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Graph Traversal

@ One of the most important graph related tasks its to how to traverse
it, that is, passing trough all nodes using the connections
between them

@ We call this a graph traversal (or graph search)

@ There are two main graph traversal algorithms, that differ on the
order of traversal:

» Depth-First Search (DFS)
Traverse all the graph connected to an adjacent node before entering
the next adjacent node

» Breadth-First Search (BFS)
Traverse the nodes by increasing order of its distance in number of
edges to the source node
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Pesquisa em Grafos

@ On its essence, DFS and BFS are doing the "same”:
traverse all nodes

@ When to use one or the other depends on the problem and on the
order on which we want to traverse the nodes

@ We will see how to implement both and we will give example
applications
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DFS
The "skeleton” of a DFS:

DFS (recursive version)
dfs(node v):

mark v as visited

For all nodes w adjacent to v do

If w was not yet visited then
dfs(w)

Complexity:

@ Temporal:

» Adjacency List: O(|V|+ |E|)
» Adjacency Matrix: O(|V|?)

@ Spatial: O(|V/])
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Connected Components

@ Finding connected components of a graph G

@ Example: the following graph has 3 connected components
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Connected Components
The "skeleton” of a program to solve this:

Finding connected components

count <~ 0
mark all nodes as not visited
For all nodes v of the graph do
If v is not yet visited then
count < count + 1
dfs(v)
write(count)

Temporal complexity:

e Adjacency list: O(|V|+ |E|)
@ Adjacency matrix: O(|V/|?)
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Implicit Graphs

@ We do not have to always explicitly store the graph.

@ Example: finding the number of "blobs” (connected areas) on matrix.
Two cells are adjacent if they are connected vertically or horizontally.

#.##. H#H 1.22
#..... ## 1.....
REL L --> 4 blobs -->
LH#

@ To solve we simply do dfs(x, y) to visit position (x, y), where the
adjacent nodes are (x +1,y),(x — 1,y),(x,y + 1) e (x,y — 1)

@ Calling a DFS to "color” the connected components is known as
doing a Flood Fill.
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Bipartite Graphs

@ A bipartite graph is a graph where we can divide the nodes in two
groups A and where each edge connects a node from A into a node
from B:

» There cannot be any edge from A to A
» There cannot be any edge from B to B

@ Many real graph are of this type. Some examples:
» Products and buyers
» Movies and actors
» Books and authors
>
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Bipartite graphs
Coloring Graphs

@ The problem of graph coloring implies discovering a color allocation
such that two neighbor nodes never have the same color.

SES Ot

@ Given a graph, what is the minimum number of colors we need?
(this is the chromatic number of a graph)
» For a general graph this an hard problem and there are no known
polynomial solutions.
(it is one of the original 21 NP-complete problems)
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Bipartite Graphs

DFS algorithm

@ Knowing if a graph is bipartite is a particular case of graph coloring
@ Bipartite graph <+ can we color with 2 colors?

@ We can adapt dfs to test for this:

Algorithm to test if a graph is bipartite

Make a dfs from node v and paint that node with a certain color
For each neighbor node w of v:

o If w was not visited, do dfs(w) and paint w with a different color
than v

o If w was already visited, check if the color is different
If the color is the same, the graph is not bipartite!
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Bipartite graph

Example of algorithm with DFS

@ Black node: not visited
@ Red node: group A

@ Green node: group B

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
NN N N
s 6 7 8 5 6 7 8 5 6 7 8 5 6 1 8
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
N NS BT NED
s 6 7 & 5 6 7 8 5 6 1 8 5 6 71 8
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Topological Sorting

@ Given a directed and acyclic graph G, find a node ordering such that
u comes before v if and only if there is no (v, u) edge.

@ Example: for the graph below, a possible topological sorting would
be: 1,2,3,4,5,6 (or 1,4,2,5,3,6 - there might be many possible
topological sortings)

4 5 (6)

A classical example application is to decide in which order you can execute
task that have precedences.
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Topological Sorting

@ How to solve this problem with DFS? What is the relationship of the
order in which DFS visits the nodes with a topological sorting?

Topological Sorting - O(|V| + |E|) (list) or O(|V|?) (matrix)
order <— empty list
mark all nodes as not visited
For all nodes v of the graph do
If v is not yet visited then
dfs(v)
write(order)
dfs(node v):
mark v as visited
For all nodes w adjacent to v do
If w is not yet visited then
dfs(w)
add v to the beginning of list order
Graph Traversal 2019/2020  16/50




Topological Sorting

Example of execution:

@ order = ()

start dfs(1
start dfs(4
start dfs(b
start dfs(6
end dfs(6
end dfs(b
end dfs(4
end dfs(1
start dfs(2
end dfs(2
@ start dfs(3
@ end dfs(2

@ order = 3,2,1,4,5,

order
order
order
order
order

Q
Q.
[0)
=

T o T T

order

(@)}
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Topological Sorting

@ The temporal complexity is O(| V| + |E|) (list) because we only pass

once trough each node and edge.

@ An algorithm without DFS would be, on a greedy fashion, look for a
node with in-degree zero, add it to the order and then remove it from
the graph, repeating the same process afterwards.
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Cycle Detection

e Find if a (directed) graph G if acyclic (does not contain cycles)

@ Example: the graph on the left contains cycles, the one on the right

doesn't
@ 9'9 @ @ O
@O &0 @O &0
Graph with Cycles Acyclic Graph
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Cycle Detection

Let’s use 3 "colors":

@ White - Node not visited
@ Gray - Node being visited (we are still exploring descendants)
@ Black - Node already visited (we visited all descendants)

Cycle Detection - O(|V| + |E|) (list) or O(]V|?) (matrix)

color[v € V] + white
For all nodes v of the graph do
If cor[v] = white then
dfs(v)

dfs(node v):
color[v] < gray
For all nodes w adjacent to v do
If color[w] = gray then
write(” Cycle found!")
Else if color[w] = white then
dfs(w)
color[v] + black
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Cycle Detection
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Cycle Dtection

Example of execution (Starting on node 1) - Acyclic graph

@Q @ 606 & 606 @ 6
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Classifying edges in DFS

Another ”angle” for DFS

@ A DFS implicitly creates a search tree that corresponds to the edges
that were traversed when exploring the nodes
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Classifying edges in DFS

Another ”angle” for DFS

@ A visit with DFS classifies edges in 4 categories
Tree Edges - Edges on DFS tree
Back Edges - Edge from a node to a predecessor in the tree
Forward Edges - Edges to a descendant in the tree
- All the others (from a branch to another branch)

v

v vy

: 9‘@
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Classifying edges in DFS

Another ”angle” for DFS

@ An example application: finding cycles is discovering... Back Edges!

@ Knowing these edge typs helps to solve problems!

@ Note: a undirected graph only has Tree Edges and Back Edges.
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Strongly Connected Components
A more elaborated application of DFS

@ Decompose a graph in its strongly connected components

A strongly connected component (SCC) its a maximal subgraph where
there is a connected (directed) path between all node pairs of that
subgraph.

An example graph and its three SCCs:
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Strongly Connected Components
A more elaborated application of DFS

@ How to compute SCCs?

@ Let's use our edge types to help:

0'9 OWRO
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Strongly Connected Components
A more elaborated application of DFS

o Let's take a good look to the DFS tree:

SCCs!
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@ Et voila! here are our

@ What is the " lowest”
ancestor of a node that
is achievable by it?

it's again 1
it's 1
it's 1
it's again 3
it's 3
it's 3
it's again 7
it's 7
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Strongly Connected Components
A more elaborated application of DFS

@ Let's add 2 more properties to a node on a DFS visit:
» num(i): order in which i is visited

» low(i): lowest num(i) achievable by a subtree that starts in .

It's the minimum between:

* num(i)

* smallest num(v) between all back edges (i, v)
* smallest low(v) between all tree edges (i.v)
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Strongly Connected Components
A more elaborated application of DFS

The idea Tarjan’s algorithm to discover SCCs:

@ Make a DFS and in each node /:

» Put the nodes on a stack S
» Compute and store the values of num(i) and low(i).

» If when exiting the visit to i we have num(i) = low(i), then i is the
"root” of a SCC. In that case, remove everything from the stack until /
and report those elements as a SCC!
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Strongly Connected Components
A more elaborated application of DFS

Example of execution: when we exit dfs(7), we find that num(7) = low(7)
(7 is the "root” of a SCC)

State of stack S:

= N W H 0N O

We remove from the stack until 7, and we output the SCC: {6, 7}
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Strongly Connected Components
A more elaborated application of DFS

Example of execution: when we exit dfs(3), we find that num(3) = low(3)
(3 is the "root” of a SCC)

State of stack S:

= N W o

We remove from the stack until 3, and we output the SCC: {8, 4, 3}
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Strongly Connected Components
A more elaborated application of DFS

Example of execution: when we exit dfs(1), we find that num(1) = low(1)
(1 is the "root” of a SCC)

State of stack S:

5

We remove from the stack until 1, and we output the SCC: {5, 2, 1}
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Strongly Connected Components
A more elaborated application of DFS

Tarjan’s algorithm for SCCs - O(|V| + |E|) (list)
index < 0; S+ 0
For all nodes v of the graph do

If num[v] is not yet defined then
dfs_cfc(v)

dfs_cfc(node v):
num[v] < low[v] < index ; index < index + 1 ; S.push(v)
/* Traverse edges of v */
For all nodes w adjacent to v do
If num[w] is not yet defined then /* Tree Edge */
dfs_cfc(w) ; low[v] <= min(low|[v], low[w])
Else if w is in S entdo /* Back Edge */
low[v] <= min(low[v], num[w])
If num[v] = low[v] then /* We know that we are on a SCC "root” */
Start new SCC C
Repeat

w  S.pop() ; Add w to C
Until w = v
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Articulation Points and Bridges

An articulation point is a node whose removal increases the number of
connected components

A bridge is an edge whose removal increases the number of connected
components

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is caleed biconnected.
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Articulation Points
A more elaborated application of DFS

@ Finding the articulation points is very useful

» For instance, a graph that is "robust” to attacks should not have
articulation points that when "attacked” will disconnect the graph.

@ How to compute? A possible "naive” algorithm:

@ Make one DFS and count connected components

© Remove from the original graph a node and execute a new DFS,
counting again connected components. If the number increases, then it
is an articulation points.

© Repeat step 2 for all nodes.

@ What would be the complexity of this method? O(|V/|x (|V|+|E|)),
as we will make |V/| calls to a DFS, an each call takes |V| + |E|.

o It is possible to do much better... making one single DFS!
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Articulation Points
A more elaborated application of DFS

One idea:
@ Apply DFS on the graph and obtain the DFS tree

o If a node v has a child w that does not have any path to an
ancestor of v, then v is an articulation point! (since removing it
disconnects w from the rest of the graph)

» This corresponds to see if low[u] > num]v]

@ The only exception is the root of the tree. If it has more than one
child... then it is also an articulation point!
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Articulation Points
A more elaborated application of DFS

@ An example graph:

@ num[i] - numbers inside the node
@ low(i] - numbers in blue
@ articulation points: nodes in yellow
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Articulation Points
A more elaborated application of DFS

1
(D @ 3 is an articulation point:
) low[5] =5 > num[3] = 3
(3) @ 5 is an articulation point:

low[6] = 6 > num[5] =5
ou
low[7] =5 > num[5] =5

5 @ 10 is an articulation point:
low[11] = 11 > num[10] = 10

@ 1 is not an articulation point:
it only has one tree edge
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Articulation Points
A more elaborated application of DFS

Algorithm very similar to SCC, but with different DFS:

Finding articulation points - O(|V/| + |E|) (list)

dfs_art(nde v):
num[v] < low[v] < index ; index < index + 1 ; S.push(v)
For all nodes w adjacent to a v do
If number[w] is not yet defined then /* Tree Edge */
dfs_art(w) ; low[v] < min(low|v], low[w])
If low[w] > num|[v] then
write(v + "is an articulation point”)
Else if w is in S then /* Back Edge */
low[v] <= min(low[v], num[w])
S.pop()

Instead of a stack, we could use the colors (grey means it is in the stack)
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Breadth-First Search (BFS)

@ A Breadth-First Search (BFS) is very similar to a DFS. The only
thing that changes is the order in which we visit the nodes.

@ Instead of using recursion, it is more common to explicitly keep a
queue of non visited nodes (q).

" Skeleton” of a BFS - O(|V/| + |E]) (list)

bfs(node v):
g < 0 /* Queue of non visited nodes */
q.enqueue(v)
mark v as visited
While g # 0 /* While there are nodes to visit */
u + q.dequeue() /* Remove first node of g */
For all nodes w adjacent to u do
If w was not yet visited then /* new node */
q.enqueue(w)
mark w as visited
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Breadth-First Search (BFS)

@ An example:

O Initially g = {A}

@ We remove A, we add non visited neighbors (g = {B, G})
© We remove B, we add non visited neighbors (g = {G, C})
© We remove G, we add non visited neighbors (¢ = {C})
© We remove C, we add non visited neighbors (g = {D})
@ We remove D, we add non visited neighbors (g = {E, F})
@ We remove E, we add non visited neighbors (g = {F})
@ We remove F, we add non visited neighbors (g = {})

©Q g empty, BFS finished
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Breadth-First Search (BFS)

Computing Distances

@ Almost anything that can be done with DFS can also be made with
BFS

@ An important difference is that with BFS we visit the nodes on
increasing order of distance to the source (in terms of number of
edges)

@ In that sense, BFS can compute shortest paths between nodes in
unweighted graphs.

@ Let's see what really changes in the code
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Breadth-First Search (BFS)

Computing Distances
@ In red the new lines. node.distance store the distance to v.

BFS with distances - O(|V| + |E|) (list)

bfs(node v):
g <+ 0 /* Queue of non visited nodes */
q.enqueue(v)
v.distance <— 0 /* distance of v to itself is zero */
mark v as visited
While g # 0 /* While there are nodes to visit */
u + q.dequeue() /* Remove first node of g */
For all nodes w adjacent to u do
If w was not yet visited then /* new node */
q.enqueue(w)
mark w as visited
w.distance < u.distance + 1
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Breadth-First Search (BFS)

More applications

@ BFS can be applied to any graph type

@ Consider for example that you want the shortest distance between a
starting cell (S) and an ending cell (E) on a 2D maze:

R A
#S..... # #S12345#
A W -—=> HAHH AR
#E..... # BFS from S #876567#
A R

» A node in this graph is the position (x, y)

» The adjacent nodes are (x +1,y), (x—1,y), (x,y +1) and (x,y — 1)
> The rest of the BFS remains the same (we take O(rows x cols))

» To store on a queue we need to use a pair (of coordinates)
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Breadth-First Search (BFS)

More applications

@ Let's see a problem from ONI'2010 qualification

@ Problem inspired on the eruption of Eyjafjallajokull volcano, whose
ash cloud caused so many problems in europe’s air traffic

@ Imagine that the position of the ash clouds is given on a matrix, and
that in each time unit the cloud expands by one cell horizontally and
vertically. A's represent airports.

']! il ) )1 )]
s ML ) ] ] ) )
1| =) ) BoRel
N A l A
A A
Today Tomorrow (1 day after) 2 days after
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Breadth-First Search (BFS)

More applications

o T T 1o

@ The problem asks for:

» What is the first airport being covered by ashes
» How much time before all airports are covered by ashes

o Let dist(A;) be the distance of i until any cell with ash
@ The problem asks for the smallest and largest dist(A;)

@ One way would be to make one BFS from each airport
O(num_airports x rows X cols)

@ Another way would be to make one BFS from each ash cell
O(num_ashes x linhas x colunas)

@ Can we do better, using a single BFS?
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Breadth-First Search (BFS)

More applications

@ ldea: initialize the BFS queue with all the ashes

@ Everything else remains the same

R 1#LL L21#12. 321#123 321#123
LHEL L CA##L. 21##12. 21##123 21##123
AR > L###L. -> L##H#L2 > 1####12 > L####12
....... 11111.. 111112. 1111123 1111123
#H... .. ##1. ... ##122. . ##1223. ##12234

@ The distances are what we want

@ Each cell will only be traversed once O(rows x cols)
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Breadth-First Search (BFS)

More applications

@ One last problem where the graph does not "explicitly” exists
[original problem from 101'1996]

o Consider the following puzzle (a kind of "2D Rubik’s cube")

> Initial puzzle position is: 1121314
puzzie p ' 7165
> In each iteration we can do one of the following moves:
71615
* .
Move A: swap the two rows BEEERR
. . 41123
* .
Move B: shift the rectangle to the right s T8 176
. . bt 1(7(2|4
* Move C: rotation (clockwise) of the 4 "middle” cells 61315

» How many moves do we need to reach a given position?
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Breadth-First Search (BFS)

More applications

@ Can be solved with... BFS!
@ The initial node is... the initial position.

@ The adjacent nodes are... the positions we can go to using a single
move (A, B or C).

@ When we reach the desired position... we necessarily know the
shortest distance (nr moves) to get there

@ The "hardest” part is to represent the positions :)
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