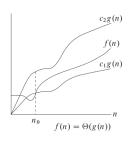
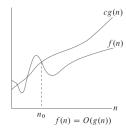
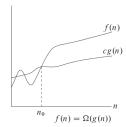
Asymptotic Analysis

DCC/FCUP

2018/2019





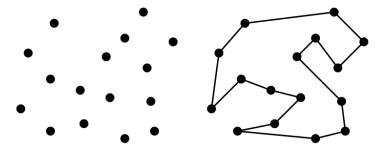


Traveling Salesman Problem (Euclidean TSP version)

Input: a set *S* of *n* points in the plane

Output: the smallest possible path that starts on a point, visits all other points of S and then returns to the starting point.

An example:



A possible (greedy) algorithm - nearest neighbour

 $p_1 \leftarrow \text{random point}$ $i \leftarrow 1$

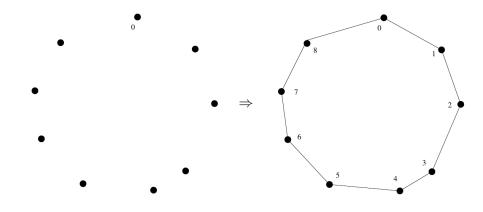
While (there are still points to visit) do

$$i \leftarrow i + 1$$

 $p_i \leftarrow$ nearest non visited neighbour of point p_{i-1}

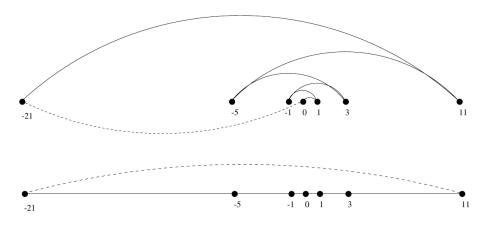
return path $p_1 \rightarrow p_2 \rightarrow \ldots \rightarrow p_n \rightarrow p_1$

Seems to work...



But it is does not work for all instances!

(Note: starting with the leftmost point would not solve the problem)



Another possible (greedy) algorithm

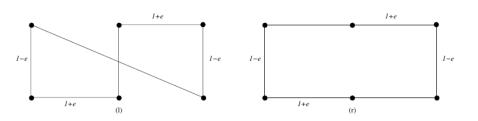
For $i \leftarrow 1$ to (n-1) do

Add connection between closest pair of points such that they are in different connected components

Add connection between the two "extremes" of the created path

return the cyclic path created

It does not work for all cases!



How to solve the problem then?

A possible algorithm (exhaustive search a.k.a. "brute force")

```
P_{min} \leftarrow any permutation of the points in S

For P_i \leftarrow each of the permutations of points in S

If (cost(P_i) < cost(P_{min})) then

P_{min} \leftarrow P_i

retorn Path formed by P_{min}
```

A correct algorithm, but extremely slow!

- $P(n) = n! = n \times (n-1) \times ... \times 1$
- For instance, P(20) = 2,432,902,008,176,640,000
- For a set of 20 points, even the fastest computer in the world would not solve it! (how long would it take?)

- The present problem is a restricted version (euclidean) of one of the most well known "classic" hard problems, the Travelling Salesman Problem (TSP)
- This problem has many possible applications
 Ex: genomic analysis, industrial production, vehicle routing, ...
- There is no known efficient solution for this problem (with optimal results, not just approximated)
- The presented solution has $\mathcal{O}(n!)$ complexity The Held-Karp algorithm has $\mathcal{O}(2^n n^2)$ complexity (this notation will be the focus of this class)
- TSP belongs to the class of NP-hard problems
 The decision version belongs to the class of NP-complete problems (we will also talk about this at the end of the semester)

An experience - how many instructions

How many instructions per second on a current computer?
 (just an approximation, an order of magnitude)

On my notebook, about 109 instructions

 At this velocity, how much time for the following quantities of instructions?

Quant.	100	1000	10000
N	< 0.01s	< 0.01s	< 0.01 <i>s</i>
N^2	< 0.01s	< 0.01s	0.1 <i>s</i>
N^3	< 0.01s	1.00 <i>s</i>	16 min
N^4	0.1 <i>s</i>	16 min	115 days
2 ^N	10 ¹³ years	10 ²⁸⁴ years	10 ²⁹⁹³ years
n!	10 ¹⁴¹ years	10 ²⁵⁵¹ years	10 ³⁵⁶⁴² years

An experience: - Permutations

Let's go back to the idea of permutations

```
Exemple: the 6 permutations of {1,2,3}
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
```

• Recall that the number of permutations can be computed as: $P(n) = n! = n \times (n-1) \times ... \times 1$ (do you understand the intuition on the formula?)

An experience: - Permutations

• What is the execution time of a program that goes through all permutations?

```
(the following times are approximated, on my notebook) (what I want to show is order of growth)
```

```
n \le 7: < 0.001s

n = 8: 0.001s

n = 9: 0.016s

n = 10: 0.185s

n = 11: 2.204s

n = 12: 28.460s

...

n = 20: 5000 years !
```

How many permutations per second?

About 10⁷

On computer speed

- Will a **faster computer** be of any help? **No!** If $n = 20 \rightarrow 5000$ years, hypothetically:
 - ▶ 10x faster would still take 500 years
 - ▶ 5,000x would still take 1 year
 - ▶ 1,000,000x faster would still take two days, but n = 21 would take more than a month n = 22 would take more than a year!
- The growth rate of the execution time is what matters!

Algorithmic performance vs Computer speed

A better algorithm on a slower computer **will always win** against a worst algorithm on a faster computer, for sufficiently large instances

Why worry?

• What can we do with execution time/memory analysis?

Prediction

How much time/space does an algorithm need to solve a problem? How does it scale? Can we provide guarantees on its running time/memory?

Comparison

Is an algorithm A better than an algorithm B? Fundamentally, what is the best we can possibly do on a certain problem?

- We will study a methodology to answer these questions
- We will focus mainly on execution time analysis

Random Access Machine (RAM)

- We need a model that is generic and independent from the language and the machine.
- We will consider a Random Access Machine (RAM)
 - ► Each simple operation (ex: +, -, \leftarrow , If) takes 1 step
 - ▶ Loops and procedures, for example, are not simple instructions!
 - ► Each access to memory takes also 1 step
- We can measure execution time by... counting the number of steps as a function of the input size n: T(n).
- Operations are simplified, but this is useful
 Ex: summing two integers does not cost the same as dividing two reals, but we will see that on a global vision, these specific values are not important

Random Access Machine (RAM)

A counting example

A simple program

```
int count = 0;
for (int i=0; i<n; i++)
   if (v[i] == 0) count++</pre>
```

Let's count the number of simple operations:

Variable declarations	2		
Assignments:	2		
"Less than" comparisons	n+1		
"Equality" comparisons:	n		
Array access	n		
Increment	between n and $2n$		

Random Access Machine (RAM)

A counting example

A simple program

```
int count = 0;
for (int i=0; i<n; i++)
   if (v[i] == 0) count++</pre>
```

Total number of steps on the worst case:

$$T(n) = 2 + 2 + (n+1) + n + n + 2n = 5 + 5n$$

Total number of steps on the **best** case:

$$T(n) = 2 + 2 + (n + 1) + n + n + n = 5 + 4n$$

Types of algorithm analysis

Worst Case analysis: (the most common)

• T(n) = maximum amount of time for any input of size n

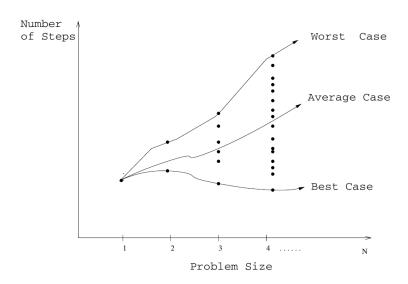
Average Case analysis: (sometimes)

- T(n) = average time on all inputs of size n
- Implies knowing the statistical distribution of the inputs

Best Case analysis: ("deceiving")

• It's almost like "cheating" with an algorithm that is fast just for **some** of the inputs

Types of algorithm analysis



We need a mathematical tool to compare functions

On algorithm analysis we use **Asymptotic Analysis**:

- "Mathematically": studying the behaviour of **limits** (as $n \to \infty$)
- Computer Science: studying the behaviour for arbitrary large input or
 - "describing" **growth rate**
- A very specific **notation** is used: $O, \Omega, \Theta, o, \omega$
- It allows to focus on orders of growth

Definitions

$$f(n) = \mathcal{O}(g(n))$$

It means that $c \times g(n)$ is an **upper bound** of f(n)

$$f(n) = \Omega(g(n))$$

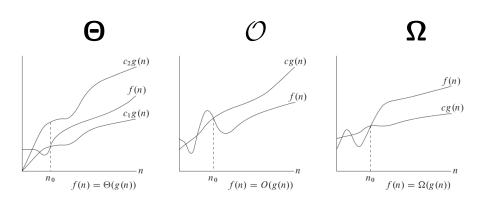
It means that $c \times g(n)$ is a **lower bound** of f(n)

$$f(n) = \Theta(\mathbf{g}(n))$$

It means that $c_1 \times g(n)$ is a **lower bound** of f(n) and $c_2 \times g(n)$ is an **upper bound** of f(n)

Note: \in could be used instead of =

A graphical depiction



The definitions imply an n from which the function is bounded. The small values of n do not "matter".

Formalization

- $\mathbf{f}(\mathbf{n}) = \mathcal{O}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_0 and c such that $f(n) \le c \times g(n)$ for all $n \ge n_0$
- $\mathbf{f}(\mathbf{n}) = \mathbf{\Omega}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_0 and c such that $f(n) \geq c \times g(n)$ for all $n \geq n_0$
- $\mathbf{f}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{g}(\mathbf{n}))$ if there exist positive constants n_0 , c_1 and c_2 such that $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$
- $\mathbf{f}(\mathbf{n}) = \mathbf{o}(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_0 such that $f(n) < c \times g(n)$ for all $n \ge n_0$
- $\mathbf{f}(\mathbf{n}) = \omega(\mathbf{g}(\mathbf{n}))$ if for any positive constant c there exists n_0 such that $f(n) > c \times g(n)$ for all $n \ge n_0$

Analogy

Comparison between two functions f and g and two numbers a and b:

$$f(n) = \mathcal{O}(g(n))$$
 is like $a \leq b$ upper bound at least as good as $f(n) = \Omega(g(n))$ is like $a \geq b$ lower bound at least as bad as $f(n) = \Theta(g(n))$ is like $a = b$ tight bound as good as $f(n) = o(g(n))$ is like $a < b$ strict upper b. strictly better than $f(n) = \omega(g(n))$ is like $a > b$ strict lower b.

A few consequences

•
$$f(n) = \Theta(g(n)) \rightarrow f(n) = \mathcal{O}(g(n))$$
 and $f(n) = \Omega(g(n))$

•
$$f(n) = \mathcal{O}(g(n)) \rightarrow f(n) \neq \omega(g(n))$$

•
$$f(n) = \Omega(g(n)) \rightarrow f(n) \neq o(g(n))$$

•
$$f(n) = \mathbf{o}(g(n)) \rightarrow f(n) \neq \mathbf{\Omega}(g(n))$$

•
$$f(n) = \omega(g(n)) \rightarrow f(n) \neq \mathcal{O}(g(n))$$

•
$$f(n) = \Theta(g(n)) \rightarrow g(n) = \Theta(f(n))$$

•
$$f(n) = \mathcal{O}(g(n)) \rightarrow g(n) = \Omega(f(n))$$

•
$$f(n) = \Omega(g(n)) \rightarrow g(n) = \mathcal{O}(f(n))$$

•
$$f(n) = \mathbf{o}(g(n)) \rightarrow g(n) = \omega(f(n))$$

•
$$f(n) = \omega(g(n)) \rightarrow g(n) = \mathbf{o}(f(n))$$

A few practical rules

• Multiplying by a constant does not affect:

$$\Theta(c \times f(n)) = \Theta(f(n))$$

99 × n² = \Theta(n²)

• On a polynomial of the form $a_x n^x + a_{x-1} n^{x-1} + \ldots + a_2 n^2 + a_1 n + a_0$ we can focus on the term with the **largest exponent**:

$$3\mathbf{n}^3 - 5n^2 + 100 = \Theta(n^3)$$

 $6\mathbf{n}^4 - 20^2 = \Theta(n^4)$
 $0.8\mathbf{n} + 224 = \Theta(n)$

• More than that, on a sum we can focus on the dominant term:

$$\mathbf{2^n} + 6n^3 = \Theta(2^n)$$

$$\mathbf{n!} - 3n^2 = \Theta(n!)$$

$$n \log n + 3\mathbf{n^2} = \Theta(n^2)$$

Dominance

When is a function **better** than another?

- If we want to minimize time, "smaller" functions are better
- A function dominates another if as *n* grows it keeps getting larger
- Mathematically: $f(n) \gg g(n)$ if $\lim_{n \to \infty} g(n)/f(n) = 0$

Dominance Relations

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

Asymptotic Growth

A practical view

If an operation takes 10^{-9} seconds..

if all operation takes 10 seconds							
	log n	n	$n \log n$	n^2	n ³	2 ⁿ	<i>n</i> !
10	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s
20	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	77 years
30	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1.07 <i>s</i>	
40	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	18.3 min	
50	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	13 days	
100	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	10 ¹³ years	
10^{3}	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1 <i>s</i>		
10^{4}	< 0.01s	< 0.01s	< 0.01s	0.1 <i>s</i>	16.7 min		
10^{5}	< 0.01s	< 0.01s	< 0.01s	10 <i>s</i>	11 days		
10^{6}	< 0.01s	< 0.01s	0.02 <i>s</i>	16.7 min	31 years		
10 ⁷	< 0.01s	0.01 <i>s</i>	0.23 <i>s</i>	1.16 days			
10 ⁸	< 0.01s	0.1 <i>s</i>	2.66 <i>s</i>	115 days			
10^{9}	< 0.01s	1 <i>s</i>	29.9 <i>s</i>	31 years			

Common Functions

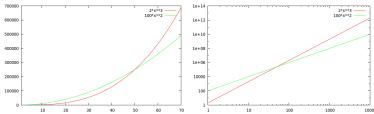
Function	Name	Examples	
1	constant	summing two numbers	
log n	logarithmic	binary search, inserting in a heap	
n	linear	1 loop to find maximum value	
n log n	linearithmic	sorting (ex: mergesort, heapsort)	
n^2	quadratic	2 loops (ex: verifying, bubblesort)	
n^3	cubic	3 loops (ex: Floyd-Warshall)	
2 ⁿ	exponential	exhaustive search (ex: subsets)	
n!	factorial	all permutations	

Asymptotic Growth

Drawing functions

An useful program for drawing functions is **gnuplot**.

```
(comparing 2n^3 with 100n^2 for 1 \le n \le 100) gnuplot> plot [1:70] 2*x**3, 100*x**2 gnuplot> set logscale xy 10 gnuplot> plot [1:10000] 2*x**3, 100*x**2
```



(which grows faster: \sqrt{n} or $\log_2 n$?) gnuplot> plot [1:1000000] sqrt(x), $\log(x)/\log(2)$

Asymptotic Analysis

A few more examples

- A program has two pieces of code A and B, executed one after the other, with A running in $\Theta(n \log n)$ and B in $\Theta(n^2)$. The program runs in $\Theta(n^2)$, because $n^2 \gg n \log n$
- A program calls n times a function $\Theta(\log n)$, and then it calls again n times another function $\Theta(\log n)$ The program runs in $\Theta(n \log n)$
- A program has 5 loops, all called sequentially, each one of them running in Θ(n)
 The program runs in Θ(n)
- A program P_1 has execution time proportional to $100 \times n \log n$. Another program P_2 runs in $2 \times n^2$. Which one is more efficient?
 - P_1 is more efficient because $n^2 \gg n \log n$. However, for a small n, P_2 is quicker and it might make sense to have a program that calls P_1 or P_2 depending on n.

Analyzing the complexity of programs

Let's see more concrete examples:

- Case 1 Loops (and summations)
- Case 2 Recursive Functions (and recurrences)

```
A typical loop

count \leftarrow 0

For i \leftarrow 1 to 1000

For j \leftarrow i to 1000

count \leftarrow count + 1

write(count)
```

What does this program write?

$$1000 + 999 + 998 + 997 + \ldots + 2 + 1$$

Arithmetic progression: a sequence of numbers such that the difference d between the consecutive terms is constant. We will call a_1 to the first term.

- $1, 2, 3, 4, 5, \ldots$ $(d = 1, a_1 = 1)$
- $3, 5, 7, 9, 11, \ldots$ $(d = 2, a_1 = 3)$

How to calculate the summation of an arithmetic progression?

$$1+2+3+4+5+6+7+8 = (1+8)+(2+7)+(3+6)+(4+5) = 4 \times 9$$

Summation from a_p to a_q

$$S(p,q) = \sum_{i=p}^{q} a_i = \frac{(q-p+1)\times(a_p+a_q)}{2}$$

Summation of the first *n* terms

$$S_n = \sum_{i=1}^n a_i = \frac{n \times (a_1 + a_n)}{2}$$

```
A typical loop

count \leftarrow 0

For i \leftarrow 1 to 1000

For j \leftarrow i to 1000

count \leftarrow count + 1

write(count)
```

What does this program write?

$$1000 + 999 + 998 + 997 + \ldots + 2 + 1$$

It writes
$$S_{1000} = \frac{1000 \times (1000 + 1)}{2} = 500500$$

A typical loop

```
count \leftarrow 0
For i \leftarrow 1 to n
For j \leftarrow i to n
count \leftarrow count + 1
write(count)
```

What is the execution time?

It is going to execute S_n increments:

$$S_n = \sum_{i=1}^n a_i = \frac{n \times (1+n)}{2} = \frac{n+n^2}{2} = \frac{1}{2}n^2 + \frac{1}{2}n.$$

It executes $\Theta(n^2)$ steps

Loops and Summations

If you want to know more about interesting summations on the context of CS, take a look at *Appendix A* of the *Introduction to Algorithms* book.

Note that c loops do not imply $\Theta(n^c)$!

A loop

For
$$i \leftarrow 1$$
 to n
For $j \leftarrow 1$ to 5

 $\Theta(n)$

Another loop

For
$$i \leftarrow 1$$
 to n
For $j \leftarrow 1$ to $i \times i$

$$\Theta(n^3)$$
 $(1^2 + 2^2 + 3^2 + \ldots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$

We are often interested in algorithms that are expressed in a recursive way

Many of these algorithms follow the divide and conquer strategy:

Divide and Conquer

Divide the problem in a set of subproblems which are smaller instances of the same problem

Conquer the subproblems solving them recursively. If the problem is small enough, solve it directly.

Combine the solutions of the smaller subproblems on a solution for the original problem

MergeSort

We now describe the MergeSort algorithm for sorting an array of size n

MergeSort

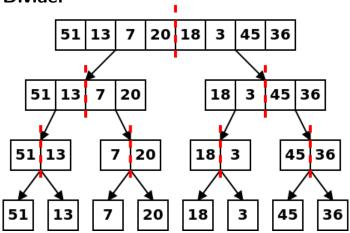
Divide: partition the initial array in two halves

Conquer: recursively sort each half. If we only have one number, it is sorted.

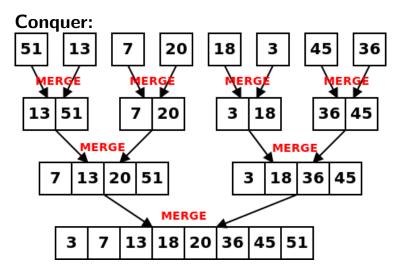
Combine: merge the two sorted halves in a final sorted array

MergeSort

Divide:



MergeSort



MergeSort

What is the **execution time** of this algorithm?

- D(n) Time to partition an array of size n in two halves
- M(n) Time to merge two sorted arrays of size n
- T(n) Time for a MergeSort on an array of size n

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ D(n) + 2T(n/2) + M(n) & \text{if } n > 1 \end{cases}$$

In practice, we are ignoring certain details, but it suffices (ex: when n is odd, the size of subproblem is not exactly n/2)

MergeSort

 $\mathbf{D}(\mathbf{n})$ - Time to partition an array of size n in two halves

We can do it in constant time! $\Theta(1)$

```
mergesort(a,b): (sort from position a to b)
```

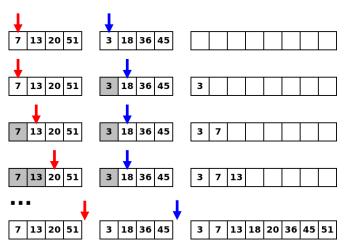
In the beginning, call
$$mergesort(0,n-1)$$

Let
$$m = \lfloor (a+b)/2 \rfloor$$
 (middle position)

Call mergesort(a,m) and mergesort(m+1,b)

MergeSort

M(n) - Time to merge two sorted arrays of size n



We can do it in linear time! $\Theta(n)$ (2n comparisons) Asymptotic Analysis

44 / 79

MergeSort

Back to the mergesort recurrence:

- D(n) Time to partition an array of size n in two halves
- M(n) Time to merge two sorted arrays of size n
- T(n) Time for a MergeSort on an array of size n

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ D(n) + 2T(n/2) + M(n) & \text{if } n > 1 \end{cases}$$

becomes

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Technicalities

For sufficiently small inputs, an algorithm generally takes constant time. This means that for a small n, we have $T(n) = \Theta(1)$

For convenience, we can can generally **omit the boundary condition of the recurrence**.

Examples:

- Mergesort: $T(n) = 2T(n/2) + \Theta(n)$
- Binary Search: $T(n) = T(n/2) + \Theta(1)$
- ullet Finding Maximum with tail recursion: $T(n) = T(n-1) + \Theta(1)$

How to solve recurrences like this?

Solving

We are going to talk about 4 methods:

- Unrolling: unroll the recurrence to obtain an expression (ex: summation) you can work with
- Substitution: guess the answer and prove by induction
- Recursion Tree: draw a tree representing the recursion and sum all the work done in the nodes
- Master Theorem: If the recurrence is of the form $aT(n/b) + cn^k$, the answer follows a certain pattern

Unrolling Method

Some recurrences can be solved by **unrolling** them to get a summation:

$$T(n) = T(n-1) + \Theta(n) = \Theta(n) + \Theta(n-1) + \Theta(n-2) + \ldots + \Theta(1)$$

$$T(n) = T(n-1) + cn = cn + c(n-1) + c(n-2) + \ldots + c$$

There are n terms and each one is at most cn, so the summation is at most cn^2 .

Similarly, since the first n/2 terms are each **at least** cn/2, this summation is at least $(n/2)(cn/2) = cn^2/4$.

Given this, the recurrence is $\Theta(n^2)$.

We could have also used arithmetic progressions:

$$T(n) = c[n + (n-1) + ... + c] = c\frac{(n+c)n}{2} = cn^2 + c^2n/2$$

Substitution method

Another possible method is to make a **guess and then prove** the guess correctness using **induction**

- "Strong" vs "Weak" induction
 - With **weak induction** we assume it is valid for n and then we prove n+1
 - ▶ With **strong induction** we assume it is valid for all *n*₀ < *n* and we prove it for *n*.
- There are two "main" ways to use the substitution method:
 - We have an **exact guess**, with no "unknowns" (ex: $3n^2 n$)
 - ▶ We only have an idea of the class it belongs to $(ex: cn^2)$
- How to prove that some f(n) is $\Theta(g(n))$?
 - ▶ If we have an exact formula, just use it
 - ▶ Else, it may be "easier" to separately prove O and Ω
 - **\star** Ex: to prove O we can show it is less than c.g(n)
 - ★ Ex: to prove Ω we can show it is more than c.g(n)

Substitution method

"Prove that
$$T(n) = T(n-1) + n$$
 is $\Theta(n^2)$ "

Can we have an exact guess?

Let's assume T(1) = 1

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= 1 + 2 + 3 + \dots + (n-1) + n$$

$$= \frac{(n+1)n}{2} \text{ (An arithmetic progression)}$$

Substitution method

"Prove that
$$T(n) = T(n-1) + n$$
 is $\Theta(n^2)$ "

Our (exact) guess is
$$\frac{(n+1)n}{2}$$

Now, let's try to prove by substituting.

Assuming it is true for n-1:

$$T(n) = T(n-1) + n$$

$$= \frac{n(n-1)}{2} + n$$

$$= \frac{n^2 - n}{2} + n$$

$$= \frac{n^2 - n + 2n}{2}$$

$$= \frac{n^2 + n}{2}$$

$$= \frac{(n+1)n}{2} \quad \Box \text{ (An we have proved our guess!)}$$

Substitution method

"Prove that
$$T(n) = T(n/2) + 1$$
 is $\Theta(\log_2 n)$ "

And if we don't have an exact guess?

Let's try to prove that $\mathbf{T}(\mathbf{n}) = \mathcal{O}(\log_2 \mathbf{n})$

We basically need to prove that $T(n) \le c \log_2 n$, with $n \ge n_0$, for a correct choice of c and n_0 .

Let's assume T(1) = 0 and T(2) = 1. For these base cases:

- $T(1) \le c \log_2 1$ for any c, because $\log_2 1 = 0$
- $T(2) \le c \log_2 2$ is true as long as $c \ge 1$.

Now, assuming it is true for all n' < n:

$$\begin{split} T(n) & \leq c \log_2(n/2) + 1 \\ & = c(\log_2 n - \log_2 2) + 1 \\ & = c \log_2 n - c + 1 \\ & \leq c \log_2 n, \text{ as long as } c \geq 1 \quad \Box \text{ (We proved } \mathbf{T}(\mathbf{n}) = \mathcal{O}(\log_2 \mathbf{n})) \end{split}$$

Substitution method

"Prove that
$$T(n) = T(n/2) + 1$$
 is $\Theta(\log_2 n)$ "

Let's try to prove that $\mathsf{T}(\mathsf{n}) = \Omega(\log_2 \mathsf{n})$

We basically need to prove that $T(n) \ge c \log_2 n$, with $n \ge n_0$, for a correct choice of c and n_0 .

Let's assume T(1) = 0 and T(2) = 1. For these base cases:

- $T(1) \ge c \log_2 1$ for any c, because $\log_2 1 = 0$
- $T(2) \ge c \log_2 2$ is true as long as $c \le 1$.

Now, assuming it is true for all n' < n:

$$\begin{split} T(n) & \geq c \log_2(n/2) + 1 \\ & = c(\log_2 n - \log_2 2) + 1 \\ & = c \log_2 n - c + 1 \\ & \geq c \log_2 n, \text{ as long as } c \leq 1 \quad \Box \text{ (We proved } \mathbf{T}(\mathbf{n}) = \mathbf{\Omega}(\log_2 \mathbf{n})) \end{split}$$

 $T(n) = \mathcal{O}(\log_2 n)$ and $T(n) = \Omega(\log_2 n) \to \mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\log_2 \mathbf{n})$

Substitution Method

If the guess is wrong, often we will gain clues for a better guess.

Recurrence to solve:
$$T(n) = 4T(n/4) + n$$

Guess #1:
$$T(n) \le cn$$
 (which would mean $T(n) = \mathcal{O}(n)$)

Attempt to prove Guess #1:

If T(1) = c, then the base case is true. For the rest of the induction, assuming it is true for n' < n, we can substitute using n' = n/4:

$$T(n) \le 4(cn/4) + n$$

= $cn + n$
= $(c+1)n$ but $(c+1)n$ is never $\le cn$ for a positive c
(the guess is wrong!)

We guess that we night need an higher function than simply $\mathcal{O}(n)$

Substitution Method

Recurrence to solve:
$$T(n) = 4T(n/4) + n$$

Guess #2: $T(n) \le n \log_4 n$ (I'm proving a more tight bound than simply $cn \log_4 n$)

Attempt to prove Guess #2:

If T(1) = 1, then the base case is true. For the rest of the induction, assuming it is true for n' < n, we can substitute using n' = n/4:

$$T(n) \le 4[(n/4)\log_4(n/4)] + n$$

= $n\log_4(n/4) + n$
= $n\log_4(n) - n + n$
= $n\log_4(n)$ \square [correct guess! In fact, $T(n) = \Theta(n\log_4 n)$]

Substitution Method - Subtleties

Sometimes you might correctly guess an asymptotic bound on the solution of a recurrence, but somehow the *math fails to work out in the induction*.

The problem frequently turns out to be that the **inductive assumption is not strong enough** to prove the detailed bound. If you **revise the guess by subtracting a lower-order term** when you hit such a snag, the math often goes through.

Let's observe an example of this:

Recurrence to solve:
$$T(n) = 4T(n/2) + n$$

As you will see later,
$$T(n) = \Theta(n^2)$$

Let's try to prove that directly.

Substitution Method - Subtleties

Recurrence to solve: T(n) = 4T(n/2) + n

Guess #1: $T(n) \le cn^2$

Attempt to prove Guess #1:

If T(1) = 1, then the base case is true as long as $c \le 1$.

Now, assuming it is true for n' < n

$$T(n) \le 4[c(n/2)^2] + n$$

= $cn^2 + n$ [which is not $\le cn^2$ for any positive n]

Although the bound is correct, the math does not work out...

We need a tighter bound to form a stronger induction hypothesis.

Let's subtract a lower order-term and try $T(n) \le c_1 n^2 - c_2 n$

Substitution Method - Subtleties

Recurrence to solve: T(n) = 4T(n/2) + n

Guess #2:
$$T(n) \le c_1 n^2 - c_2 n$$

Attempt to prove Guess #2:

If $\mathcal{T}(1)=1$, then the base case is true as long as $c_1-c_2\leq 1$

Now, assuming it is true for n' < n

$$T(n) \le 4[c_1(n/2)^2 - c_2(n/2)] + n$$

= $c_1 n^2 - 2c_2 n + n$
= $c_1 n^2 - c_2 n$ [correct guess!]

Recursion Tree Method

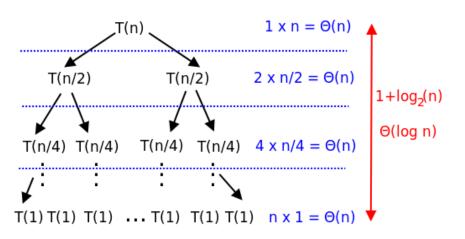
Another method is to **draw a recursion tree** and analyse it, by summing all the work in the tree nodes.

This method could be also used to get a good guess which we could then prove by induction.

Let us try it out with MergeSort:
$$T(n) = 2(n/2) + n$$

(for a cleaner explanation we will assume $n = 2^k$, but the results holds for any n)

Recursion Tree Method



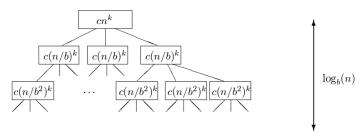
Summing everything we get that MergeSort is $\Theta(n \log_2 n)$

Master Theorem

We can use the **master theorem** for recurrences of the following form:

$$\mathsf{T}(\mathsf{n}) = \mathsf{a}\mathsf{T}(\mathsf{n}/\mathsf{b}) + \mathsf{c}\mathsf{n}^\mathsf{k}$$

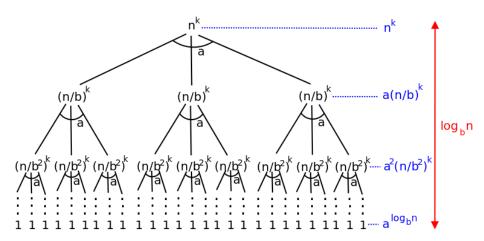
This is well suited for divide and conquer recurrences and corresponds to an algorithm that divides the problem into \mathbf{a} pieces of size \mathbf{n}/\mathbf{b} and takes $\mathbf{cn^k}$ time for partitioning+combining.



In the mergesort case, a = 2, b = 2, k = 1.

Intuition behind it

$$aT(n/b) + n^k$$
 (I assume $c = 1$ for a cleaner explanation)



Intuition behind it

- Root (first level): n^k
- Depth i (intermediate): $a^i(n/b^i)^k = a^i/b^{ik}n^k = (a/b^k)^i n^k$
- Leafs (last level): $a^{\log_b n} = n^{\log_b a}$

So the weight of depth i is: $(a/b^k)^i n^k$

- (1) $a < b^k$ implies that a/b^k is lower than 1 (weight is shrinking)
- (2) $a = b^k$ implies that a/b^k is equal to 1 (weight is constant)
- (3) $a > b^k$ implies that a/b^k is higher than 1 (weight is growing)
 - (1) The time is dominated by the top level
 - (2) The time is (uniformly) distributed along the recursion tree
- (3) The time is dominated by the last level

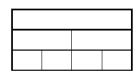
Master Theorem - A practical version

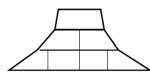
A recurrence $aT(n/b) + cn^k$ ($a \ge 1, b > 1, c$ and k are constants) solves to:

- (1) $T(n) = \Theta(n^k)$ if $a < b^k$
- (2) $T(n) = \Theta(n^k \log n)$ if $a = b^k$
- (3) $T(n) = \Theta(n^{\log_b a})$ if $a > b^k$

If you think on the recursion tree, intuitively, these 3 cases correspond to:

- (1) The time is dominated by the **top level**
 - (2) The time is (uniformly) distributed along the recursion tree
 - (3) The time is dominated by the last level





Master Theorem - A practical version

A recurrence $aT(n/b) + cn^k$ ($a \ge 1, b > 1, c$ and k are constants) solves to:

- (1) $T(n) = \Theta(n^k)$ if $a < b^k$
- (2) $T(n) = \Theta(n^k \log n)$ if $a = b^k$
- (3) $T(n) = \Theta(n^{\log_b a})$ if $a > b^k$

Example of Case (1):

$$T(n) = 2T(n/2) + n^2$$

$$a = 2, b = 2, k = 2, a < b^k$$
 since $2 < 4$.

The recurrence solves to $\Theta(n^2)$

Master Theorem - A practical version

A recurrence $aT(n/b) + cn^k$ ($a \ge 1, b > 1, c$ and k are constants) solves to:

- (1) $T(n) = \Theta(n^k)$ if $a < b^k$
- (2) $T(n) = \Theta(n^k \log n)$ if $a = b^k$
- (3) $T(n) = \Theta(n^{\log_b a})$ if $a > b^k$

Example of Case (2):

$$T(n) = 2T(n/2) + n$$
 (ex: mergesort)

$$a = 2, b = 2, k = 1, a = b^k \text{ since } 2 = 2.$$

The recurrence solves to $\Theta(n \log n)$ (as we already knew).

Master Theorem - A practical version

A recurrence $aT(n/b) + cn^k$ ($a \ge 1, b > 1, c$ and k are constants) solves to:

- (1) $T(n) = \Theta(n^k)$ if $a < b^k$
- (2) $T(n) = \Theta(n^k \log n)$ if $a = b^k$
- (3) $T(n) = \Theta(n^{\log_b a})$ if $a > b^k$

Example of Case (3):

$$T(n) = 2T(n/2) + 1$$

$$a = 2, b = 2, k = 0, a > b^k$$
 since $2 > 1$.

The recurrence solves to $\Theta(n)$

Revisiting the examples

Examples:

(1)
$$T(n) = 2T(n/2) + n^2 = \Theta(n^2)$$

 $n^2 + n^2/2 + n^2/4 + \dots + n \leftarrow (n^2 \text{ dominates, i.e., the root)}$

(2)
$$T(n) = 2T(n/2) + n = \Theta(n \log n)$$

 $n + n + ... + n \leftarrow \text{(distributed among all levels)}$

(3)
$$T(n) = 2T(n/2) + 1 = \Theta(n)$$

 $1 + 2 + 4 + \ldots + n \leftarrow (n \text{ dominates, i.e., the leaf})$

For the sake of completeness, here is the master theorem version presented in the book "Introduction to Algorithms".

Master Theorem

A more general version A recurrence $\mathbf{aT}(\mathbf{n}/\mathbf{b}) + \mathbf{f}(\mathbf{n})$ ($a \ge 1, b > 1$ are constants) solves to:

- (1) If $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- (2) If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- (3) If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

(cases 1 and 3 are inverted in relation to the practical version I've shown)

Matrix Multiplication

Matrix Multiplication Problem

Input: Two $n \times n$ square matrices $A = (a_{ij})$ and $B = (b_{ij})$

Output: Compute $C = A \cdot B$

Remember matrix multiplication?

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

C

Δ

В

Matrix Multiplication

Naive Algorithm

```
For i=1 to n

For j=1 to n

c_{ij}=0

For k=1 to n

c_{ij}=c_{ij}+a_{ik}\cdot b_{kj}
```

The complexity is $\Theta(n^3)$

Matrix Multiplication

Suppose we partition each matrix in four:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Then:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Matrix Multiplication

```
Simple D&C Algorithm
multiply(A,B)
     n = A.number_rows
     C = \text{new } x \times n \text{ matrix}
     If n == 1
         C_{11} = A_{11} \cdot B_{11}
     Else
         Partition A, B and C as shown on the previous slide
         C_{11} = \text{multiply}(A_{11}, B_{11}) + \text{multiply}(A_{12}, B_{21})
         C_{12} = \text{multiply}(A_{11}, B_{12}) + \text{multiply}(A_{12}, B_{22})
         C_{21} = \text{multiply}(A_{21}, B_{11}) + \text{multiply}(A_{22}, B_{21})
         C_{22} = \text{multiply}(A_{21}, B_{12}) + \text{multiply}(A_{22}, B_{22})
```

Time to sum 4 squares of size n/2: $\Theta(n^2)$ Recurrence:

$$\mathsf{T}(\mathsf{n}) = 8\mathsf{T}(\mathsf{n}/2) + \mathsf{cn}^2$$
 (by master theorem this is $\Theta(\mathsf{n}^3)$)

Matrix Multiplication

Strassen's algorithm (key idea: less recursive calls)

$$S_1 = B_{12} - B_{22}, \quad S_2 = A_{11} + A_{12}, \quad S_3 = A_{21} + A_{22}, \quad S_4 = B_{21} - B_{11}, \quad S_5 = A_{11} + A_{22}, \quad S_6 = B_{11} + B_{22}, \quad S_7 = A_{12} - A_{22}, \quad S_8 = B_{21} + B_{22}, \quad S_9 = A_{11} - A_{21}, \quad S_{10} = B_{11} + B_{12} + B$$

$$P1 = A_{11} \cdot S_1$$
, $P2 = S_2 \cdot B_{22}$, $P3 = S_3 \cdot B_{11}$
 $P4 = A_{22} \cdot S_4$, $P5 = S_5 \cdot S_6$, $P6 = S_7 \cdot S_8$
 $P7 = S_9 \cdot S_{10}$

7 multiplications of matrices of size n/2: **7T**(n/2)

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

8x add/subtract matrices of size n/2: $\Theta(n^2)$

Recurrence:
$$T(n) = 7T(n/2) + cn^2$$
 (by master theorem this is $\Theta(n^{\log_2 7}) \sim \Theta(n^{2.81})$)

Matrix Multiplication

Strassen's algorithm:

- Trade one recursion per constant additions/subtractions
- The "hidden" constant factor is larger than for the naive $\Theta(n^3)$ For small inputs, the naive may be better.
- For sparse matrices, we could do other kind of optimizations
- The algorithm may have problem in numerical stability: the limited precision of floating point numbers in computers may accumulate errors.
- The intermediate submatrices consume memory space

Matrix Multiplication

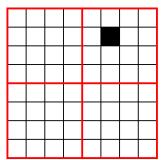
- V Strassen, Gaussian elimination is not optimal, Numerische Mathematik 13 (1969). $\rightarrow \Theta(n^{2.81})$
- D Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation 9 (3): 251 (1990).
 → Θ(n^{2.375477})
- AJ Stothers, On the complexity of matrix multiplication, PhD thesis, University of Edinburgh (2010). $\rightarrow \Theta(n^{2.373})$
- VV Williams. Breaking the Coppersmith-Winograd barrier, STOC'2012: Proceedings of the 44th annual ACM symposium on Theory of Computing, New York, USA, ACM Press (2012). $\rightarrow \Theta(n^{2.372873})$
- F Le Gall, "Powers of tensors and fast matrix multiplication", ISSAC'2014, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation (2014). $\rightarrow \Theta(n^{2.3728639})$

A Puzzle

The D&C can even be used... "manually" :)

Imagine a grid of size $2^n \times 2^n$. You want to **fill all cells with trominoes** (I-shaped pieces).

Pieces can be rotated and the initial grid has one cell which is "forbidden".



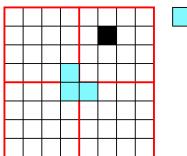
One idea is to divide in 4 smaller squares... and use one piece!

A Puzzle

The D&C can even be used... "manually" :)

Imagine a grid of size $2^n \times 2^n$. You want to **fill all cells with trominoes** (I-shaped pieces).

Pieces can be rotated and the initial grid has one cell which is "forbidden".



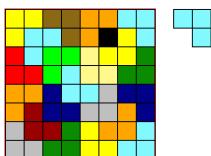
One idea is to divide in 4 smaller squares... and use one piece!

A Puzzle

The D&C can even be used... "manually" :)

Imagine a grid of size $2^n \times 2^n$. You want to **fill all cells with trominoes** (I-shaped pieces).

Pieces can be rotated and the initial grid has one cell which is "forbidden".



One idea is to divide in 4 smaller squares... and use one piece!