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¡ Spreading through 
networks:
§ Cascading behavior
§ Diffusion of innovations
§ Network effects
§ Epidemics

¡ Behaviors that cascade 
from node to node like 
an epidemic

¡ Examples:
§ Biological:

§ Diseases via contagion

§ Technological:
§ Cascading failures
§ Spread of information

§ Social:
§ Rumors, news, new 

technology
§ Viral marketing
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Obscure 
tech story

Small tech 
blog

WiredSlashdot

Engadget

CNNNYT

BBC
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¡ Product adoption:
§ Senders and followers of recommendations
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¡ Contagion that spreads over the edges 
of the network

¡ It creates a propagation tree, i.e., cascade
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Cascade 
(propagation graph)

Network

Terminology:
• Stuff that spreads: Contagion
• “Infection” event: Adoption, infection, activation
• We have: Infected/active nodes, adopters



¡ Decision based models (today!):
§ Models of product adoption, decision making

§ A node observes decisions of its neighbors 
and makes its own decision

§ Example:
§ You join demonstrations if k of your friends do so too

¡ Probabilistic models (on Tuesday):
§ Models of influence or disease spreading

§ An infected node tries to “push”
the contagion to an uninfected node

§ Example:
§ You “catch” a disease with some prob. 

from each active neighbor in the network
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¡ Based on 2 player coordination game
§ 2 players – each chooses technology A or B
§ Each person can only adopt one “behavior”, A or B
§ You gain more payoff if your friend has adopted the 

same behavior as you
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[Morris 2000]

Local view of the 
network of node v
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¡ Payoff matrix:
§ If both v and w adopt behavior A, 

they each get payoff a > 0
§ If v and w adopt behavior B,

they reach get payoff b > 0
§ If v and w adopt the opposite 

behaviors, they each get 0
¡ In some large network:
§ Each node v is playing a copy of the 

game with each of its neighbors
§ Payoff: sum of node payoffs per game
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¡ Let v have d neighbors
¡ Assume fraction p of v’s neighbors adopt A

§ Payoffv = a∙p∙d if v chooses A
= b∙(1-p)∙d if v chooses B

¡ Thus: v chooses A if: p > q

q
ba
bp =
+

>

Threshold:
v chooses A if

p… frac. v’s nbrs. with A
q… payoff threshold



Scenario:
¡ Graph where everyone starts with all B
¡ Small set S of early adopters of A
§ Hard-wire S – they keep using A no matter 

what payoffs tell them to do

¡ Assume payoffs are set in such a way that 
nodes say:
If more than q=50% of my friends take A
I’ll also take A.
This means: a = b-ε (ε>0, small positive constant) 
and then q=1/2
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If more than 
q=50% of my 
friends are red 
I’ll also be red
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The Dynamics of Protest Recruitment through an Online Network
Bailon et al. Nature Scientific Reports, 2011

https://arxiv.org/abs/1111.5595


¡ Anti-austerity protests in Spain May 15-22, 
2011 as a response to the financial crisis

¡ Twitter was used to organize and mobilize users 
to participate in the protest
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https://en.wikipedia.org/wiki/Anti-austerity_movement_in_Spain


¡ Researchers identified 70 hashtags that were 
used by the protesters
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¡ 70 hashtags were crawled for 1 month period
§ Number of tweets: 581,750

¡ Relevant users: Any user who tweeted any 

relevant hashtag and its followers and followees

§ Number of users: 87,569

¡ Created two undirected follower networks:
1. Full network: with all Twitter follow links

2. Symmetric network with only the reciprocal follow 

links (i ➞ j and j ➞ i)
§ This network represents “strong” connections only.
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¡ User activation time: Moment when user 
starts tweeting protest messages 

¡ kin = The total number of neighbors when a 
user became active

¡ ka = Number of active neighbors when a user 
became active

¡ Activation threshold = ka/kin
§ The fraction of active neighbors at the time when 

a user becomes active
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¡ If ka/kin ≈ 0, then the user joins the movement 
when very few neighbors are active ⇒ no social 
pressure

¡ If ka/kin ≈ 1, then the user joins the movement 
after most of its neighbors are active ⇒ high 
social pressure
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0/4 = 0.0

No social pressure for 
middle node to join

Non-zero social pressure 
for middle node to join

Already 
active 
node



¡ Mostly uniform distribution of activation threshold 
in both networks, except for two local peaks
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0 activation 
threshold 
users: Many 
self-active 
users.

0.5 activation 
threshold 
users: Many 
users who join 
after half their 
neighbors do.



¡ Hypothesis: If several neighbors become active in a short 
time period, then a user is more likely to become active

¡ Method: Calculate the burstiness of active neighbors as
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Low threshold 
users

High threshold 
users

Low threshold users 
are insensitive to 

recruitment bursts. 
High threshold users 

join after sudden 
bursts in neighborhood 

activation



¡ No cascades are given in the data
¡ So cascades were identified as follows:

§ If a user tweets a message at time t and one of its followers 
tweets a message in (t, t+!t), then they form a cascade.

§ E.g., 1 ➞ 2 ➞ 3 below form a cascade:
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¡ Size = number of nodes in the cascade

¡ Most cascades are small:
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Size S of cascade

Fraction of 
cascades with 
size at least S

Successful 
cascades



¡ Are starters of successful cascades more central 
in the network? 

¡ Method: k-core decomposition
§ k-core: every node in the graph has at least degree k
§ Method: repeatedly remove all nodes with degree less than k
§ Higher k-core number of a node means it is more central
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Peripheral 
nodes

Central 
nodes



¡ K-core decomposition of follow network 
§ Red nodes start successful cascades

§ Red nodes have higher k-core values
§ So, successful cascades starters are central and connected 

to equally well connected users
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Successful 
cascade starters 
are central (higher 
k-core number)



¡ Uniform activation threshold for users, with 
two local peaks 

¡ Most cascades are short
¡ Successful cascades are started by central 

(more core) users
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¡ So far:
Decision Based Models
§ Utility based
§ Deterministic
§ “Node” centric: A node observes decisions of its 

neighbors and makes its own decision

¡ Next: Extending decision based models to 
multiple contagions
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¡ So far: 
§ Behaviors A and B compete
§ Can only get utility from neighbors of same 

behavior: A-A get a, B-B get b, A-B get 0
¡ For example:
§ Using Skype vs. WhatsApp

§ Can only talk using the same software

§ Having a VHS vs. BetaMax player
§ Can only share tapes with people using

the same type of tape

§ But one can buy 2 players or install 2 programs
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¡ So far: 
§ Behaviors A and B compete
§ Can only get utility from neighbors of same behavior: A-A

get a, B-B get b, A-B get 0
¡ Let’s add an extra strategy “AB”

§ AB-A : gets a
§ AB-B : gets b
§ AB-AB : gets max(a, b)
§ Also: Some cost c for the effort of maintaining 

both strategies (summed over all interactions)
§ Note: a given node can receive a from one neighbor and b from 

another by playing AB, which is why it could be worth the cost c
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¡ Every node in an infinite network starts with B
¡ Then a finite set S initially adopts A
¡ Run the model for t=1,2,3,…
§ Each node selects behavior that will optimize 

payoff (given what its neighbors did in at time t-1)

¡ How will nodes switch from B to A or AB?
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BA A ABa a max(a,b) AB
b

Payoff

-c -c

Hard-wired to adopt A



¡ Path graph: Start with Bs, a > b (A is better) 

¡ One node switches to A – what happens?
§ With just A, B: A spreads if a > b
§ With A, B, AB: Does A spread? 

¡ Example: a=3, b=2, c=1

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 41

BAA
a=3

B B
0 b=2 b=2

BAA
a=3

B B
a=3 b=2 b=2

AB

-1

Cascade stops

a=3

Hard-wired to adopt A



¡ Example: a=5, b=3, c=1
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BAA
a=5

B B
0 b=3 b=3

BAA
a=5

B B
a=5 b=3 b=3

AB

-1

BAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1

AAA
a=5

B B
a=5 a=5 b=3

AB

-1

AB

-1
Cascade never stops!

Hard-wired to adopt A



¡ Let’s solve the model in a general case:
§ Infinite path, start with all Bs
§ Payoffs for w: A:a, B:1, AB:a+1-c

¡ For what pairs (c,a) does A spread?
§ We need to analyze two cases for node w: Based 

on the values of a and c, what would w do?
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wA B

wAB B



¡ Infinite path, start with Bs
¡ Payoffs for w: A:a, B:1, AB:a+1-c

¡ What does node w in A-w-B do?
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a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B
AB AB

A

A
a+1-c=1

a+1-c=a



¡ Infinite path, start with Bs
¡ Payoffs for w: A:a, B:1, AB:a+1-c

¡ What does node w in A-w-B do?

10/30/18 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 45

a

c

1

1

B vs A

AB vs A

wA B

AB vs B

B

B
AB AB

A

A
a+1-c=1

a+1-c=a

Since 
a<1, c>1

a is big
c is big

a is high
c <1, AB is optimal for w



¡ Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

¡ Notice: Now also AB spreads
¡ What does node w in AB-w-B do?
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wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2



¡ Same reward structure as before but now payoffs 
for w change: A:a, B:1+1, AB:a+1-c

¡ Notice: Now also AB spreads
¡ What does node w in AB-w-B do?
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wAB B

a

c

1

1

B vs A

AB vs A

AB vs B

B

B
AB AB

A

A

2

a<2, c>1
then 2b > 2a

a is big
c >1

c <1, then
a+1-c > a

AB is optimal for w



¡ Joining the two pictures:
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a

c

1

1

B

AB B→AB → A

A

2



¡ B is the default throughout the 
network until new/better A
comes along. What happens?
§ Infiltration: If B is too 

compatible then people 
will take on both and then 
drop the worse one (B)

§ Direct conquest: If A makes 
itself not compatible – people
on the border must choose. 
They pick the better one (A)

§ Buffer zone: If you choose an 
optimal level then you keep 
a static “buffer” between A and B
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a

c

B
stays

B→AB B→AB→A

A spreads
B → A



¡ So far:
Decision Based Models
§ Utility based
§ Deterministic
§ “Node” centric: A node observes decisions of its 

neighbors and makes its own decision
§ Require us to know too much about the data

¡ Next: Probabilistic Models
§ Lets you do things by observing data
§ We lose “why people do things”
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