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Graph Traversal

One of the most important graph related tasks its to how to traverse
it, that is, passing trough all nodes using the connections
between them

We call this a graph traversal (or graph search)

There are two main graph traversal algorithms, that differ on the
order of traversal:

I Depth-First Search (DFS)
Traverse all the graph connected to an adjacent node before entering
the next adjacent node

I Breadth-First Search (BFS)
Traverse the nodes by increasing order of its distance in number of
edges to the source node
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Graph Traversal
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Pesquisa em Grafos
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Pesquisa em Grafos

On its essence, DFS and BFS are doing the ”same”:
traverse all nodes

When to use one or the other depends on the problem and on the
order on which we want to traverse the nodes

We will see how to implement both and we will give example
applications
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DFS

The ”skeleton” of a DFS:

DFS (recursive version)

dfs(node v):
mark v as visited
For all nodes w adjacent to v do

If w was not yet visited then
dfs(w)

Complexity:

Temporal:
I Adjacency List: O(|V |+ |E |)
I Adjacency Matrix: O(|V |2)

Spatial: O(|V |)
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Connected Components

Finding connected components of a graph G

Example: the following graph has 3 connected components
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Connected Components

The ”skeleton” of a program to solve this:

Finding connected components

count ← 0
mark all nodes as not visited
For all nodes v of the graph do

If v is not yet visited then
count ← count + 1
dfs(v)

write(count)

Temporal complexity:

Adjacency list: O(|V |+ |E |)
Adjacency matrix: O(|V |2)
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Implicit Graphs

We do not have to always explicitly store the graph.

Example: finding the number of ”blobs” (connected areas) on matrix.
Two cells are adjacent if they are connected vertically or horizontally.

#.##..## 1.22..33

#.....## 1.....33

...##... --> 4 blobs --> ...44...

...##... ...44...

To solve we simply do dfs(x , y) to visit position (x , y), where the
adjacent nodes are (x + 1, y), (x − 1, y), (x , y + 1) e (x , y − 1)

Calling a DFS to ”color” the connected components is known as
doing a Flood Fill.
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Bipartite Graphs

A bipartite graph is a graph where we can divide the nodes in two
groups A and where each edge connects a node from A into a node
from B:

I There cannot be any edge from A to A
I There cannot be any edge from B to B

Many real graph are of this type. Some examples:
I Products and buyers
I Movies and actors
I Books and authors
I ...
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Bipartite graphs
Coloring Graphs

The problem of graph coloring implies discovering a color allocation
such that two neighbor nodes never have the same color.

Given a graph, what is the minimum number of colors we need?
(this is the chromatic number of a graph)

I For a general graph this an hard problem and there are no known
polynomial solutions.
(it is one of the original 21 NP-complete problems)
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Bipartite Graphs
DFS algorithm

Knowing if a graph is bipartite is a particular case of graph coloring

Bipartite graph ↔ can we color with 2 colors?

We can adapt dfs to test for this:

Algorithm to test if a graph is bipartite

Make a dfs from node v and paint that node with a certain color
For each neighbor node w of v :

If w was not visited, do dfs(w) and paint w with a different color
than v

If w was already visited, check if the color is different
I If the color is the same, the graph is not bipartite!
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Bipartite graph
Example of algorithm with DFS

Black node: not visited

Red node: group A

Green node: group B
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Topological Sorting

Given a directed and acyclic graph G , find a node ordering such that
u comes before v if and only if there is no (v , u) edge.

Example: for the graph below, a possible topological sorting would
be: 1, 2, 3, 4, 5, 6 (or 1, 4, 2, 5, 3, 6 - there might be many possible
topological sortings)

A classical example application is to decide in which order you can execute
task that have precedences.
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Topological Sorting

How to solve this problem with DFS? What is the relationship of the
order in which DFS visits the nodes with a topological sorting?

Topological Sorting - O(|V |+ |E |) (list) or O(|V |2) (matrix)

order ← empty list
mark all nodes as not visited
For all nodes v of the graph do

If v is not yet visited then
dfs(v)

write(order)

dfs(node v):
mark v as visited
For all nodes w adjacent to v do

If w is not yet visited then
dfs(w)

add v to the beginning of list order
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Topological Sorting

Example of execution:

order = ∅
start dfs(1) |order = ∅
start dfs(4) |order = ∅
start dfs(5) |order = ∅
start dfs(6) |order = ∅
end dfs(6) |order = 6
end dfs(5) |order = 5, 6
end dfs(4) |order = 4, 5, 6
end dfs(1) |order = 1, 4, 5, 6

start dfs(2) |order = 1, 4, 5, 6
end dfs(2) |order = 2, 1, 4, 5, 6

start dfs(3) |order = 2, 1, 4, 5, 6
end dfs(2) |order = 3, 2, 1, 4, 5, 6

order = 3, 2, 1, 4, 5, 6
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Topological Sorting

The temporal complexity is O(|V |+ |E |) (list) because we only pass
once trough each node and edge.

An algorithm without DFS would be, on a greedy fashion, look for a
node with in-degree zero, add it to the order and then remove it from
the graph, repeating the same process afterwards.
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Cycle Detection

Find if a (directed) graph G if acyclic (does not contain cycles)

Example: the graph on the left contains cycles, the one on the right
doesn’t
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Cycle Detection

Let’s use 3 ”colors”:

White - Node not visited
Gray - Node being visited (we are still exploring descendants)
Black - Node already visited (we visited all descendants)

Cycle Detection - O(|V |+ |E |) (list) or O(|V |2) (matrix)

color[v ∈ V ] ← white
For all nodes v of the graph do

If cor [v ] = white then
dfs(v)

dfs(node v):
color[v ] ← gray
For all nodes w adjacent to v do

If color[w ] = gray then
write(”Cycle found!”)

Else if color[w ] = white then
dfs(w)

color[v ] ← black
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Cycle Detection
Example of execution (Starting on node 1) - Graph with 2 cycles
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Cycle Dtection
Example of execution (Starting on node 1) - Acyclic graph
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Classifying edges in DFS
Another ”angle” for DFS

A DFS implicitly creates a search tree that corresponds to the edges
that were traversed when exploring the nodes
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Classifying edges in DFS
Another ”angle” for DFS

A visit with DFS classifies edges in 4 categories
I Tree Edges - Edges on DFS tree
I Back Edges - Edge from a node to a predecessor in the tree
I Forward Edges - Edges to a descendant in the tree
I Cross Edges - All the others (from a branch to another branch)
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Classifying edges in DFS
Another ”angle” for DFS

An example application: finding cycles is discovering... Back Edges!

Knowing these edge typs helps to solve problems!

Note: a undirected graph only has Tree Edges and Back Edges.
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Strongly Connected Components
A more elaborated application of DFS

Decompose a graph in its strongly connected components

A strongly connected component (SCC) its a maximal subgraph where
there is a connected (directed) path between all node pairs of that
subgraph.

An example graph and its three SCCs:

Pedro Ribeiro (DCC/FCUP) Graph Traversal 2019/2020 26 / 50



Strongly Connected Components
A more elaborated application of DFS

How to compute SCCs?

Let’s use our edge types to help:
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Strongly Connected Components
A more elaborated application of DFS

Let’s take a good look to the DFS tree:

What is the ”lowest”
ancestor of a node that
is achievable by it?

I 1: it’s again 1
I 2: it’s 1
I 5: it’s 1

I 3: it’s again 3
I 4: it’s 3
I 8: it’s 3

I 7: it’s again 7
I 6: it’s 7

Et voilà! here are our
SCCs!
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Strongly Connected Components
A more elaborated application of DFS

Let’s add 2 more properties to a node on a DFS visit:
I num(i): order in which i is visited
I low(i): lowest num(i) achievable by a subtree that starts in i .

It’s the minimum between:
F num(i)
F smallest num(v) between all back edges (i , v)
F smallest low(v) between all tree edges (i , v)

i num(i) low(i)

1 1 1

2 2 1

3 3 3

4 4 3

5 8 1

6 7 6

7 6 6

8 5 4
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Strongly Connected Components
A more elaborated application of DFS

The idea Tarjan’s algorithm to discover SCCs:

Make a DFS and in each node i :

I Put the nodes on a stack S

I Compute and store the values of num(i) and low(i).

I If when exiting the visit to i we have num(i) = low(i), then i is the
”root” of a SCC. In that case, remove everything from the stack until i
and report those elements as a SCC!
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Strongly Connected Components
A more elaborated application of DFS

Example of execution: when we exit dfs(7), we find that num(7) = low(7)
(7 is the ”root” of a SCC)

State of stack S:

6

7

8

4

3

2

1

We remove from the stack until 7, and we output the SCC: {6, 7}
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Strongly Connected Components
A more elaborated application of DFS

Example of execution: when we exit dfs(3), we find that num(3) = low(3)
(3 is the ”root” of a SCC)

State of stack S:

8

4

3

2

1

We remove from the stack until 3, and we output the SCC: {8, 4, 3}
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Strongly Connected Components
A more elaborated application of DFS

Example of execution: when we exit dfs(1), we find that num(1) = low(1)
(1 is the ”root” of a SCC)

State of stack S:

5

2

1

We remove from the stack until 1, and we output the SCC: {5, 2, 1}
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Strongly Connected Components
A more elaborated application of DFS

Tarjan’s algorithm for SCCs - O(|V |+ |E |) (list)

index ← 0 ; S ← ∅
For all nodes v of the graph do

If num[v ] is not yet defined then
dfs cfc(v)

dfs cfc(node v):
num[v ]← low [v ]← index ; index ← index + 1 ; S.push(v)
/* Traverse edges of v */
For all nodes w adjacent to v do

If num[w ] is not yet defined then /* Tree Edge */
dfs cfc(w) ; low [v ]← min(low [v ], low [w ])

Else if w is in S então /* Back Edge */
low [v ]← min(low [v ], num[w ])

If num[v ] = low [v ] then /* We know that we are on a SCC ”root” */
Start new SCC C
Repeat

w ← S.pop() ; Add w to C
Until w = v
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Articulation Points and Bridges

An articulation point is a node whose removal increases the number of
connected components

A bridge is an edge whose removal increases the number of connected
components

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is caleed biconnected.
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Articulation Points
A more elaborated application of DFS

Finding the articulation points is very useful
I For instance, a graph that is ”robust” to attacks should not have

articulation points that when ”attacked” will disconnect the graph.

How to compute? A possible ”naive” algorithm:
1 Make one DFS and count connected components
2 Remove from the original graph a node and execute a new DFS,

counting again connected components. If the number increases, then it
is an articulation points.

3 Repeat step 2 for all nodes.

What would be the complexity of this method? O(|V |× (|V |+ |E |)),
as we will make |V | calls to a DFS, an each call takes |V |+ |E |.

It is possible to do much better... making one single DFS!
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Articulation Points
A more elaborated application of DFS

One idea:

Apply DFS on the graph and obtain the DFS tree

If a node v has a child w that does not have any path to an
ancestor of v , then v is an articulation point! (since removing it
disconnects w from the rest of the graph)

I This corresponds to see if low [u] ≥ num[v ]

The only exception is the root of the tree. If it has more than one
child... then it is also an articulation point!
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Articulation Points
A more elaborated application of DFS

An example graph:

num[i ] - numbers inside the node
low [i ] - numbers in blue
articulation points: nodes in yellow
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Articulation Points
A more elaborated application of DFS

3 is an articulation point:
low [5] = 5 ≥ num[3] = 3

5 is an articulation point:
low [6] = 6 ≥ num[5] = 5
ou
low [7] = 5 ≥ num[5] = 5

10 is an articulation point:
low [11] = 11 ≥ num[10] = 10

1 is not an articulation point:
it only has one tree edge
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Articulation Points
A more elaborated application of DFS

Algorithm very similar to SCC, but with different DFS:

Finding articulation points - O(|V |+ |E |) (list)

dfs art(nde v):
num[v ]← low [v ]← index ; index ← index + 1 ; S.push(v)
For all nodes w adjacent to a v do

If number [w ] is not yet defined then /* Tree Edge */
dfs art(w) ; low [v ]← min(low [v ], low [w ])
If low [w ] ≥ num[v ] then

write(v + ”is an articulation point”)
Else if w is in S then /* Back Edge */

low [v ]← min(low [v ], num[w ])
S.pop()

Instead of a stack, we could use the colors (grey means it is in the stack)
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Breadth-First Search (BFS)

A Breadth-First Search (BFS) is very similar to a DFS. The only
thing that changes is the order in which we visit the nodes.

Instead of using recursion, it is more common to explicitly keep a
queue of non visited nodes (q).

”Skeleton” of a BFS - O(|V |+ |E |) (list)

bfs(node v):
q ← ∅ /* Queue of non visited nodes */
q.enqueue(v)
mark v as visited
While q 6= ∅ /* While there are nodes to visit */

u ← q.dequeue() /* Remove first node of q */
For all nodes w adjacent to u do

If w was not yet visited then /* new node */
q.enqueue(w)
mark w as visited
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Breadth-First Search (BFS)

An example:

1 Initially q = {A}
2 We remove A, we add non visited neighbors (q = {B,G})
3 We remove B, we add non visited neighbors (q = {G ,C})
4 We remove G, we add non visited neighbors (q = {C})
5 We remove C, we add non visited neighbors (q = {D})
6 We remove D, we add non visited neighbors (q = {E ,F})
7 We remove E, we add non visited neighbors (q = {F})
8 We remove F, we add non visited neighbors (q = {})
9 q empty, BFS finished
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Breadth-First Search (BFS)
Computing Distances

Almost anything that can be done with DFS can also be made with
BFS

An important difference is that with BFS we visit the nodes on
increasing order of distance to the source (in terms of number of
edges)

In that sense, BFS can compute shortest paths between nodes in
unweighted graphs.

Let’s see what really changes in the code
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Breadth-First Search (BFS)
Computing Distances

In red the new lines. node.distance store the distance to v .

BFS with distances - O(|V |+ |E |) (list)

bfs(node v):
q ← ∅ /* Queue of non visited nodes */
q.enqueue(v)
v .distance ← 0 /* distance of v to itself is zero */
mark v as visited
While q 6= ∅ /* While there are nodes to visit */

u ← q.dequeue() /* Remove first node of q */
For all nodes w adjacent to u do

If w was not yet visited then /* new node */
q.enqueue(w)
mark w as visited
w .distance ← u.distance + 1
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Breadth-First Search (BFS)
More applications

BFS can be applied to any graph type

Consider for example that you want the shortest distance between a
starting cell (S) and an ending cell (E) on a 2D maze:

######## ########

#S.....# #S12345#

####.### ---> ####4###

#E.....# BFS from S #876567#

######## ########

I A node in this graph is the position (x , y)

I The adjacent nodes are (x + 1, y), (x − 1, y), (x , y + 1) and (x , y − 1)

I The rest of the BFS remains the same (we take O(rows × cols))

I To store on a queue we need to use a pair (of coordinates)
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Breadth-First Search (BFS)
More applications

Let’s see a problem from ONI’2010 qualification

Problem inspired on the eruption of Eyjafjallajökull volcano, whose
ash cloud caused so many problems in europe’s air traffic

Imagine that the position of the ash clouds is given on a matrix, and
that in each time unit the cloud expands by one cell horizontally and
vertically. A’s represent airports.
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Breadth-First Search (BFS)
More applications

The problem asks for:
I What is the first airport being covered by ashes
I How much time before all airports are covered by ashes

Let dist(Ai ) be the distance of i until any cell with ash

The problem asks for the smallest and largest dist(Ai )

One way would be to make one BFS from each airport
O(num airports × rows × cols)

Another way would be to make one BFS from each ash cell
O(num ashes × linhas × colunas)

Can we do better, using a single BFS?
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Breadth-First Search (BFS)
More applications

Idea: initialize the BFS queue with all the ashes

Everything else remains the same

...#... ..1#1.. .21#12. 321#123 321#123

..##... .1##1.. 21##12. 21##123 21##123

.####.. -> 1####1. -> 1####12 -> 1####12 -> 1####12

....... 11111.. 111112. 1111123 1111123

##..... ##1.... ##122.. ##1223. ##12234

The distances are what we want

Each cell will only be traversed once O(rows × cols)

Pedro Ribeiro (DCC/FCUP) Graph Traversal 2019/2020 48 / 50



Breadth-First Search (BFS)
More applications

One last problem where the graph does not ”explicitly” exists
[original problem from IOI’1996]

Consider the following puzzle (a kind of ”2D Rubik’s cube”)

I Initial puzzle position is:
1 2 3 4
8 7 6 5

I In each iteration we can do one of the following moves:

F Move A: swap the two rows
8 7 6 5

1 2 3 4

F Move B: shift the rectangle to the right
4 1 2 3

5 8 7 6

F Move C: rotation (clockwise) of the 4 ”middle” cells
1 7 2 4

8 6 3 5

I How many moves do we need to reach a given position?
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Breadth-First Search (BFS)
More applications

Can be solved with... BFS!

The initial node is... the initial position.

The adjacent nodes are... the positions we can go to using a single
move (A, B or C).

When we reach the desired position... we necessarily know the
shortest distance (nr moves) to get there

The ”hardest” part is to represent the positions :)
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