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Raw data is often NOT a network
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Feature matrices, relationship tables, time
series, document corpora, image datasets, etc.
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How to construct networks?

SRV B
M @ o

Today: How to construct and infer networks
from raw data?
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Plan for Today

 Multi-mode network transformations
- K-partite graphs and projections
- Graph Contractions

 K-nearest neighbor graphs

* Network deconvolution
- Direct and indirect effects

* From time-series to graphs
- Visibility and quantile graphs
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Multi-Mode Network

Transformations



Bipartite and K-partite Networks

Most of the time, when we create a network, all nodes
represent objects of the same type:
= People in social nets, bus stops in route nets, genes in gene nets

Multi-partite networks have multiple types of nodes,
where edges exclusively go from one type to the other:
= 2-partite student net: Students <-> Research projects

» 3-partite movie net: Actors <-> Movies <-> Movie Companies

Network on the left is a social bipartite
network. Blue squares stand for people and
red circles represent organizations
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One-mode Projections: Example

Example: Bipartite student-project network:
* Edge: Student i works on research project k

Students [

Research projects k

Two network projections of student-project network:
* Student network: Students are linked if they work together
in one or more projects

* Project network: Research projects are linked if one or
more students work on both projects

In general: K-partite network has K one-mode network
projections
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One-mode Projections: Example

Example: Projection of bipartite student-project network
onto the student mode:

Students One-mode student projection
Research W
projects

Consider students 3, 4, and 5 connected in a triangle:

Triangle can be a result of:

* Scenario #1: Each pair of students work on a different project
* Scenario #2: Three students work on the same project

One-mode network projections discard some information:
* Cannot distinguish between #1 and #2 just by looking at the projection
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Constructing One-mode Projections

One-mode projection onto student mode:

#(projects) that students i and j work together on is
equivalent to the number of paths of length 2
connecting i and j in the bipartite network

Let C be incidence matrix of student-project net:
_ {1 if i works on project k
Clk — Students

0 otherwise m

Projects

C is an n X m binary non-symmetric matrix:
n is #(students), m is #(projects)
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Constructing One-mode Projections

Idea: Use C to construct various one-mode network projections

Weighted student network: Students
w;; , #(projects) that i and j collaborate on
B;j = .
0 otherwise e

* Bij = P CikCjk, i.e., the number of paths of length 2 connecting
students i and j in the bipartite network

= B = CCT and B;; represents #(projects) that student i works on

Similarly, weighted project network:

D, = {Wki , #(students) that work on k and !
m 0 otherwise

* Dy = it CiiCyp, ie., the number of paths of length 2 connecting
projects k and [ in the bipartite network

= D = C'C and Dy, represents #(students) that work on project k

Next: Use B and D to obtain different network projections
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Constructing One-mode Projections

Construct network projections by applying a node
similarity measure to B and D

Two node similarity measures:

* Common neighbors: #(shared neighbors of nodes)
= Student network: i and j are linked if they work together in 7 or
more projects, i.e., if Bjj = r
* Project network: k and [ are linked if  or more students work on
both projects, i.e., if Dy = r
= Jaccard index:

= Common neighbors with a penalization for each non-shared
neighbor:

= Ratio of shared neighbors in the complete set of neighbors for 2 nodes
= Student network: i and j are linked if they work together in at least
p fraction of their projects, i.e., if B;;/(B;; + Bj; — B;ij) = p

* Project network: k and [ are linked if at least p fraction of their
students work on both projects, i.e., if Dg;/(Dxie + Dy — Dy1) = p
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Example: Human Disease Network

Human Disease Network
(HDN)
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Kwang-ll Goh et al., The human disease network. PNAS, 104:21, 2007.
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Example: Human Disease Network

Disease Gene Network
(DGN)

Issue: Folded gene network
contains many cliques:

* Why do cliques arise in the folded gy wm
gene network? Bsci2

VAFPB
= Homework 1 Sl

HEXB

AR

Cliques make the network
difficult to analyze: arve

“ Computational complexity of
many algorithms depends on the

size and number of large cliques

ATM

Solution: Use graph ~_—=
contraction to eliminate cliques

A clique of 9 gene nodes
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Graph Contraction

Graph contraction: Technique for computing
properties of networks in parallel:

" Divide-and-conquer principle

ldea:

“ Contract the graph into a smaller graph, ideally a
constant fraction smaller

= Recurse on the smaller graph

= Use the result from the recursion along with the
initial graph to calculate the desired result

Next: How to contract (“shrink”) a graph?
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Graph Contraction: Algorithm

Start with the input graph G:

1. Select a node-partitioning of G to guide the contraction:
=  Partitions are disjoint and they include all nodes in G

Contract each partition into a single node, a supernode
Drop edges internal to a partition

Reroute cross edges to corresponding supernodes

Set G to be the smaller graph; Repeat

o B W N

Example: one round of graph contraction:

da

3 partitions: a, d, e

Identify partitons Contract Delete duplicate edges
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Graph Contraction: Example

Contracting a graph down to a single node in

three rounds:
Round 1

i\

e

Round 3 Round 2
a

i
T
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Different Types of Node Partitioning

Partitions should be disjoint and include all nodes in G
Three types of node-partitioning:

= Each part:tion IS a (ma)umal) clique of nodes:

Contract 3
e
c

= Each partition is a single node or two connected nodes:

g
Contract 3
e

= Each partition Ts a star of nodes, etc. d
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K-Nearest Neighbors

Graph Construction




K-nearest Neighbor Graph

K-nearest neighbor graph (K-NNG) for a set of

objects I/ is a directed graph with vertex set I/:

“ Edges from each v € V to its K most similar
objects in I/ under a given similarity measure:

" e.g., Cosine similarity for text

" e.g., l, distance of CNN-derived features for images
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Why should we build K-NNG’s?

K-NNG construction is an important operation:

Recommender systems: connect users with similar
product rating patterns, then make recommendations
based on the user’s graph neighbors

Document retrieval systems: connect documents
with similar content, quickly answer input queries

Other problems in clustering, visualization,
information retrieval, data mining, manifold learning

K-NNGs allow us to use network methods on
datasets with no explicit graph structure
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Example: K-NNG in Visualization

Problem: Visualize large high-dim data in 2D space
Traditional approach:

= Compute similarities between objects
" Project objects into a 2D space by preserving the similarities
" Does not scale to millions of objects and hundreds of dimensions

K-NNG can substantially reduce computational costs

K-NNG construction

NERFNENNEN
HNRERENEEN

(a) High-dimensional feature vectors (b) K-nearest neighbor graph (K-NNG) (c) 2-dimensional layout
WikiDoc data (t-SNE)
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K-NNG: a Brute Force Approach

Let’s construct a K-NNG by brute-force:

" Given n objects IV and a distance metric
gV XV = [0,0)
= For each possible pair of (u, v), compute o(u, v)

“ Foreach v, let Bx(v) be v’s K-NN, i.e., the K
objects in V (other than v) most similar to v

L

[
%
]

@ 3 Compute similarity

N ;}’2 Object v
Dﬂj‘(ﬁofthe

nearest objects
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K-NNG: a Brute Force Approach

Computational cost of brute-force: 0(n?)

@ b
P - fa

Issues with brute-force approach o i

* Not scalable: Practical for only small datasets

* Not general: Many custom heuristics designed to
speed up computations:

= Many heuristics are specific to a similarity measure

* Not efficient: Compute all neighbors for every v

* We only need k nearest neighbors for every v
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Today: NN-Descent Approach

Can we do better than brute-force?
Yes, and we will learn about it today!

NN-Descent [Dong et al.,, WWW 2011]:

= Efficient algorithm to approximate K-NNG construction
with arbitrary similarity measure

Other published methods (not covered today):

* Locality Sensitive Hashing (LSH): A new hash function
needs to be designed for a new similarity measure

* Recursive Lanczos bisection: Recursively divide the
dataset, so objects in different partitions are not compared

“ K-NN search problem: If K-NN problem is solved, K-NNG
can be constructed by running a K-NN query foreachv € IV
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NN-Descent: Key Principle

Key principle: A neighbor of a nelghbor is also
likely to be a neighbor

Use this principle in a NN-Descent method:
Start with an approximation of the K-NNG, B

Improve B by exploring each point’s neighbors’
neighbors as defined by the current approximation

Stop when no improvement can be made
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NN-Descent: Notation Dety/
S

Let:

" I/ be a metric space with distance metric
d:VXV — |0,00), 0 = —d is the similarity measure

“ Bg(v) be v’s K-NN

" Ry(v) ={u €V;v € By(u)} be v's reverse K-NN

* B|v] be current approximation of By (v)

* B'[v] =U,reppy B[V'] be neighbors of v's
neighbors

“ Foranyr > 0, let r-ball around v be:
B.(v) ={u€eV;d(u,v) <r}
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NN-Descent: Overview Dety/
S

Def: Metric space V is growth-restricted if there
exists a constant ¢, such that:

|Byr ()| < c|B.(v)|, Vv EV
The smallest such c is growing constant of V

Approach:

= Start with an approximation of the K-NNG, B

= Use the growing constant of V to show that B can be

improved by comparing each object v against its
current neighbors’ neighbors B’ [v]

Next: Use the growing-constant argument on B
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NN-Descent: Overview Dety/
S

Two assumptions:
Let ¢ be the growing constant of V and let K = ¢

Have an approximate K-NNG B that is reasonably good:

* For a fixed radius r, for all v, B[v] contains K neighbors that are
uniformly distributed in B, (v)

3

Lemma: B'[v] is likely to contain K nearest
neighbors in B, /, (V)

Corollary: We expect to halve the maximal

distance to the set of approximate K nearest
neighbors by exploring B'[v] for every v
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NN-Descent: Algorithm Dety/
S

Lemma suggests the following algorithm:

“ Pick a large enough K(depending on growing constant c)
= Start from a random K-NNG approximation

* For each v, find K nearest objects by exploring v’s
neighbors’ neighbors, B’

* Repeat; stop when no improvement can be made
Random init &
&

‘_‘“_‘—\_‘
@ @ k returned results

K @ /

The returned first result

& t‘
\

@ e

Query point
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NN-Descent: Algorithm Dety/
S

Algorithm 1: NNDESCENT

Data: dataset V', similarity oracle o, K
Result: K-NN list B

A. Start by picking a random

Blv] «— SAMPLE(V, K) x {00}, YW EV < approximation of K-NN for each

loop

function SAMPLE(S, n)
return Sample n items from set S

R «— REVERSE(B) Ob-IECt
B[v] «+— B[v]U R[v], Yv e V;
c«— 0 //update counter
for v € V do
for u1 € B[v],u2 € Blui] do B. Improve the approximation by

[ — o(v,uz) . . . .
L ¢ —— ¢+ UPDATENN(B[v], (uz,1)) _ Comparmg each ObJEF‘t agamSt Its
current neighbors’ neighbors,

including K-NN and reverse K-NN

return B if ¢ = 0

C. Stop when no

function REVERSE(B) improvement can be made
begin

Rv| «— {ul|(v,--+) € Blu|]} VveV

return R

function UPDATENN(H, (u,l,...))
Update K-NN heap H; return 1 if changed, or 0 if not.
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Experimental Setup: Data

Datasets:

= Corel: Each image is segmented into 14 regions, a feature is
extracted from each region

= Audio: Each sentence is described by 192 features
= Shape: Each shape is described by 544-dim feature vector

= DBLP: Each record includes authors’ names and pub. title

= Flickr: Each image is segmented into regions, a pixel-based
feature is extracted from each region

Similarity measures: L1, L2, Cosine, Jaccard, EMD

Dataset | # Objects | Dimension | Similarity Measures
Corel 662,317 14 51, lo
Audio 54,387 192 l1, 12
Sha.pe 28,775 044 31, lo
DBLP 857,820 N/A Cosine, Jaccard
Flickr 100,000 N/A EMD

(EMD: earth mover’s distance)
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Experimental Setup: Measures

Use recall as an accuracy measure:

* Ground-truth: true K-NNs obtained by scanning
the datasets in brute force

" Recall of one object is the number of its true K-NN
members found divided by K

= Recall of an approximate K-NNG is the average
recall of all objects

Use #(sim. evaluations) as a measure of
computational cost:
#(similarity evaluations)

nn—1)/2
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Exp: Overall Performance

TR R, T T T T T T
N O = s = s 014 + e Corel 2 —— 1
),g"ﬁ . s 80 * O - Audio [2 —
0.8 $ et 1 0.12 Shape 2 %
- DBLP cos O i
_ 06} g 010 K Flicrk EMD --&--
§ lé 0.08 r x xxxxx .
- 04y CorelI2 —+— - 3 0061 S -
Audio [2 -3¢ o---6r- = SO, WO
0.04 F ¥ _-
- Shape [2 % X0
0.2 DBLP cos o 0.02 | >'¢:r, _'_g - g O g S 1 R O O 1y
0 1 1 FIi[:rlk EMD _I-_G-_-_ 0 L—+__+_-_4__‘I|-_+ 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
iteration iteration

Similar performance trends on different datasets
Fast convergence across all datasets:

* Curves are close to their final recall after 5 iterations
= All curves converge within 12 iterations
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Exp: Performance as Data scales

Size | Corel | Audio | Shape | DBLP | Flickr
Iz EQ EQ COos EMD

1K 1.000 0.999 1.000 0.959 0.999
5K 1.000 0.996 0.992 0.970 0.991
10K 1.000 0.993 0.998 0.970 0.983
50K 0.999 0.988 - 0.951 0.953
100K 0.999 - - 0.940 0.925
500K 0.997 - - 0.907 -

(recall values)

scan rate

10 ¢

0.1 ¢

0.01

Corel |2 ——
.}(......

Audio 12 -

Shape 12 %

DBLP cos

e.

Flickr EMD --G--

100

1000

10000
dataset size

100000

1e+06

Run experiments on samples of the full datasets and observe
changes in recall and scan rate as sample size grows

Results:

= As dataset grows, there is only a minor decline in recall

= All curves form parallel straight lines in the scan rate vs. dataset size:
* NN-descent has a polynomial time complexity

= Fit the scan rate curves to obtain empirical complexity of NN-Descent:

. O(nl'M) « 0(n?) (=brute-force)
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Network Deconvolution




Networks represent dependencies among objects
= Co-authorships between scientists gy
* Friendships between people

“ Who-eats-whom in food webs

* Bonds between molecular residues

* Regulatory relationships between genes

Indirect dependencies occur because of
transitive effects of correlation

Problem: How to separate direct dependencies
from indirect ones?
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Application: Co-Authorship

Goal: Distinguish strong and weak
collaborations between scientists

Collaboration tie strengths depend on
publication details, such as:

= #(papers) each pair of scientists has
collaborated on

* #(co-authors) on each of the papers

Strength of ties are important for:
= Recommending friends and colleagues

= Recognizing conflicts of interest

= Evaluating authors’ contribution to teams
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Observed Network

Observed network: Combined direct and indirect
effects:

True network ( G ;) Observed network ( G ,,)
)

2)
0 Transitive effects
(5)

Indirect edges might be due to higher-order
interactions (e.g., 1->4)

—>» Direct effects
----» |Indirect effects

Each edge might contain both direct and indirect
components (e.qg., 22>4)
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Network Deconvolution

Goal: Reverse the effect of transitive information flow
across all indirect paths:

= Recover true direct network (blue edges, G 4ir) based on
observed network (combined blue and red edges, G )

True network ( G, ) Observed network ( G, )
\

Transitive effects

Network deconvolution
(ND)

—>» Direct effects
--=-» Indirect effects

Feizi et al., Nature Biotechnology, 31:8, 2013.
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Network Deconvolution: Challenge

Direct edges in a network can
lead to indirect relationships:

= Transitive information flow

Indirect effects can be of length:
= 2(e.g., 1>2-3)

* 3 (e.g., 1>2->3-5)

“ higher-order

Indirect effects can combine:

= Both direct and indirect effects
(e.g., 2—>4)

= Multiple indirect effects along
varying paths (e.g., 2->3->5,
2>4-5)

Observed network ( G )

—» Direct effects
--=-» Indirect effects
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Net. Deconvolution: Formally

Transitive effects in G, can be expressed as an
infinite sum of Gg; and all indirect effects:
Gobs = Gair + Gindir

Indirect effects can be of increasing lengths:
2 3
Gingir = Ggir + Ggir + Ggir + -

S AR

2"dorder  3dorder 4t order

2nd order effects: G5 = A%;.
* The number of edges in G, of indirect paths of length 2
3rd order effects: G3.. = AJ:
* The number of edges in G, Of indirect paths of length 3
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Powers of Adjacency Matrices

Let’s raise adjacency matrix 44;, to the second power:
« The (i, j)-th entry of A%;. is

Aglir(i!j) = 2=1Adir(ir k) Aqir(k,J)

= This sum is only greater than zero if there exists a node
k for which Ag;-(i, k) and Ag;-(k, j) are both nonzero:

* There exists a node k that is connected to both nodes i and j
* The sum counts the number of neighbors that nodes i and j share
* The sum counts the paths of length 2 between nodes i and j

This reasoning is valid for higher powers of A ji,:
A3: (i) counts the paths of length 3 between i and j
= A%.(i,]) counts the paths of length 4 between i and j
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Net. Deconvolution: Formally

Idea: Model indirect flow as power series of
direct flow:
Gobs N Gair + G3ip + GJiy + Gl +
T —

Converges with _
correct scaling Indirect effects

Transitive closure of G g

Note: Linear scaling of G, so that max

absolute eigenvalue of Gy < 1:
* Indirect effects decay exponentially with path length

* Infinite series converges
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Net. Deconvolution: Formally

Transitive closure of G 4;- can be expressed as an
infinite sum of:
* True direct network, Ggir
= All indirect effects along paths of increasing
lengths, G5, Gaivy Giir s

Idea: Can be written in a closed form as an infinite-
series sum using Taylor series expansions:
— 2 3 4 _
Gobs = Gair T Ggjr + Ggir + Ggip + - =
2 3 — -1
Gair(I + Gair + Gir + Gir + ) = Gair(I — Gair)
Note: Let X be any square matrix with max
absolute eigenvalue < 1. Then the following

series converges: [ + X + X% + X3 + -
The series converges to: Y p—o X* = (1 — X)™!
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Net. Deconvolution: Formally

Using Taylor series expansions we get a closed-
form expression for G:

Gobs = Gair(I — Ggir) ™"

In network deconvolution:
* Observed network G}, is known
* True direct network G4;,. needs to be recovered

Finally, we get a closed-form solution for G g;,:
Gair = Gops(I + Gabs)_1
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Net. Deconvolution: Recap

Use closed-form expression for G, to
recover true direct network G4,

True network ( G ) Observed network ( G, )

Transitive effects

Network deconvolution
(ND)

—» Direct effects
----» |Indirect effects

( Indirect effects Series closed form A
Transitive closure: G,ps=G, + G§Er+ Gg,.r+ L=Gu(1-Gg, -
Network deconvolution: G, = G_,.(/+ G{:,,t,s)_1

. J
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Application: Co-Authorship

Goal: Distinguish strong and weak
collaborations between scientists

Collaboration tie strengths depend on
publication details, such as:

= #(papers) each pair of scientists has
collaborated on

* #(co-authors) on each of the papers

Strength of ties are important for:
= Recommending friends and colleagues

= Recognizing conflicts of interest

= Evaluating authors’ contribution to teams
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Application: Co-Authorship

Data: Unweighted network of scientists working in the

field of network science:
= Two authors are linked if they co-authored at least one paper

Setup: Apply ND on the co-authorship network:

= ND returns a weighted network whose:
* Transitive closure most closely captures the input network
* Weights represent the inferred strength of direct interactions

* Qutput: Rank co-authorship edges by the ND-assigned weights

Ground-truth data:

“ True collaboration strengths are computed by summing the
number of co-authored papers and down-weighting each paper

by the number of additional co-authors

= Compute correlation between ND-assigned weights and true
collaboration strengths
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True collabaration strength

Agreement between the rank obtained by the true collaboration
strength and the rank provided by the ND weight, R* = 0.76
Conclusion: ND predict collaboration tie strengths solely by using
network topology (i.e., not using other publication details)



Application: Gene Network

- Goal: Infer a gene regulatory network from gene
feature vectors describing gene activity:

* Nodes represent genes

= Edges represent regulatory relationships between
regulators and their target genes

Well-studied problem in <=
bioinformatics:

= A dataset is a gene-by-condition
expression matrix

= Expression matrix is noisy with ¢
many indirect measurements
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Gene Network: Data

3 datasets: Gene expression datasets from: bacterium E.
coli, yeast S. cerevisiae, and a simulated env (in silico)

Setup: Use ND to improve network inference methods by
eliminating indirect edges in the inferred networks:

Infer a gene regulatory network using a particular network
inference method

Apply ND to the inferred network to deconvolve the network
Evaluate deconvolved network against ground-truth data

Ground-truth data:

True positive regulatory relationships (i.e., edges) are defined as
a set of interactions experimentally validation in a laboratory
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Gene Network: Results

Ml and correlation methods Other inference methods  Community

@ * ! | @ Before ND Before ND After ND

o : | W After ND T 1 1

8 40} ; : Casc.FFL Casc.FFL

= | i CLR

T 20f i 5 .

S _|]_[I_|:|_E|_E|_ | 5 ARACNE Relative performance of

OTY 2 3 4 s 6 7 8 9 | 10 3 MI .

[ g | - Pearacn inference methods for

S | | =

groof | | | Speaman cascades (casc.) and

< : : -
a7 I iIdda 5 B feed-forward loops
o - ! ! =
A etz 3 45 | £l itersaor (FFL) before and after
© AMNOVerence H
= I network deconvolution
B commny [ 1] ]

E 5 Average impravement .:‘

j ] 2 3 4 5 6 7 8 9 10 jelative performance [ . N

& ; ; (AUROC)  —5% 0 +5%

E 3l ; | B Feed-forward loop

8 | - FF i

'% 2 A/’—\"C Eeeifﬂstfdn:dge

g 1 Feed forward edge

w0 Cascade (casc.) lacks

B
A N\y  feed-forward edge
A C

Network inference methods

ND improves the performance of top-performing network
inference methods
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Network Deconvolution: Recap

General approach to identify direct
dependencies between objects in a network:

* Remove spurious edges that are due to indirect effects
= Decrease over-estimated edge weights

“ Rescale edge weights so that they correspond to
direct dependencies between objects

Other published methods (not covered today):
= Partial correlations and random matrix theory

= Graphical models, e.qg., Graphical lasso, Bayesian nets,
Markov random fields

* Causal inference models

Pedro Ribeiro - Network Construction



Time Series meets

Network Science




Time Series and Network Science

NETWORK SCIENCE

Signal processing of graphs

Graph-theoretical time series analysis
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Correlation and Functional Networks

N = 8 world stock markets, daily indices, n = 100 days.

1400 T e . & ——USA
- : £ 3 ----- Australia
. 4 @ , -==-UnitedKingdom
1200 - p - Germany
Malaysia
1000¢ SouthAfrica
Croatia
< 800f
600
400+
200b 20 40 60 80 100

dayt

Similar indices, links among world stock markets?

Pedro Ribeiro - Network Construction



Correlation and Functional Networks

A similarity measure sim(/,j) quantifies the level of
e correlation or coupling between X; and X; (undirected link)

@ causality from X; and Xj, and vice versa (directed link).

A standard similarity measure is again Corr(X;, Xj) = rx, y;.

1400 - — " —usA
" | SO il = Australia N
1200} -~ a7 A
- ' o sl BB One can interpret this matrix as
’,_.;‘ Croatia . = = I
AWA a weighted adjacency matrix!
> aoo-‘“é\‘}._{ p‘/\ AN, g J y
600r 3 Correlation network
400+ v “V‘-.ﬁﬁ’\-q"‘-"ﬁw_’ \"’H-_,--x,-.."‘-a\,.,__\;
- 20 40 60 80 100
day t
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Correlation and Functional Networks

Sensorimotor

Functional networks

One can measure signals from the brain (EEG, fmri) at different regions and
extract a correlation network from the multivariate time series.

This network describes correlations between the activity of different
regions of the brain, and it’s called a functional network.
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Correlation and Functional Networks

Histological or
imaging data

Functional brain network

Sensorimotor
4 "- "

Premator

N
Occipital \ L

5 -j— ‘lfn: . i —:,#ﬁ : n
Inferior temaora'l"" Orbitofrontal
‘\\{\

Graph theoretical analysis

Bullmore, Sporns, Nature Reviews Neuroscience 10 (2009)
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Correlation and Functional Networks

Subject 1 Subject 2 Subject n
———— NV P e—
Functional Functional e Functional
network 1 network 2 network n
Typical study: ’
unsupervised clustering of diseases Pairvise distance o~
Mmeasure across N - 1.\_2}1
networks o4
Can we predict which subject have -
schizophrenia by looking at brain signals? R —_—
x
x*: : X :‘xx
&
x e ©® o
o o ©
® o0 ® x*,
@ L ] &
® 9 © @
o X i
—_—
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Visibility Graphs

Visibility graphs were defined in computational geometry/computer science as the
backbone graph capturing visibility paths [intervisible locations) in landscapes

e Each node represents a location

* Two locations are connected by a link if they are visible
k” __ [ -- - ¥ .

e PP P EEEEE
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Visibility Graphs

Visibility graphs were defined in computational geometry/computer science as the
backbone graph capturing visibility paths (intervisible locations) in landscapes

* Each node represents a location
» Two locations are connected by a link if they are visible

=—

e R R R P

' SPFTTTLIL ]
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Visibility Graphs

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES
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Visibility Graphs

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES
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Visibility Graphs

1D LANDSCAPES CAN BE CONSIDERED AS TIME SERIES

time
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X(t)

Visibility Graphs

Natural Visibility Algorithm

RS E N AR RN RN SRS EE N FE RN

For a time series of N data:

* each datum is mapped into a node
*two nodes are linked if a visibility criterion holds
in the series

The resulting visibility graph:

* has N ordered nodes

* is connected by a Hamiltonian path

* is invariant under certain transformations in the
series

O

Lacasa, Luque, Ballesteros, Lugue, Nurio, PNAS 105 (2008)
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Visibility Graphs

Natural Visibility Graph
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Visibility Graphs

Ya Vb = Yer ta = ifr..' = tb

Horizontal Visibility Graph

0.8 —

0.6 —
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Quantile Graphs

Quantile Graph

m_

o

=

o J V

o

o V

s
r— 1 1 T©t 717 1T 71T T+ 71T 1§ 1T 1T T 1T T T T T T 1
1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Application: Time Series Clustering

Can simple topological measures of different networks
distinguish different processes of time series?

Time Series Clustering

* Distance-based methods
! Similarity between observations
U e.g. Dynamic Time Warping

- Characteristics-based methods
! Similarity between global characteristics

! e.g. trend, frequency, autocorrelation, Hurst

- Network-based methods
! Similarity between topological measures
| e.g. average degree, number of communities, clustering coefficient
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Application: Time Series Clustering

Can simple topological measures of different networks
distinguish different processes of time series?

Topological Metrics

* There is a vast set of topological metrics of
graphs to study the particular
characteristics of the system.

! Average Degree (k)
! Average Path Length (d)
! Global Clustering Coefficient (C)

! Number of Communities (S)

! Modularity (Q)
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Application: Time Series Clustering

Can simple topological measures of different networks
distinguish different processes of time series?

Method

I. Generate Complex Networks
a. NVG, HVG, and QGs

2. Calculate Metrics and Normalize
a. k,d,C,SandQ
b. Min-Max normalization

3. Dimensionality Reduction
a. PCAand t-SNE

4. Clustering Analysis
1. k-means
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Application: Time Series Clustering

Can simple topological measures of different networks
distinguish different processes of time series?

Time Series Models

* White Noise (i.i.d) * Nonlinear models

| SETAR Regimes

* Linear models ’
Smoother ! HMM | States

DVIONE  Smoother

1 AR(2) Pseudo-Periodic /' INAR | Integer Valued Data

' ARIMA Stochastic Trend ' GARCH Conditiona:_tl'
Heterocesdaticity

| ARFIMA - BGARCH and Asymmetry

Create randomized instances of each of these models
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Application: Time Series Clustering

Can simple topological measures of different networks Ms Sir
distinguish different processes of time series? C Thee: Va

Cluster Analysis

T
3 E—
L]
) o e >
S () D @3_ N ) G D & -
RX R Y N < & & >
& & & & G & & & & »
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More on TSA via NetSci

*

Time Series Analysis via Network Science: Concepts and Algorithms

Vanessa Freitas Silva!, Maria Eduarda Silva?, Pedro Ribeiro', and Fernando Silva!

Dimensionality

Network Structure

Mapping Concept
v

visibility | | Transition | [ Proximity
Y A 4 A 4
: Observations Observations Nodes are Observations
Nodes are times : ;
based nodes based nodes time series based nodes

Natural Visibility Quantiles Distance measures Distance measures Ordinal Partitions for each layer
Horizontal Visibility Ordinal Partitions Correlation measures Correlation measures

Coarse-Grained Recurrence Long-Run Variance

Phase Space Decomposition

Mapping Methods
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International Journal of Data Science and Analytics
https://doi.org/10.1007/541060-024-00561-6

REGULAR PAPER

Multilayer quantile graph for multivariate time series analysis and
dimensionality reduction

Vanessa Freitas Silva! - Maria Eduarda SilvaZ - Pedro Ribeiro! - Fernando Silva'

Received: 2 October 2023 / Accepted: 6 May 2024
© The Author(s) 2024

Check for
updates
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Multilayer quantile graph for multivariate time series analysis and
dimensionality reduction

(a)

(c)

L,

Ly

(b)

Contemporary
Quantiles

T ]

2 2 2 2 2 2 2 2 7 2
Qg g g 9 Qs 192 1492 {9y | 94 | 93

...........................................
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Data Mining and Knowledge Discovery (2025) 39:17
https://doi.org/10.1007/510618-025-01089-4

Check for
updates

Multilayer horizontal visibility graphs for multivariate time
series analysis

Vanessa Freitas Silva' - Maria Eduarda Silva? - Pedro Ribeiro! - Fernando Silva’

Received: 6 February 2024 / Accepted: 4 January 2025 / Published online: 3 March 2025
© The Author(s) 2025
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Multilayer horizontal visibility graphs for multivariate time

series analysis

Multivariate Mapping Network Feature Feature Analysis
TimeSeries (Multiplex/Multilayer) Extraction
Intra-laver Relational )
! ¥
] 1
' g Lt
B = f Ry &
* e | i .u“._.r.: -.‘ |
Multiplex Network Fe aturusé " L
& Byns * “';.'-.a-g‘k('e
waEE i* fee L *.Eo'ix_
i L e '5-'“»—&:
Intra-layer Inter-laver  All-layer Relational : W W Lt HETi
[ i} ik 1t j ! A B ot
FUNN [ N PR DU S (PR BN N Fhto] R RN . E&: 1
alt | Tat L per | KRN
E g S
AR R ENE
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Multilayer horizontal visibility graphs for multivariate time
series analysis

(a) (b)

A & A i
v | /\\ f \ Vi . m __Min-Max Z FR "ﬁ" /o
N 1~/ |\ rescaling ) d[ S5 o N =y
| 4 % g LV \ k)
A
| 1 " 2 VA
. nTimp n"l'l' 2 .
CrossE-H\-’G
(d) (c) algorithm
; ax(T) - |
' |[ ) € Byr — |
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MHVG j | | | 3
PR ool i i !
: o T S B N
el 1 7 o E t
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Vanessa Silva’s Work

Time Series Analysis Multidimensional
based on Complex Time Series
Networks Analysis:

Vanessa Alexandra Freitas da Silva A COITI p|e)(

Master’'s degree in Networks and Informatics Systems Engineering

Computer Science Department N e two rks
2018

Supervisor

Fernando Manuel Augusto da Silva, Full Professor, Faculty of Sciences, University p p ro a c

of Porto

Co-supervisor
Pedro Manuel Pinto Ribeiro, Assistant Professor, Faculty of Sciences, University of
Parto

Co-supervisor
Maria Eduarda da Rocha Pinto Augusto da Silva, Associate Professor, Faculty of
Economics, University of Porto

Vanessa Alexandra Freitas da Silva

Doctoral Program in Computer Science of the Universities of
Minho, Aveiro and Porto (MAFI)

Computer Science Department

2023

rofessor,

Time series
forecasting via S
Network Science i

Filipe Godinho Justica
Master's degree in Data Science
Computer Science Department

2022

Supervisor
Pedro Manuel Pinto Ribeiro, Assistant Professor, Faculty of Science, University of
Porto

Co-supervisor
Maria Eduarda da Rocha Pinto Augusto da Silva, Associate Professor, Faculty of
Economics, University of Porto
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