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1) MOTIVATION
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Network Metrics

 There are many available metrics at the node level:
– E.g. degree, betweenness, closeness

There are also many metrics at the global level:
– E.g. diameter, avg. distance, density, clustering coefficient

What about something inbetween?

?



Pedro RibeiroSubgraphs: fundamental ingredients of networks

Building Blocks of Networks

 Subnetworks, or subgraphs, are the building 
blocks of networks
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Building Blocks of Networks

 Subnetworks, or subgraphs, are the building 
blocks of networks

 They have the power to characterize and 
discriminate networks
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Building Blocks of Networks
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Example Application

Consider all possible directed
subgraphs of size 3
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Example Application

For each subgraph type:
– Metric capable of classifying subgraph “significance”
   [more about that later]

– Values in interval [-1,1]
• Negative values indicate underepresentation
• Positive values indicate overrepresentation

With this you could create a
network fingerprint:
– Feature vector with all subgraph significances
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Example Application

Consider the following varied
types of networks:
– Regulatory Network (gene regulation)
– Neuronal Network (synaptic connections)
– World Wide Web (hyperlinks between pages)
– Social network (friendships)
– Semantic Networks (word adjacency)

What happens when we look at their 
fingerprints as defined before?
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Example Application

Image:  (Milo et al., 2004)Different networks have similar fingerprints!
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Example Application

Image:  (Milo et al., 2004)Different networks have similar fingerprints!

Correlation
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Example Application

What about undirected networks?

Consider the following 
types of networks:
– Power Grid (electrical geographical power grid)
– Protein Structure (seconday structure adjacency
– Autonomous Systems (internet)

What happens when we look at their 
fingerprints as defined before?
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Example Application

Image:  (Milo et al., 2004)Different networks have similar fingerprints!
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Subgraphs are powerful

Subgraphs have the power to
characterize and discriminate

networks

Their applicability is general
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2) CONCEPTS
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Network Motifs

Milo et al. (2002) came up with the definition of 
network motifs:
– “recurring, significant patterns of interconnections”

How to define:
– Pattern: induced subgraph
– Recurring: found many times, i.e., high frequency
– Significant: more frequent than it would be expected in 

similar networks (same degree sequence)

Image: Adapted from (Milo et al., 2004)

Parameters P, U, D, N
control the definition

(Milo et al., 2002, used
{0.01, 4, 0.1, 1000})



Pedro RibeiroSubgraphs: fundamental ingredients of networks

No Match!

Ok Match!

Induced Subgraphs

Subgraph concepts - Induced
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How to count?
– Allow overlapping

– 4 occurrences:
{1,2,3,4,5}
{1,2,3,4,6}
{1,2,3,4,7}
{1,2,3,4,8}

Subgraph concepts - Frequency
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Subgraph concepts – Significance

Image: Adapted from (Milo et al., 2002)

Random Networks

Original Network

Motif

Traditional Null Model – keep Degree Sequence
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Network Motifs Applicability

Canon definition:
– Directed and Undirected
– Colored and uncolored
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Network Motifs Applicability

Canon definition:
– Directed and Undirected
– Colored and uncolored

Example application of colored motifs: [Ribeiro & Silva, Complenet'2014]
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Network Motifs Applicability

Variations on the concept
– Different frequency concepts
– Different significance metrics
– Under-Representation (anti-motifs)
– Weighted networks
– Different constraints for the null model
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Network Motifs Applicability

Variations on the concept
– Different frequency concepts
– Different significance metrics
– Under-Representation (anti-motifs)
– Weighted networks
– Different constraints for the null model

Ex. application of different null model: [Silva, Paredes & Ribeiro, Complenet'2017]

Random networks with prescribed degree frequencies
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Graphlet Degree Distribution

What about a “node-level” subgraph metric?

The degree distribution is in a way measuring 
participation in subgraphs of size 2
– Can we generalize this?
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Graphlet Degree Distribution

What about a “node-level” subgraph metric?

The degree distribution is in a way measuring 
participation in subgraphs of size 2
– Can we generalize this?

The same degree distribution
can correspond to very

different networks!
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Graphlet Degree Distribution

What about a “node-level” subgraph metric?

The degree distribution is in a way measuring 
participation in subgraphs of size 2
– Can we generalize this?

Przulj (2006) came up with the definition of 
graphlet degree distribution:
– Where does the node appear in orbits of subgraphs?

The same degree distribution
can correspond to very

different networks!
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Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position
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Graphlet Degree Distribution
Equivalent to “degree distribution”
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3) COMPUTATIONAL CHALLENGE
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Computational Problem

In its core, finding motifs and graphlets its all 
about finding and counting subgraphs.

Just knowing if a certain subgraph exists is 
already an hard computational problem!
– Subgraph isomorphism is NP-complete

Execution time grows exponentially as the size 
of the graph or the motif/graphlet increases
– Feasible motif size is usually small (3 to 8) and 

network size in the order of hundreds or 
thousands of nodes
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What we have been doing

Our primary goal was to improve efficiency in 
network motif detection.

How?
– Novel data structures for the graphs and subgraphs

– Novel faster algorithms

– Sampling techniques

– Parallel approaches (with different paradigms)

Scale Up!
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Previous Approaches

Network-centric approaches:
– Enumerate all k-connected sets of nodes and then 

compute isomorphisms (ex: ESU/Fanmod, Kavosh)

Subgraph-centric approaches:
– Find one subgraph at a time (ex: Grochow and Kellis)
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A set-centric approach

Key insight: can we do better looking for a 
given set of subgraphs?
– All k-subgraphs – even “uninteresting” subgraphs

– One at a time – no re-usage of computation

– Can we find what is common between subgraphs and 
use that?

Set-centric approach:
– Find a custom set of subgraphs

(maybe one, maybe all, maybe something in between)
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Inspiration

Sequences and prefix trees

 Can this concept be extended?
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Motivation and Concept

Subgraphs have common substructure

 Create a tree where each tree node
   corresponds to a single graph vertex

                               (etimology: Graph RetTRIEval)G-Tries
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The G-Trie data structure

G-Tries: (customized) collections of subgraphs
– Common substructures are identified 

– Information is “compressed”

[Ribeiro & Silva, DMKD,2014]
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The G-Trie data structure

G-Tries: also valid for directed networks
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The G-Trie data structure

G-Tries: also valid for colored/labeled networks

G-Trie

[Ribeiro & Silva, Complenet'2014]
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The G-Trie data structure

G-Tries: can also incorporate orbit information
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Creating a G-Trie

Iterative insertion

Start with an empty g-trie
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The Need for a Canonical Form

There are different node orderings representing 
the same subgraph

Canonical form for a getting an unique g-trie

Different canon will give origin to different g-
tries
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Impact of Canonical Form
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Custom Canonical Form

Connectivity
– Path induces connected subgraph

Compressibility
– More common substructure, less g-tries nodes

Constraining
– As many connections as possible to ancestor nodes 

(limit possible matches)

GTCanonGTCanon
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GTCanon Example
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Searching with G-Tries

Backtracking Procedure
– Searching at the same time for several subgraphs

Candidates for node 1: {0, 1, 2, 3, 4, 5}
   Try 0: Match = {0}, Neighb. = {1,3,4}
      Try 1: Match = {0,1}, Neighb. = {2,3,4,5}
         Try 2: no edge from 2 to 0! FAIL
         Try 3: no edge from 3 to 1! FAIL
         Try 4: Match = {0, 1, 4} FOUND!
         Try 5: no edge from 5 to 1! FAIL
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Searching with G-Tries

The same subgraph could be found several 
times due to automorphisms (symmetries)

We would not only find {0,1,4} but also:
• {0, 4, 1}
• {1, 0, 4}
• {1, 4, 0}
• {4, 0, 1}
• {4, 1, 0}
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Symmetry Breaking Conditions

Conditions on node labels

Augment g-trie with these conditions
– Match only when conditions of at least one descendant 

are respected

Filter conditions to ensure minimum work
– Ex: transitive property (a<b,a<c,b<c leads to a<b, b<c); 

assured descendants, only store relevant to node, etc
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Complete G-Trie Example

All six
undirected 4-subgraphs
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Complete G-Trie Example

All 21 undirected 5-subgraphs
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Sequential version: some results

 Comparison with main competing algorithms
– ESU & Kavosh         (network-centric)
– Grochow and Kellys (subgraph-centric)

 Implemented in common framework
– Implementation at least as efficient as original
– C++ as the programming language
– Efficient graph primitives
– More “fair” comparison
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Sequential version: some results

Set of 12 representative networks
Network Group Directed |V(G)| |E(G)| Nr. Neighbours

Average Max

dolphins social no 62 159 5.1 12

circuit physical no 252 399 3.2 14

neural biological yes 297 2,345 14.5 134

metabolic biological yes 453 2,025 8.9 237

links social yes 1,490 19,022 22.4 351

coauthors social no 1,589 2,742 3.5 34

ppi biological no 2,361 6,646 5.6 64

odlis semantic yes 2,909 18,241 11.3 592

power physical no 4,941 6,594 2.7 19

company social yes 8,497 6,724 1.6 552

foldoc Semantic yes 13,356 120,238 13.7 728

internet Physical no 22,963 48,436 4.2 2,390
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Sequential version: some results

On both directed and undirected graphs we 
were from 1 to 2 orders of magnitude faster 
than existing state of the art at that time
– From 10x to 200x

Example results for full census of size k
(speedup on a set of undirected networks)

Network k ESU Kavosh Grochow

dolphins 8 28.9 26.9 39.5

circuit 9 53.2 52.0 39.4

coauthors 6 64.4 66.3 39.7

ppi 5 61.8 62.1 25.6

power 7 38.2 38.0 285.9

internet 4 46.9 45.5 14.7
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Sequential version: some results

On both directed and undirected graphs we 
were from 1 to 2 orders of magnitude faster 
than existing state of the art at that time
– From 10x to 200x

Example results for full census of size k
(speedup on a set of directed networks)

Network K ESU Kavosh Grochow

neural 5 25.3 25.5 28.8

metabolic 5 69.9 68.9 15.4

links 4 14.9 15.2 13.2

odlis 4 29.3 29.7 22.6

company 4 48.9 50.1 25.3

foldoc 4 15.8 16.0 50.5
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Sequential version: some results

On both directed and undirected graphs we 
were from 1 to 2 orders of magnitude faster 
than existing state of the art at that time
– From 10x to 200x
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Sequential version: some results

Speedup also when looking for different sets of 
subgraphs (other than full census of size k)
- Better speedup as more subgraphs are being

   searched at the same time (set-centric)



Pedro RibeiroSubgraphs: the building blocks of complex networks

Sequential version: some results

Speedup also when using colored networks
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Dynamic G-Tries

Speedup also when adapting to
network-centric methodology
- Use as base any enumeration method (e.g. ESU)

Use nauty for discovering isomorphic
classes of leafs (but occurrences are
grouped, avoiding redundancy)

Different leafs may represent the same
subgraph due to symmetries!

While enumerating, embed
occurrences in a g-trie!

  FaSE – Fast Subgraph Enumeration G-Trie Dynamically Built

[Paredes & Ribeiro, ASONAM' 2013]
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Graph Representations

Core graph primitive is edge verification
- Adjacency Matrix (AdjMat) gives that in O(1)
- Used when O(n2) fits in memory

For larger sparse graphs we use an hybrid 
representation:
- Combine linear search + hash tables + trie
- Low-level optimizations (cache, bitwise ops, ...)

Overhead with AdjMat is small ! 
- From 4x more with binary search

- Less than 1.5x on average with hybrid approach

[Paredes & Ribeiro, NetSciX'2016]
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Iterative updates
 Update subgraph counts after edge deletion or 

removal
– Take into account only the subgraphs that 

touch(ed) that particular edge

 Add the capability of following the isomorphic 
type of a set of nodes
– Edge updates change the type of subgraph

Automaton to keep subgraph type as “state”

[Paredes & Ribeiro, Complenet'2018]

[Silva, Paredes & Ribeiro, Complenet'2017]
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Improve motif discovery

 Iterative deepening of subgraph size
– Start with smaller sizes and keep incrementing
– Discard supergraphs that contain non-interesting 

subgraphs (ex: frequency = 0)
– Generate only supergraphs of interesting subgraphs

Improve candidate subgraph generation

[Grácio & Ribeiro, Complenet'2019]
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Improve motif discovery

 Combinatorial optimizations
– Lossless compression of original graph
– Count on reduced graph; extrapolate results

Account for multiple occurrences once

[Martins & Ribeiro, Complenet'2020]
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Extending existing metrics

 Extending the applicability of graphlets to 
directed networks

[Aparício, Ribeiro & Silva, TCBB, 2017]
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Temporal networks

 Study evolution of subgraphs

Graphlet-Orbit Transitions (GoT): fingerprints
for temporal network comparison

[Aparício, Ribeiro & Silva, PloS One, 2018]
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Temporal networks

 Counting in streaming networks

StreamFaSE: An online algorithm for 
subgraph counting in dynamic networks

[Branquinho, Grácio and Ribeiro, CNA, 2020]
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Spatial Networks

 Networks with spatial features

Towards the Concept of Spatial Network Motifs

[Ferreira, Barbosa and Ribeiro, CNA, 2022]
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Multilayer Networks

 Motifs in networks with multiple layers

Journal submission being prepared
[Meira & Ribeiro, in preparation]
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4) SAMPLING APPROACH
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Approximating results

Sample subgraph occurrences
– Compute approximate results

– Trade accuracy for speed
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Sampling approach

Backtracking procedure produces search tree
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Sampling approach

Original: unbalanced search tree
Goal: uniform sampling of occurrences

Subgraph Occurrences on k-census are in the last tree level
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Sampling approach

Original: unbalanced search tree
Goal: uniform sampling

Associate a probability with traversing 
each search tree depth

80%

80%

100%

100%
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Sampling approach

 Probabilities associated with each depth:
– {P0, P1, P2, …, Pmax}

 Sampling is uniform:
– Probability of finding any occurrence is  P0 x P1 x P2 x … x Pmax

 We can produce an unbiased estimator:
– Estimate of frequency of subgraph S =

          Nr of sampled occurrences of S
                  P0 x P1 x P2 x … x Pmax
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Sampling approach

 The probabilities Pi control the search

 Regarding accuracy: avoid small values of 
probability close to the root
– Entire search branches disregarded  more variance

 Regarding execution times: avoid high values 
if probability close to the root
– More search branches explored  more time

 Choice should be balanced
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Sampling approach: some results

 90% accuracy for motif detection in less than 
20% of time

 First sampling process for customized sets of 
subgraphs

- Only sample the subgraphs we want

 Many parametrization choices
– Adaptable for different use cases
– Possible to refine prediction for desired set of 

subgraphs

[Ribeiro & Silva, WABI'2010]
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Adaptive sampling: ongoing work

 Adapt the sampling process:
– To the network
– To the subgraphs being searched
– To the available running time

 High level ideas of the algorithm:
– Do several sampling iterations and look at how 

estimations are converging
Ex: frequent subgraphs are easier to estimate

– Change sampling weights
– Changesubgraphs in the g-trie
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5) PARALLEL APPROACH
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Opportunities for parallelization

 Sequential version produces a
tree-shaped search tree
 Search tree nodes are independent 

from each other

If we know where we are,
we can continue from there

Tree Nodes -> Work Units

If we know where we are,
we can continue from there

Tree Nodes -> Work Units

{0,1,3}
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Initial Parallel Problem

 Input: set of work units
– G-Trie: (Network, G-Trie Node, Partial Match)
– ESU: (Network, Partial Match, Possible Extensions)

 Goal: efficiently distribute work units 
among processors

Initial target: distributed memory with 
message passing

 Constraints: Tree highly unbalanced
– Pre-determined static allocation is very hard!
– Requires dynamic load balancing

[Ribeiro, Silva & Lopes, Cluster'2010]
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Receiver-Initiated Strategy

1) While computation not ended
- If work units available

. Process work unit

- Someone asked for work?

> Stop my computation

> Divide work in 2 similar halves

> Send half to requester

> Return to computation
 Else 

• Request work units from other processor

Distributed Snapshot
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Running Computation

Example Computation G-Trie Node

Graph Vertex
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Running Computation

Example Computation G-Trie Node

Graph Vertex
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Running Computation

Example Computation G-Trie Node

Graph Vertex
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Running Computation

Example Computation G-Trie Node

Graph Vertex
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Stopping Computation

G-Trie Node

Graph Vertex

Current Work Unit

Explored Work Units

Example Computation

STOP
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Dividing Computation

 Goal: divide work in two “equal” halves

 We create a compact representation of the 
search staten (tree-shaped)

– Take advantage of common substructure in work units
– Efficient methods for: stopping, dividing, resuming

 We stop dividing when units are too small
– Threshold in distance to search tree leaf

 We do a diagonal split
– Round-robin scheme
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Dividing Computation

G-Trie Node

Graph Vertex

Current Work Unit

Explored Work Units

Example Computation
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Dividing Computation

Keep

Give to requester

Example Computation

Both
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Work Request

 When we do not have work, which processor 
should we contact?
– No data locality
– Search trees completely unbalanced

 Ask a random processor!
– Random polling ([Sanders 1994])



Pedro RibeiroSubgraphs: fundamental ingredients of networks

Some Parallel Results

 Absolute Speedup (distributed snapshots)

Network K
#CPUs: Speedup

32 64 128

dolphins 10 30.8 59.4 112.7

circuit 11 31.3 61.7 121.2

neural 6 31.4 62.5 122.8

metabolic 6 31.5 62.9 126.0

links 4 30.0 57.1 95.9

coauthors 8 31.4 62.6 123.9

ppi 6 31.4 62.0 122.1

odlis 4 29.7 55.9 90.2

power 9 31.1 61.0 118.8

company 5 31.3 62.8 125.2

foldoc 4 30.9 60.6 116.9

internet 4 31.4 62.9 125.7
Almost linear speedup up to 128 cores!
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Some Parallel Results

 Shared memory implementation with similar results

Almost linear speedup up to 32 cores!

Machine with 32 real cores

G-Tries

  FaSE

[Aparício, Ribeiro & Silva, ISPA'2014]
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Final Improvements

Combining:

G-Trie Complete Sequential Improvement

     Time Gains of Sampling Approach

     Scalability of Parallel Approach

Over 2000x faster than previous state-of-the-art

Larger Networks

Larger Subgraphs

New Insight
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6) EXAMPLE APPLICATIONS
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Co-Authorship Networks

Undirected Network Motifs

[Choobdar, Ribeiro & Silva, 
ASONAM'2012]
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Gene Co-Expression Networks

  Weighted Network Motifs

[Choobdar, Ribeiro & Silva, SAC'2015]
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Tennis Networks

   Dominance Patterns based on Directed Graphlets

[Aparício, Ribeiro & Silva, Complenet'2016]
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Football Networks

   Flow Motifs in Passing Networks

[Barbosa, Ribeiro and Dutra, CNA, 2022]
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Classifying and clustering

   Directed Graphlets

[Aparício, Ribeiro & Silva, TCBB, 2017]
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Classifying and clustering

   Graphlet-Orbit Transitions

[Aparício, Ribeiro & Silva, PLoS, 2018]
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Classifying and clustering

   Graphlet-Orbit Transitions

[Aparício, Ribeiro & Silva, PLoS, 2018]
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7) RESOURCES
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Some publications
Survey on existing Algorithms
- Survey on Subgraph Counting: Concepts, Algorithms,
  and Applications to Network Motifs and Graphlets.

ACM Computing Surveys, 2021.

 

- Strategies for Network Motifs Discovery. E-Science 2009.
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Some publications
Core complete sequential algorithms
- Large Scale Graph Representations for Subgraph Census. NetSciX'2016
- G-Tries: a data structure for storing and finding subgraphs. Data Mining and Know. Discovery, 2014.

- Towards a faster network-centric subgraph census. ASONAM'2013
- Querying Subgraph Sets with G-Tries. DBSocial'2012 (best paper award)

Sampling approach
- Rand-Fase: Fast Approximate Subgraph Census. SNAM'2015.
- Efficient Subgraph Frequency Estimation with G-Tries. WABI'2010.

Parallel approach
- Scalable Subgraph Counting using MapReduce. ACM'SAC 2017
- Parallel subgraph counting for multicore architectures. ISPA'2014
- A Scalable Parallel Approach for Subgraph Census Computation. MuCoCos'2014
- Parallel Discovery of Network Motifs. Journal of Parallel and Distributed Computing. 2012.
- Efficient Parallel Subgraph Counting using G-Tries. IEEE Cluster'2010.
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Some publications

Concept variations and applications
- Improving the Characterization and Comparison of Football Players with Spatial Flow Motifs. CNA, 2022 
- Towards the Concept of Spatial Network Motifs. CNA, 2022

- Condensed Graphs: A Generic Framework for Accelerating Subgraph Census Computation. CompleNet'2020

- Streamfase: An online algorithm for subgraph counting in dynamic networks. CNA, 2020

- Finding Dominant Nodes Using Graphlets. CNA, 2019

- Temporal network alignment via GoT-WAVE. BioInformatics, 2019

- Graphlet-orbit Transitions (GoT): A fingerprint for temporal network comparison. PloS One, 2018

- Fast streaming small graph canonization. CompleNet'2018
- Network motifs detection using random networks with prescribed subgraph frequencies. CompleNet'2017

- Extending the applicability of Graphlets to Directed Networks. T C Biology and Bioinformatics, 2016

- A subgraph-based ranking system for professional tennis players. CompleNet'2016
- Discovering weighted motifs in gene co-expression networks. ACM-SAC'2015
- Discovering Colored Network Motifs. CompleNet'2014
- Co-authorship network comparison across research fields using motifs. ASONAM'2012.
- Motif Mining in Weighted Networks. Damnet'2012 
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Software

 Reference sequential implementation (C++)

 
 Parallel Implementation (C++ pthreads, multicores)

 Cytoscape App (Java, “alpha” version)

 

http://www.dcc.fc.up.pt/~pribeiro/gtries/

http://www.dcc.fc.up.pt/~daparicio/software.html

http://apps.cytoscape.org/apps/motifdiscovery
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                                               Contacts:
                                               Pedro Ribeiro
                                               pribeiro@dcc.fc.up.pt
                                              http://www.dcc.fc.up.pt/~pribeiro/

Subgraphs as Fundamental Ingredients
of Complex networks

Pedro Ribeiro 

The End

Thank you for your attention!
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