :
PsyF:hlatry Psychology -
S Social Sciences, general A 0 /n
—=— Space Science /, \
/K /3 * ‘h /8N
o 5 - Apc /e / 3o
o - ov’.\x-.g:.-.--4:'l' . d - ’- l li c\c &: $:8.4°0 509w o - : i o
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]
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+
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[Choobdar, Ribeiro & Silva,
ASONAM'2012]
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Gene Co-Expression Networks

: Weighted Network Motifs

Significance score

2333938323238 3338z52392E2A8y
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@
=

works.

[Choobdar, Ribeiro & Silva, SAC'2015]

Subgraphs: fundamental ingredients of networks Pedro Ribeiro



Tennis Networks

[Aparicio, Ribeiro & Silva, Complenet'’2016]
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Dominance Patterns based on Directed Graphlets
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Football Networks

[Barbosa, Ribeiro and Dutra, CNA, 2022]

O—O—O® F—®

ABC flow motif ABA flow motif

Flow Motifs in Passing Networks
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Classifying and clustering

[Aparicio, Ribeiro & Silva, TCBB, 2017]
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Classifying and clustering

[Aparicio, Ribeiro & Silva, PLoS, 2018]

B Wi |t|ll.-|l'c'

Moo

W School 0.7
B Enron

B Gallery

B Emails

. B Conference

[_]]";“'l"l](ﬂ'll

B Authenticus
Warxiv hep-ph
W Minneapaolis
@ Escorts

W Philadelphia
B Transfers

H Twitter

OFacebook

H Enron

W Transfers

B Emails

W Authenticus
Marxiv hep-ph
B Workplace
B Conference
B School

B Gallery

W Philadelphia
B Minneapolis
B Twitter
HEscorts

W Enron

O Facebook

B Authenticus
W \Minneapolis
B Transfers

B Escorts

B Twitter

] Philadelphia
B CGallery

B Workplace
Warxiv hep-ph
W School

W Emails

B Conference

i ]

m

(c)

Fig 10. Similarity matrices according to (a) motif-fingerprints’ Euclidean distance (ED), (b) graphlet-degree-

agreement (GDA) and (c) orbit-transition-agreement (OTA). Clustering is performed using hierarchical clustering

with complete linkage.

Graphlet-Orbit Transitions
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Classifying and clustering

[Aparicio, Ribeiro & Silva, PLoS, 2018]
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Fig 11. Orbit-transition matrices of (a) a collaboration network and a (b) physical interaction network for al
4-node orbits.

Graphlet-Orbit Transitions

Subgraphs: fundamental ingredients of networks Pedro Ribeiro



7) RESOURCES



Some publications
Survey on existing Algorithms

- Survey on Subgraph Counting: Concepts, Algorithms,

and Applications to Network Motifs and Graphlets.
ACM Computing Surveys, 2021.

Table 2. Overview of All Major Exact Algorithms

Year Approach Type k-restriction Orbit Directed Code
MFINDER [122] 2002 Enum. Classical None X v [9]
ESU [194, 197] 2005 Enum. Classical None X v [195]
ITzHACK [71)] 2007 Enum. Classical <5 X v X
GrocHOW [56] 2007 Enum. Single-subgraph None X v X
KavosH [79] 2009 Enum. Classical None X v [123]
Grries [148, 150] 2010 Enum. Encapsulation None v v [145]
Race [103, 104] 2010  Analytic = Decomposition <5 X v [105]
NeMo [86] 2011 Enum. Single-subgraph None X v [156]
NETMODE [93] 2012 Enum. Encapsulation <6 X v [24]
SCMD [186] 2012 Enum. Encapsulation None X X X
acc-Morrr [111, 112] 2012 Analytic  Decomposition <6 X v [110]
ISMAGS [40, 68] 2013 Enum. Single-subgraph None X v [134]
QUATEXELERO [81] 2013 Enum. Encapsulation None X v [82]
FaSE [131] 2013 Enum. Encapsulation None X v [146]
ENSA [206] 2014 Enum. Encapsulation None X v X
Orca [62, 63] 2014 Analytic Matrix-based <5 v X [64]
Hasu-ESU [75] 2015 Enum. Encapsulation None X v X
SownG [177] 2015 Enum. Encapsulation None X v X
ORTMANN [128, 129] 2016  Analytic Matrix-based <4 v v X
PGD [3, 5] 2016  Analytic Decomposition <4 v X [2]
Parcomr [61] 2017 Enum. Encapsulation None X v X
EscarE [137] 2017 Analytic Decomposition <5 v X [169]
Jesse [113, 115] 2017 Analytic Matrix-based None v X [114]

- Strategies for Network Motifs Discovery. E-Science 20009.

Subgraphs: fundamental ingredients of networks

ACM

Computing Surveys

Table 3. Algorithms for Approximate Subgraph Counting

Year Output Kk-restriction Directed Strategy Code
ESA [80] 2004 Conc. None v Random Walk [9]
RAND-ESU [194] 2005  Freq. None v Rand. Enum. [195]
TNP [140] 2006 Conc. 5 X Enum. - Generalize X
RAND-GTRIE [147] 2010 Freq. None v Rand. Enum. [145]
GUISE [19] 2012 Conc. 5 X Random Walk [142]
RAND-SCMD [186] 2012 Freq. None v Enum. - Generalize X
WEDGE SAMPLING [170] 2013 Freq. 3 v Path Sampling [85]
GRAFT [143] 2014  Freq. 5 X Enum. - Generalize [141]
PSRW & MSS [188] 2014 Conc. None X Random Walk X
MHRW [160] 2015 Conc. None X Random Walk v
RAND-FASE [132] 2015  Freq. None v Rand. Enum. [133]
PATH SAMPLING [73] 2015 Freq. 4 X Path Sampling X
k-PROFILE SPARSIFIER [45, 46] 2016 Freq. 4 X Enum. - Generalize  [44]
MOSS [190] 2018  Freq. 5 X Path Sampling [187]
SSRW [204] 2018  Freq. 7 X Random Walk X
CC [25] 2018  Freq. None X Color Coding [24]
Table 4. Algorithms for Approximate Subgraph Counting with Restricted Access
Year Output k-restriction Strategy Code
WRW [59] 2016 Conc. None Random Walk X
IMPR. [31] 2016  Freq. 5 Random Walk [29]
CSS & NB-SEW [30] 2016 Conc. None Random Walk v
MINFER [189] 2017 Conc. 5 Enumerate - Generalize X

Pedro Ribeiro



Some publications

Core complete sequential algorithms

- Large Scale Graph Representations for Subgraph Census. NetSciX'2016

- G-Tries: a data structure for storing and finding subgraphs. Data Mining and Know. Discovery, 2014.
- Towards a faster network-centric subgraph census. ASONAM'2013

- Querying Subgraph Sets with G-Tries. DBSocial'2012 (best paper award)

aNetSo Wroctaw - Social

Sampling approach

- Rand-Fase: Fast Approximate Subgraph Census. SNAM'2015.
- Efficient Subgraph Frequency Estimation with G-Tries. WABI'2010.

Parallel approach

. IEEE ISPA
- Scalable Subgraph Counting using MapReduce. ACM'SAC 2017 . =
- Parallel subgraph counting for multicore architectures. ISPA'2014 - ©@sG
- A Scalable Parallel Approach for Subgraph Census Computation. MuCoCos'2014 __CLUSTER 2010 _
- Parallel Discovery of Network Motifs. Journal of Parallel and Distributed Computing. 2012. iﬂ i

- Efficient Parallel Subgraph Counting using G-Tries. IEEE Cluster'2010. Ek

Pedro Ribeiro
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Some publications

Concept variations and applications

- Improving the Characterization and Comparison of Football Players with Spatial Flow Motifs. CNA, 2022
- Towards the Concept of Spatial Network Motifs. CNA, 2022

- Condensed Graphs: A Generic Framework for Accelerating Subgraph Census Computation. CompleNet'2020
- Streamfase: An online algorithm for subgraph counting in dynamic networks. CNA, 2020

- Finding Dominant Nodes Using Graphlets. CNA, 2019

- Temporal network alignment via GoT-WAVE. Biolnformatics, 2019

- Graphlet-orbit Transitions (GoT): A fingerprint for temporal network comparison. PloS One, 2018

- Fast streaming small graph canonization. CompleNet'2018

- Network motifs detection using random networks with prescribed subgraph frequencies. CompleNet'2017
- Extending the applicability of Graphlets to Directed Networks. T C Biology and Bioinformatics, 2016

- A subgraph-based ranking system for professional tennis players. CompleNet'2016

- Discovering weighted motifs in gene co-expression networks. ACM-SAC'2015

- Discovering Colored Network Motifs. CompleNet'2014

- Co-authorship network comparison across research fields using motifs. ASONAM'2012.

- Motif Mining in Weighted Networks. Damnet'2012

SAC™

3ath Sympesium On Applied Computing

O‘O (3 @'PLOS | one
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’ Reference sequential implementation (C++)
[ http://www.dcc.fc.up.pt/~pribeiro/gtries/ J

J Parallel Implementation (C++ pthreads, multicores)
[ http://www.dcc.fc.up.pt/~daparicio/software.html J

J Cytoscape App (Java, “alpha” version)
[http://apps.cytoscape.org/apps/motifdiscovery J

uuuuuuuuuuuuuuuuu

gtrieScanner
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Subgraphs as Fundamental Ingredients
of Complex networks

Pedro Ribeiro

Thank you for your attention!

Contacts:

S, i\ Pedro Ribeiro

Lo el s e & pribeiro@dcc.fc.up.pt

SRR G P FaA FRY R R S A http://www.dcc.fc.up.pt/~pribeiro/
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