Graph Traversal

Pedro Ribeiro

DCC/FCUP

2019/2020

Graph Traversal

- One of the most important graph related tasks its to how to traverse it, that is, passing trough all nodes using the connections between them
- We call this a graph traversal (or graph search)
- There are two main graph traversal algorithms, that differ on the order of traversal:
- Depth-First Search (DFS)

Traverse all the graph connected to an adjacent node before entering the next adjacent node

- Breadth-First Search (BFS)

Traverse the nodes by increasing order of its distance in number of edges to the source node

Graph Traversal

Breadth-First Search

Pesquisa em Grafos

Breadth-First Search

Pesquisa em Grafos

Breadth-First Search

Pesquisa em Grafos

- On its essence, DFS and BFS are doing the "same": traverse all nodes
- When to use one or the other depends on the problem and on the order on which we want to traverse the nodes
- We will see how to implement both and we will give example applications

DFS

The "skeleton" of a DFS:

DFS (recursive version)

dfs(node v):
mark v as visited
For all nodes w adjacent to v do
If w was not yet visited then dfs(w)

Complexity:

- Temporal:
- Adjacency List: $\mathcal{O}(|V|+|E|)$
- Adjacency Matrix: $\mathcal{O}\left(|V|^{2}\right)$
- Spatial: $\mathcal{O}(|V|)$

Connected Components

- Finding connected components of a graph G
- Example: the following graph has 3 connected components

Connected Components

The "skeleton" of a program to solve this:

Finding connected components

```
count }\leftarrow
```

mark all nodes as not visited
For all nodes v of the graph do
If v is not yet visited then
count \leftarrow count +1 dfs(v)
write(count)

Temporal complexity:

- Adjacency list: $\mathcal{O}(|V|+|E|)$
- Adjacency matrix: $\mathcal{O}\left(|V|^{2}\right)$

Implicit Graphs

- We do not have to always explicitly store the graph.
- Example: finding the number of "blobs" (connected areas) on matrix. Two cells are adjacent if they are connected vertically or horizontally.

\#.\#\#..\#\#		1.22..33
\#.....\#\#		1..... 33
.\#\#..	--> 4 blobs -->	...44.
...\#\#...		. 44

- To solve we simply do $d f s(x, y)$ to visit position (x, y), where the adjacent nodes are $(x+1, y),(x-1, y),(x, y+1)$ e $(x, y-1)$
- Calling a DFS to "color" the connected components is known as doing a Flood Fill.

Bipartite Graphs

- A bipartite graph is a graph where we can divide the nodes in two groups A and where each edge connects a node from A into a node from B :
- There cannot be any edge from A to A
- There cannot be any edge from B to B

- Many real graph are of this type. Some examples:
- Products and buyers
- Movies and actors
- Books and authors

Bipartite graphs

Coloring Graphs

- The problem of graph coloring implies discovering a color allocation such that two neighbor nodes never have the same color.

- Given a graph, what is the minimum number of colors we need? (this is the chromatic number of a graph)
- For a general graph this an hard problem and there are no known polynomial solutions.
(it is one of the original 21 NP-complete problems)

Bipartite Graphs
 DFS algorithm

- Knowing if a graph is bipartite is a particular case of graph coloring
- Bipartite graph \leftrightarrow can we color with 2 colors?
- We can adapt $d f s$ to test for this:

Algorithm to test if a graph is bipartite

Make a dfs from node v and paint that node with a certain color For each neighbor node w of v :

- If w was not visited, do $\operatorname{dfs}(w)$ and paint w with a different color than v
- If w was already visited, check if the color is different
- If the color is the same, the graph is not bipartite!

Bipartite graph

Example of algorithm with DFS

- Black node: not visited
- Red node: group A
- Green node: group B

Topological Sorting

- Given a directed and acyclic graph G, find a node ordering such that u comes before v if and only if there is no (v, u) edge.
- Example: for the graph below, a possible topological sorting would be: $1,2,3,4,5,6$ (or $1,4,2,5,3,6$ - there might be many possible topological sortings)

A classical example application is to decide in which order you can execute task that have precedences.

Topological Sorting

- How to solve this problem with DFS? What is the relationship of the order in which DFS visits the nodes with a topological sorting?

Topological Sorting - $\mathcal{O}(|V|+|E|)$ (list) or $\mathcal{O}\left(|V|^{2}\right)$ (matrix)

order \leftarrow empty list
mark all nodes as not visited
For all nodes v of the graph do
If v is not yet visited then
$\mathrm{dfs}(v)$
write(order)
dfs(node v):
mark v as visited
For all nodes w adjacent to v do
If w is not yet visited then dfs(w)
add v to the beginning of list order

Topological Sorting

Example of execution:

- order $=\emptyset$
- start dfs (1) |order = \emptyset
- start dfs (4) order $=\emptyset$
- start dfs (5) order $=\emptyset$
- start dfs(6) order $=\emptyset$
- end dfs(6)
- end dfs (5)
- end dfs(4)
- end dfs(1) order $=1,4,5,6$
- start dfs(2) order $=1,4,5,6$
- end dfs(2) order $=2,1,4,5,6$
- start dfs(3) order $=2,1,4,5,6$
- end dfs(2) order $=3,2,1,4,5,6$
- order $=3,2,1,4,5,6$

Topological Sorting

- The temporal complexity is $\mathcal{O}(|V|+|E|)$ (list) because we only pass once trough each node and edge.
- An algorithm without DFS would be, on a greedy fashion, look for a node with in-degree zero, add it to the order and then remove it from the graph, repeating the same process afterwards.

Cycle Detection

- Find if a (directed) graph G if acyclic (does not contain cycles)
- Example: the graph on the left contains cycles, the one on the right doesn't

Graph with Cycles

Acyclic Graph

Cycle Detection

Let's use 3 " colors":

- White - Node not visited
- Gray - Node being visited (we are still exploring descendants)
- Black - Node already visited (we visited all descendants)

Cycle Detection - $\mathcal{O}(|V|+|E|)$ (list) or $\mathcal{O}\left(|V|^{2}\right)$ (matrix)

color $[v \in V] \leftarrow$ white
For all nodes v of the graph do
If $\operatorname{cor}[v]=$ white then dfs(v)
dfs(node v):
color $[v] \leftarrow$ gray
For all nodes w adjacent to v do
If color $[w]=$ gray then write(" Cycle found!")
Else if color $[w]=$ white then
dfs(w)
color $[v] \leftarrow$ black

Cycle Detection

Example of execution (Starting on node 1) - Graph with 2 cycles

Graph Traversal

Cycle Dtection

Example of execution (Starting on node 1) - Acyclic graph

Classifying edges in DFS

Another "angle" for DFS

- A DFS implicitly creates a search tree that corresponds to the edges that were traversed when exploring the nodes

Classifying edges in DFS

Another "angle" for DFS

- A visit with DFS classifies edges in 4 categories
- Tree Edges - Edges on DFS tree
- Back Edges - Edge from a node to a predecessor in the tree
- Forward Edges - Edges to a descendant in the tree
- Cross Edges - All the others (from a branch to another branch)

Classifying edges in DFS

Another "angle" for DFS

- An example application: finding cycles is discovering... Back Edges!
- Knowing these edge typs helps to solve problems!
- Note: a undirected graph only has Tree Edges and Back Edges.

Strongly Connected Components

A more elaborated application of DFS

- Decompose a graph in its strongly connected components

A strongly connected component (SCC) its a maximal subgraph where there is a connected (directed) path between all node pairs of that subgraph.

An example graph and its three SCCs:

Strongly Connected Components

A more elaborated application of DFS

- How to compute SCCs?
- Let's use our edge types to help:

Strongly Connected Components

A more elaborated application of DFS

- Let's take a good look to the DFS tree:
- What is the "lowest" ancestor of a node that is achievable by it?
- 1: it's again 1
- 2: it's 1
- 5: it's 1
- 3: it's again 3
- 4: it's 3
- 8: it's 3
- 7: it's again 7
- 6: it's 7
- Et voilà! here are our SCCs!

Strongly Connected Components

A more elaborated application of DFS

- Let's add 2 more properties to a node on a DFS visit:
- num(i): order in which i is visited
- low(i): lowest num(i) achievable by a subtree that starts in i. It's the minimum between:

$$
\star \text { num(i) }
$$

* smallest num (v) between all back edges (i, v)
\star smallest $\operatorname{low}(v)$ between all tree edges (i, v)

i	num (i)	low (i)
1	1	1
2	2	1
3	3	3
4	4	3
5	8	1
6	7	6
7	6	6
8	5	4

Strongly Connected Components

A more elaborated application of DFS

The idea Tarjan's algorithm to discover SCCs:

- Make a DFS and in each node i :
- Put the nodes on a stack \mathbf{S}
- Compute and store the values of num(i) and $\operatorname{low}(\mathbf{i})$.
- If when exiting the visit to i we have $\mathbf{n u m}(\mathbf{i})=\boldsymbol{\operatorname { l o w }}(\mathbf{i})$, then i is the "root" of a SCC. In that case, remove everything from the stack until i and report those elements as a SCC!

Strongly Connected Components

A more elaborated application of DFS

Example of execution: when we exit $d f s(7)$, we find that $\operatorname{num}(7)=\operatorname{low}(7)$ (7 is the "root" of a SCC)

State of stack S:
6
7
8
4
3
2
1

We remove from the stack until 7, and we output the SCC: $\{6,7\}$

Strongly Connected Components

A more elaborated application of DFS
Example of execution: when we exit $d f s(3)$, we find that num(3) $=\operatorname{low}(3)$ (3 is the "root" of a SCC)

State of stack S:
8
4
3
2
1

We remove from the stack until 3, and we output the SCC: $\{8,4,3\}$

Strongly Connected Components

A more elaborated application of DFS

Example of execution: when we exit $d f s(1)$, we find that num $(1)=\operatorname{low}(1)$ (1 is the "root" of a SCC)

State of stack S:

> 5
> 2
> 1

We remove from the stack until $\mathbf{1}$, and we output the $\operatorname{SCC}:\{5,2,1\}$

Strongly Connected Components

A more elaborated application of DFS

```
Tarjan's algorithm for SCCs - \mathcal{O}(|V|+|E|) (list)
index \leftarrow0; S\leftarrow\emptyset
For all nodes v of the graph do
    If num[v] is not yet defined then
        dfs_cfc(v)
dfs_cfc(node v):
    num[v]}\leftarrow\mathrm{ low }[v]\leftarrow\mathrm{ index ; index }\leftarrow\mathrm{ index + 1; S.push(v)
    /* Traverse edges of v*/
    For all nodes w adjacent to v do
        If num[w] is not yet defined then /* Tree Edge */
        dfs_cfc(w); low[v]}\leftarrow\operatorname{min}(low[v], low[w]
    Else if w is in S então /* Back Edge */
        low[v]}\leftarrow\operatorname{min}(low[v],num[w]
    If num[v] = low[v] then /* We know that we are on a SCC "root" */
    Start new SCC C
    Repeat
        w}\leftarrowS.pop();Add w to 
    Until w=v
```


Articulation Points and Bridges

An articulation point is a node whose removal increases the number of connected components

A bridge is an edge whose removal increases the number of connected components

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is caleed biconnected.

Articulation Points

A more elaborated application of DFS

- Finding the articulation points is very useful
- For instance, a graph that is "robust" to attacks should not have articulation points that when "attacked" will disconnect the graph.
- How to compute? A possible "naive" algorithm:
(1) Make one DFS and count connected components
(2) Remove from the original graph a node and execute a new DFS, counting again connected components. If the number increases, then it is an articulation points.
(3) Repeat step 2 for all nodes.
- What would be the complexity of this method? $\mathcal{O}(|V| \times(|V|+|E|))$, as we will make $|V|$ calls to a DFS, an each call takes $|V|+|E|$.
- It is possible to do much better... making one single DFS!

Articulation Points

A more elaborated application of DFS

One idea:

- Apply DFS on the graph and obtain the DFS tree
- If a node v has a child w that does not have any path to an ancestor of v, then v is an articulation point! (since removing it disconnects w from the rest of the graph)
- This corresponds to see if low $[u] \geq$ num $[v]$
- The only exception is the root of the tree. If it has more than one child... then it is also an articulation point!

Articulation Points

A more elaborated application of DFS

- An example graph:

- num [i] - numbers inside the node
- low[i] - numbers in blue
- articulation points: nodes in yellow

Articulation Points

A more elaborated application of DFS

- 3 is an articulation point: $\operatorname{low}[5]=5 \geq$ num $[3]=3$
- 5 is an articulation point: $\operatorname{low}[6]=6 \geq$ num $[5]=5$
ou
$\operatorname{low}[7]=5 \geq$ num $[5]=5$
- 10 is an articulation point:
$\operatorname{low}[11]=11 \geq \operatorname{num}[10]=10$
- 1 is not an articulation point: it only has one tree edge

Articulation Points

A more elaborated application of DFS

Algorithm very similar to SCC, but with different DFS:

Finding articulation points $-\mathcal{O}(|V|+|E|)$ (list)

dfs_art(nde v):
num $[v] \leftarrow$ low $[v] \leftarrow$ index ; index \leftarrow index +1 ; S.push (v)
For all nodes w adjacent to a v do
If number $[w]$ is not yet defined then /* Tree Edge */
dfs_art (w); low $[v] \leftarrow \min ($ low $[v]$, low $[w])$
If low $[w] \geq$ num $[v]$ then write ($v+$ "is an articulation point")
Else if w is in S then /* Back Edge */
$\operatorname{low}[v] \leftarrow \min (\operatorname{low}[v]$, num $[w])$
S.pop()

Instead of a stack, we could use the colors (grey means it is in the stack)

Breadth-First Search (BFS)

- A Breadth-First Search (BFS) is very similar to a DFS. The only thing that changes is the order in which we visit the nodes.
- Instead of using recursion, it is more common to explicitly keep a queue of non visited nodes (q).

"Skeleton" of a BFS - $\mathcal{O}(|V|+|E|)$ (list)

bfs(node v):
$q \leftarrow \emptyset / *$ Queue of non visited nodes */
q.enqueue(v)
mark v as visited
While $q \neq \emptyset / *$ While there are nodes to visit */
$u \leftarrow q$.dequeue () /* Remove first node of $q^{*} /$
For all nodes w adjacent to u do
If w was not yet visited then /* new node */ q.enqueue(w) mark w as visited

Breadth-First Search (BFS)

- An example:

(1) Initially $q=\{A\}$
(2) We remove \mathbf{A}, we add non visited neighbors $(q=\{B, G\})$
(3) We remove \mathbf{B}, we add non visited neighbors $(~ q=\{G, C\})$
(9) We remove \mathbf{G}, we add non visited neighbors $(q=\{C\})$
(5) We remove \mathbf{C}, we add non visited neighbors ($q=\{D\}$)
(0) We remove \mathbf{D}, we add non visited neighbors $(q=\{E, F\})$
(7) We remove \mathbf{E}, we add non visited neighbors $(q=\{F\})$
(8) We remove \mathbf{F}, we add non visited neighbors $(~ q=\{ \})$
(0) q empty, BFS finished

Breadth-First Search (BFS)

Computing Distances

- Almost anything that can be done with DFS can also be made with BFS
- An important difference is that with BFS we visit the nodes on increasing order of distance to the source (in terms of number of edges)
- In that sense, BFS can compute shortest paths between nodes in unweighted graphs.
- Let's see what really changes in the code

Breadth-First Search (BFS)

Computing Distances

- In red the new lines. node.distance store the distance to v.

BFS with distances - $\mathcal{O}(|V|+|E|)$ (list)

bfs(node v):
$q \leftarrow \emptyset / *$ Queue of non visited nodes */
q.enqueue(v)
v. distance $\leftarrow 0 / *$ distance of v to itself is zero */
mark v as visited
While $q \neq \emptyset / *$ While there are nodes to visit */
$u \leftarrow q$.dequeue () /* Remove first node of $q^{*} /$
For all nodes w adjacent to u do
If w was not yet visited then /* new node */ q.enqueue(w)
mark w as visited
w. distance $\leftarrow u$.distance +1

Breadth-First Search (BFS)

More applications

- BFS can be applied to any graph type
- Consider for example that you want the shortest distance between a starting cell (S) and an ending cell (E) on a 2D maze:

\#\#\#\#\#\#\#\#		\#\#\#\#\#\#\#\#
\#S.....\#		\#S12345\#
\#\#\#\#.\#\#\#	$--->$	\#\#\#\#4\#\#\#
\#E....\#	BFS from S	\#876567\#
\#\#\#\#\#\#\#		\#\#\#\#\#\#\#

- A node in this graph is the position (x, y)
- The adjacent nodes are $(x+1, y),(x-1, y),(x, y+1)$ and $(x, y-1)$
- The rest of the BFS remains the same (we take \mathcal{O} (rows \times cols))
- To store on a queue we need to use a pair (of coordinates)

Breadth-First Search (BFS)

More applications

- Let's see a problem from ONI'2010 qualification
- Problem inspired on the eruption of Eyjafjallajökull volcano, whose ash cloud caused so many problems in europe's air traffic
- Imagine that the position of the ash clouds is given on a matrix, and that in each time unit the cloud expands by one cell horizontally and vertically. A's represent airports.

Today

Tomorrow (1 day after)

2 days after

Breadth-First Search (BFS)

More applications

- The problem asks for:
- What is the first airport being covered by ashes
- How much time before all airports are covered by ashes
- Let $\operatorname{dist}\left(A_{i}\right)$ be the distance of i until any cell with ash
- The problem asks for the smallest and largest $\operatorname{dist}\left(A_{i}\right)$
- One way would be to make one BFS from each airport \mathcal{O} (num_airports \times rows \times cols $)$
- Another way would be to make one BFS from each ash cell $\mathcal{O}($ num_ashes \times linhas \times colunas $)$
- Can we do better, using a single BFS?

Breadth-First Search (BFS)

More applications

- Idea: initialize the BFS queue with all the ashes
- Everything else remains the same

$. . . \# . .$.	$. .1 \# 1 .$.	$.21 \# 12$.	$321 \# 123$	$321 \# 123$
$. . \# \# . .$.	$.1 \# \# 1 .$.	$21 \# \# 12$.	$21 \# \# 123$	$21 \# \# 123$
$. \# \# \# \# .$.	1\#\#\#\#1.	$->$	$1 \# \# \# \# 12$	$->$
$\ldots . . .$.	$11111 .$.	111112.	1111123	1111123
\#\#.....	\#\#1....	\#\#122.	\#\#1223.	\#\#12234

- The distances are what we want
- Each cell will only be traversed once \mathcal{O} (rows \times cols)

Breadth-First Search (BFS)

More applications

- One last problem where the graph does not "explicitly" exists [original problem from IOI'1996]
- Consider the following puzzle (a kind of "2D Rubik's cube")
- Initial puzzle position is:

1	2	3	4
8	7	6	5

- In each iteration we can do one of the following moves:
* Move A: swap the two rows

8	7	6	5
1	2	3	4

* Move B: shift the rectangle to the right

4	1	2	3
5	8	7	6

* Move C: rotation (clockwise) of the 4 " middle" cells | 1 | 7 | 2 | 4 |
| :--- | :--- | :--- | :--- |
| 8 | 6 | 3 | 5 |
- How many moves do we need to reach a given position?

Breadth-First Search (BFS)

More applications

- Can be solved with... BFS!
- The initial node is... the initial position.
- The adjacent nodes are... the positions we can go to using a single move (A, B or C).
- When we reach the desired position... we necessarily know the shortest distance (nr moves) to get there
- The "hardest" part is to represent the positions :)

