#### **Graph Traversal**

Pedro Ribeiro

 $\mathsf{DCC}/\mathsf{FCUP}$ 

2019/2020



# **Graph Traversal**

- One of the most important graph related tasks its to how to **traverse** it, that is, **passing trough all nodes** using the **connections between them**
- We call this a graph traversal (or graph search)
- There are two main graph traversal algorithms, that differ on the order of traversal:
  - Depth-First Search (DFS)

Traverse all the graph connected to an adjacent node before entering the next adjacent node

#### Breadth-First Search (BFS)

Traverse the nodes by increasing order of its distance in number of edges to the source node





#### Pesquisa em Grafos





#### Pesquisa em Grafos





- On its essence, DFS and BFS are doing the "same": traverse all nodes
- When to use one or the other depends on the problem and on the order on which we want to traverse the nodes
- We will see how to **implement** both and we will give example applications

### DFS

The "skeleton" of a DFS:

#### DFS (recursive version)

dfs(node v):
 mark v as visited
 For all nodes w adjacent to v do
 If w was not yet visited then
 dfs(w)

Complexity:

- Temporal:
  - ► Adjacency List: O(|V| + |E|)
  - Adjacency Matrix:  $O(|V|^2)$

#### • Spatial: $\mathcal{O}(|V|)$

#### **Connected Components**

- Finding connected components of a graph G
- Example: the following graph has 3 connected components



#### **Connected Components**

The "skeleton" of a program to solve this:

#### Finding connected components

```
count \leftarrow 0
mark all nodes as not visited
For all nodes v of the graph do
If v is not yet visited then
count \leftarrow count + 1
dfs(v)
write(count)
```

Temporal complexity:

- Adjacency list:  $\mathcal{O}(|V| + |E|)$
- Adjacency matrix:  $\mathcal{O}(|V|^2)$

#### **Implicit Graphs**

- We do not have to always explicitly store the graph.
- Example: finding the number of "blobs" (connected areas) on matrix. Two cells are adjacent if they are connected vertically or horizontally.

| #.#### |            | 1.2233 |
|--------|------------|--------|
| ###    |            | 133    |
| ##     | > 4 blobs> |        |
| ##     |            | 44     |

- To solve we simply do dfs(x, y) to visit position (x, y), where the adjacent nodes are  $(x + 1, y), (x 1, y), (x, y + 1) \in (x, y 1)$
- Calling a DFS to "color" the connected components is known as doing a Flood Fill.

# **Bipartite Graphs**

- A **bipartite graph** is a graph where we can divide the nodes in two groups A and where each edge connects a node from A into a node from B:
  - There cannot be any edge from A to A
  - There cannot be any edge from B to B



• Many real graph are of this type. Some examples:

- Products and buyers
- Movies and actors
- Books and authors

<sup>► .</sup> 

# **Bipartite graphs**

Coloring Graphs

• The problem of **graph coloring** implies discovering a color allocation such that two neighbor nodes never have the same color.



- Given a graph, what is the minimum number of colors we need? (this is the *chromatic number* of a graph)
  - ► For a general graph this an hard problem and there are no known polynomial solutions.
    - (it is one of the original 21 NP-complete problems)

- Knowing if a graph is bipartite is a particular case of graph coloring
- Bipartite graph ↔ can we color with 2 colors?
- We can adapt *dfs* to test for this:

#### Algorithm to test if a graph is bipartite

Make a dfs from node v and paint that node with a certain color For each neighbor node w of v:

- If w was not visited, do dfs(w) and paint w with a different color than v
- If w was already visited, check if the color is different

If the color is the same, the graph is not bipartite!

# Bipartite graph

Example of algorithm with DFS

- Black node: not visited
- Red node: group A
- Green node: group B



# **Topological Sorting**

- Given a directed and acyclic graph G, find a node ordering such that u comes before v if and only if there is no (v, u) edge.
- Example: for the graph below, a possible topological sorting would be: 1, 2, 3, 4, 5, 6 (or 1, 4, 2, 5, 3, 6 there might be many possible topological sortings)



A classical example application is to decide in which order you can execute task that have precedences.

# **Topological Sorting**

• How to solve this problem with DFS? What is the relationship of the order in which DFS visits the nodes with a topological sorting?

```
Topological Sorting - O(|V| + |E|) (list) or O(|V|^2) (matrix)
```

order  $\leftarrow$  empty list mark all nodes as **not visited** For all nodes v of the graph do If v is not yet visited then dfs(v) write(order)

dfs(node v):
 mark v as visited
 For all nodes w adjacent to v do
 If w is not yet visited then
 dfs(w)
 add v to the beginning of list order

#### **Topological Sorting**



Example of execution:

| • order $= \emptyset$          |                          |  |  |
|--------------------------------|--------------------------|--|--|
| • start dfs(1)                 | $order = \emptyset$      |  |  |
| start dfs(4)                   | $order = \emptyset$      |  |  |
| start dfs(5)                   | $order = \emptyset$      |  |  |
| start dfs(6)                   | $order = \emptyset$      |  |  |
| end dfs(6)                     | order = 6                |  |  |
| end dfs(5)                     | order = 5, 6             |  |  |
|                                | <i>order</i> $= 4, 5, 6$ |  |  |
|                                | order = 1, 4, 5, 6       |  |  |
| start dfs(2)                   | order = 1, 4, 5, 6       |  |  |
|                                | order = 2, 1, 4, 5, 6    |  |  |
|                                | order = 2, 1, 4, 5, 6    |  |  |
| <ul> <li>end dfs(2)</li> </ul> | order = 3, 2, 1, 4, 5, 6 |  |  |
| • $order = 3, 2, 1, 4, 5, 6$   |                          |  |  |

• The temporal complexity is O(|V| + |E|) (list) because we only pass once trough each node and edge.

• An algorithm without DFS would be, on a **greedy** fashion, look for a node with in-degree zero, add it to the order and then remove it from the graph, repeating the same process afterwards.

#### **Cycle Detection**

- Find if a (directed) graph G if acyclic (does not contain cycles)
- Example: the graph on the left contains cycles, the one on the right doesn't



**Graph with Cycles** 



Acyclic Graph

# **Cycle Detection**

Let's use 3 "colors":

- White Node not visited
- Gray Node being visited (we are still exploring descendants)
- Black Node already visited (we visited all descendants)

#### Cycle Detection - O(|V| + |E|) (list) or $O(|V|^2)$ (matrix)

```
color[v \in V] \leftarrow white
For all nodes v of the graph do
  If cor[v] = white then
     dfs(v)
dfs(node v):
  color[v] \leftarrow gray
  For all nodes w adjacent to v do
     If color[w] = gray then
       write("Cycle found!")
     Else if color[w] = white then
       dfs(w)
  color[v] \leftarrow black
```

#### **Cycle Detection**

Example of execution (Starting on node 1) - Graph with 2 cycles



**Graph Traversal** 







#### **Cycle Dtection**

#### Example of execution (Starting on node 1) - Acyclic graph



Pedro Ribeiro (DCC/FCUP)

**Graph Traversal** 

2019/2020 22 / 50

# Classifying edges in DFS

Another "angle" for DFS

• A DFS implicitly creates a **search tree** that corresponds to the edges that were traversed when exploring the nodes





# Classifying edges in DFS

Another "angle" for DFS

- A visit with DFS classifies edges in 4 categories
  - Tree Edges Edges on DFS tree
  - Back Edges Edge from a node to a predecessor in the tree
  - Forward Edges Edges to a descendant in the tree
  - Cross Edges All the others (from a branch to another branch)



#### Classifying edges in DFS Another "angle" for DFS

- An example application: finding cycles is discovering... Back Edges!
- Knowing these edge typs helps to solve problems!
- Note: a undirected graph only has Tree Edges and Back Edges.

A more elaborated application of DFS

• Decompose a graph in its strongly connected components

A **strongly connected component** (SCC) its a maximal subgraph where there is a connected (directed) path between all node pairs of that subgraph.

An example graph and its three SCCs:



A more elaborated application of DFS

- How to compute SCCs?
- Let's use our edge types to help:





A more elaborated application of DFS

• Let's take a good look to the DFS tree:



- What is the "lowest" ancestor of a node that is achievable by it?
  - ▶ 1: it's again 1
  - 2: it's 1
  - ▶ 5: it's 1
  - ▶ 3: it's again 3
  - ▶ 4: it's 3
  - ▶ 8: it's 3
  - ▶ 7: it's again 7
  - ▶ 6: it's 7
- *Et voilà!* here are our SCCs!

A more elaborated application of DFS

- Let's add 2 more properties to a node on a DFS visit:
  - num(i): order in which i is visited
  - low(i): lowest num(i) achievable by a subtree that starts in i. It's the minimum between:
    - ★ num(i)
    - ★ smallest num(v) between all back edges (i, v)
    - \* smallest low(v) between all tree edges (i, v)



| i | num(i) | low(i) |
|---|--------|--------|
| 1 | 1      | 1      |
| 2 | 2      | 1      |
| 3 | 3      | 3      |
| 4 | 4      | 3      |
| 5 | 8      | 1      |
| 6 | 7      | 6      |
| 7 | 6      | 6      |
| 8 | 5      | 4      |

Pedro Ribeiro (DCC/FCUP)

A more elaborated application of DFS

The idea Tarjan's algorithm to discover SCCs:

- Make a **DFS** and in each node *i*:
  - Put the nodes on a stack S
  - Compute and store the values of num(i) and low(i).
  - If when exiting the visit to i we have num(i) = low(i), then i is the "root" of a SCC. In that case, remove everything from the stack until i and report those elements as a SCC!

A more elaborated application of DFS

Example of execution: when we exit dfs(7), we find that num(7) = low(7) (7 is the "root" of a SCC)



We remove from the stack until 7, and we output the SCC:  $\{6, 7\}$ 

Pedro Ribeiro (DCC/FCUP)

A more elaborated application of DFS

Example of execution: when we exit dfs(3), we find that num(3) = low(3) (3 is the "root" of a SCC)



We remove from the stack until **3**, and we output the SCC:  $\{8, 4, 3\}$ 

A more elaborated application of DFS

Example of execution: when we exit dfs(1), we find that num(1) = low(1) (1 is the "root" of a SCC)



We remove from the stack until 1, and we output the SCC:  $\{5, 2, 1\}$ 

A more elaborated application of DFS

```
Tarjan's algorithm for SCCs - O(|V| + |E|) (list)
index \leftarrow 0 : S \leftarrow \emptyset
For all nodes v of the graph do
  If num[v] is not yet defined then
     dfs_cfc(v)
dfs_cfc(node v):
  num[v] \leftarrow low[v] \leftarrow index; index \leftarrow index + 1; S.push(v)
  /* Traverse edges of v */
  For all nodes w adjacent to v do
     If num[w] is not yet defined then /* Tree Edge */
       dfs_cfc(w); low[v] \leftarrow min(low[v], low[w])
     Else if w is in S então /* Back Edge */
       low[v] \leftarrow min(low[v], num[w])
  If num[v] = low[v] then /* We know that we are on a SCC "root" */
     Start new SCC C
     Repeat
       w \leftarrow \text{S.pop}(); Add w to C
     Until w = v
  Pedro Ribeiro (DCC/FCUP)
                                          Graph Traversal
```

# **Articulation Points and Bridges**

An **articulation point** is a **node** whose removal increases the number of connected components

A **bridge** is an **edge** whose removal increases the number of connected components

Example (in red the articulation points; in blue the bridges):



A graph without articulation points is caleed **biconnected**.

#### **Articulation Points**

A more elaborated application of DFS

- Finding the articulation points is very useful
  - ► For instance, a graph that is "robust" to attacks should not have articulation points that when "attacked" will disconnect the graph.
- How to compute? A possible "naive" algorithm:
  - Make one DFS and count connected components
  - 2 Remove from the original graph a node and execute a new DFS, counting again connected components. If the number increases, then it is an articulation points.
  - 8 Repeat step 2 for all nodes.
- What would be the **complexity** of this method?  $\mathcal{O}(|V| \times (|V| + |E|))$ , as we will make |V| calls to a DFS, an each call takes |V| + |E|.
- It is possible to do much better... making one single DFS!

A more elaborated application of DFS

One idea:

- Apply DFS on the graph and obtain the DFS tree
- If a node v has a child w that does not have any path to an ancestor of v, then v is an articulation point! (since removing it disconnects w from the rest of the graph)
  - ▶ This corresponds to see if *low*[*u*] ≥ *num*[*v*]
- The only exception is the **root** of the tree. If it has more than one child... then it is also an articulation point!

A more elaborated application of DFS

• An example graph:



- num[i] numbers inside the node
- *low*[*i*] numbers in blue
- articulation points: nodes in yellow



A more elaborated application of DFS



- 3 is an articulation point:  $low[5] = 5 \ge num[3] = 3$
- 5 is an articulation point:  $low[6] = 6 \ge num[5] = 5$ ou

$$low[7] = 5 \ge num[5] = 5$$

- 10 is an articulation point:  $low[11] = 11 \ge num[10] = 10$
- 1 is not an articulation point: it only has one tree edge

A more elaborated application of DFS

Algorithm very similar to SCC, but with different DFS:

```
Finding articulation points - O(|V| + |E|) (list)

dfs_art(nde v):

num[v] \leftarrow low[v] \leftarrow index; index \leftarrow index + 1; S.push(v)

For all nodes w adjacent to a v do

If number[w] is not yet defined then /* Tree Edge */

dfs_art(w); low[v] \leftarrow min(low[v], low[w])

If low[w] \ge num[v] then

write(v + "is an articulation point")

Else if w is in S then /* Back Edge */

low[v] \leftarrow min(low[v], num[w])

S.pop()
```

Instead of a stack, we could use the colors (grey means it is in the stack)

- A Breadth-First Search (BFS) is very similar to a DFS. The only thing that changes is the order in which we visit the nodes.
- Instead of using recursion, it is more common to explicitly keep a queue of non visited nodes (q).

#### "Skeleton" of a BFS - O(|V| + |E|) (list) bfs(node v):

```
q \leftarrow \emptyset / * Queue of non visited nodes */

q.enqueue(v)

mark v as visited

While q \neq \emptyset / * While there are nodes to visit */

u \leftarrow q.dequeue() / * Remove first node of q */

For all nodes w adjacent to u do

If w was not yet visited then /* new node */

q.enqueue(w)

mark w as visited
```

Pedro Ribeiro (DCC/FCUP)

#### **Graph Traversal**

• An example:



Initially q = {A}
We remove A, we add non visited neighbors (q = {B, G})
We remove B, we add non visited neighbors (q = {G, C})
We remove G, we add non visited neighbors (q = {C})
We remove C, we add non visited neighbors (q = {D})
We remove D, we add non visited neighbors (q = {E, F})
We remove E, we add non visited neighbors (q = {F})
We remove F, we add non visited neighbors (q = {})
q empty, BFS finished

**Computing Distances** 

- Almost anything that can be done with DFS can also be made with BFS
- An important difference is that with BFS we visit the nodes on increasing order of distance to the source (in terms of number of edges)
- In that sense, BFS can compute **shortest paths** between nodes in unweighted graphs.
- Let's see what really changes in the code

**Computing Distances** 

• In red the new lines. *node.distance* store the distance to v.

```
BFS with distances - O(|V| + |E|) (list)
```

**bfs(node** v):  $q \leftarrow \emptyset$  /\* Queue of non visited nodes \*/ q.enqueue(v)*v.distance*  $\leftarrow 0$  /\* distance of *v* to itself is zero \*/ mark v as visited While  $q \neq \emptyset$  /\* While there are nodes to visit \*/  $u \leftarrow q.dequeue() /*$  Remove first node of q \*/For all nodes w adjacent to u do If w was not yet visited then /\* new node \*/ q.enqueue(w)mark w as visited w.distance  $\leftarrow$  u.distance +1

- BFS can be applied to any graph type
- Consider for example that you want the **shortest distance** between a **starting** cell (S) and an **ending** cell (E) on a 2D maze:

| ######## |            | ########                |
|----------|------------|-------------------------|
| #S#      |            | # <b>S</b> 12345#       |
| ####.### | >          | ####4###                |
| #E#      | BFS from S | # <mark>8</mark> 76567# |
| ######## |            | ########                |

- A node in this graph is the position (x, y)
- ▶ The adjacent nodes are (x + 1, y), (x 1, y), (x, y + 1) and (x, y 1)
- The rest of the BFS remains the same (we take  $\mathcal{O}(rows \times cols)$ )
- To store on a queue we need to use a pair (of coordinates)

- Let's see a problem from ONI'2010 qualification
- Problem inspired on the eruption of **Eyjafjallajökull volcano**, whose ash cloud caused so many problems in europe's air traffic
- Imagine that the position of the **ash clouds** is given on a matrix, and that in each time unit the cloud expands by one cell horizontally and vertically. A's represent airports.





- The problem asks for:
  - What is the first airport being covered by ashes
  - ► How much time before **all** airports are covered by ashes
- Let  $dist(A_i)$  be the distance of *i* until any cell with ash
- The problem asks for the smallest and largest  $dist(A_i)$
- One way would be to make one BFS from each airport
   O(num\_airports × rows × cols)
- Another way would be to make one BFS from each ash cell O(num\_ashes × linhas × colunas)
- Can we do better, using a single BFS?



- Idea: initialize the BFS queue with all the ashes
- Everything else remains the same

| #     | <b>1#1</b>                  | . <mark>2</mark> 1#1 <mark>2</mark> . | <mark>3</mark> 21#12 <mark>3</mark> | 321#123               |
|-------|-----------------------------|---------------------------------------|-------------------------------------|-----------------------|
| ##    | . <b>1##1</b>               | <b>2</b> 1##1 <b>2</b> .              | 21##123                             | 21##123               |
| .#### | ·> <b>1</b> #### <b>1</b> > | 1####1 <mark>2</mark> ->              | 1####12 ->                          | 1####12               |
|       | 11111                       | 11111 <mark>2</mark> .                | 111112 <mark>3</mark>               | 1111123               |
| ##    | ## <b>1</b>                 | ##1 <mark>22</mark>                   | ##122 <mark>3</mark> .              | ##1223 <mark>4</mark> |

- The distances are what we want
- Each cell will only be traversed once  $O(rows \times cols)$

- One last problem where the graph does not "explicitly" exists [original problem from IOI'1996]
- Consider the following puzzle (a kind of "2D Rubik's cube")
  - Initial puzzle position is:

| 1 | 2 | 3 | 4 |
|---|---|---|---|
| 8 | 7 | 6 | 5 |

- In each iteration we can do one of the following moves:
  - Move A: swap the two rows
  - ★ Move B: shift the rectangle to the right
  - ★ Move C: rotation (clockwise) of the 4 "middle" cell
- How many moves do we need to reach a given position?

| Pedro Ribeiro | (DCC | /FCUP) |
|---------------|------|--------|
|---------------|------|--------|

| 8 | 7 | 6 | 5 |
|---|---|---|---|
| 1 | 2 | 3 | 4 |

| 4 | 1 | 2 | 3 |
|---|---|---|---|
| 5 | 8 | 7 | 6 |

|    | 1 | 7 | 2 | 4 |
|----|---|---|---|---|
| 15 | 8 | 6 | 3 | 5 |

- Can be solved with... **BFS**!
- The initial node is... the initial position.
- The adjacent nodes are... the positions we can go to using a single move (A, B or C).
- When we reach the desired position... we necessarily know the shortest distance (nr moves) to get there
- The "hardest" part is to represent the positions :)