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Concept

Graph Definition
Formally, a graph is:

A set of nodes/vertices (V).
A set of links/edges (E), that connect pairs of vertices

V = {1, 2, 3, 4, 5, 6}
E = {(1, 6), (1, 3), (3, 6), (3, 4), (2, 5)}
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What are graphs for?
Graphs are ubiquitous in Computer Science and they are present,
implicitly or explicitly in many algorithms.
They can be used in a multitude of applications.
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Graph Examples
Networks that exist in the real ”physical” world

Road Network
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Graph Examples
Networks that exist in the real ”physical” world

Public Transportation (ex: subway, train)
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Graph Examples
Networks that exist in the real ”physical” world

Power Grid
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Graph Examples
Networks that exist in the real ”physical” world

Computer Network
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Graph Examples
Social Network

Facebook (others: Twitter, emails, co-authorship of articles, ...)
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Graph Examples
Software Networks

Module Dependencies (other examples: state, information flow, ...)
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Graph Examples
Biological Networks

Metabolic Networks (other examples: protein interaction, brain
networks, food webs, phylogenetic trees, ...)
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Graph Examples
Other Graphs

Semantic Networks (other examples: world wide web, ...)
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Terminology

Directed graph - each link has a starting node (origin) and an end
node (order matters!). Usually we use arrows to indicate the direction.

Undirected graphs - There is no origin or end, but just a connection
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Terminology

Weighted graph - there is a vale associated with each link (it could
be distance, cost, ...)

Unweighted - there are no weights associated with a link
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Terminology

Degree - number of connections of a node

In directed graphs we can distinguish between indegree and
outdegree
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Terminology

Adjacent/neighbor node: two nodes are neighbors if they are linked

Trivial graph: graph with no edges and a single node

Self-loop: link from a node to itself

Simple graph: graph without self-loops and without repeated links
(we are mostly going to work with simple graphs)

Multigraph: graph with multiple links between the same node pair

Dense graph: with many links when compared with the maximum
possible - |E | of the order of O(|V |2)

Sparse graph: with few links when compared with the maximum
possible - |E | with lower order than O(|V |2)
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Terminology

Path: sequence alternating nodes and edges, such that two
consecutive nodes are linked. In simple graphs we typically describe a
path using just the nodes.

1→ 6→ 2→ 4

Cycle: path that starts and ends on the same node (ex: for the above
graph, 1→ 6→ 4→ 3→ 1 is a cycle)
Acyclic graph: graph without cycles
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Terminology

Size of a path: number of edges in the path

Cost of a path: if the graph is weighted, we can talk about the cost,
which is the sum of the edge weights

Distance: size/cost of the smallest path between two nodes

Diameter of a graph: max distance between two nodes of a graph

Diameter = 3

1 2 3 4 5 6
1 0 2 1 2 3 1
2 2 0 2 1 1 1
3 1 2 0 1 3 2
4 2 1 1 0 2 1
5 3 1 3 2 0 2
6 1 1 2 1 2 0

Distances between nodes
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Terminology

Connected Component: Subset of nodes where there is at least one
path between each of them
Connected Graph: Graph with just one connected component (there
is a path between all pairs of nodes)

Graph with two connected components: {1, 3, 4, 6} e {2, 5}
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Terminology

Subgraph: subset of nodes and the edges between them

Complete graph: with links between all pairs of nodes

Clique: a complete subgraph

Triangle: a clique with 3 nodes

Subgraph examples: {1, 3}, {1, 6, 2}, {2, 4, 5, 6}, etc
Example clique: {2, 4, 6} (a triangle)
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Terminology

Tree: simple, connected acyclic graph
(if it has n nodes, then it will have n − 1 edges)

Forest: set of multiple disconnected trees
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Graph Representation

How to represent a graph?
Adjacency Matrix: |V | × |V | matrix where the (i , j) cell indicates if
there is a link between nodes i and j (if the graph is weighted we can
store the weight)

Adjacency list: each node stores a list of its neighbors (if the graph
is weighted we have to store pairs (destination,weight))

1 2 3 4 5 6
1 X X
2 X X X
3 X X
4 X X X
5 X
6 X X X

Adjacency Matrix

1: 3, 6
2: 4, 5, 6
3: 1, 4
4: 2, 3, 6
5: 2
6: 1, 2, 4
Adjacency

List
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Graph Representation

Some pros and cons:
Adjacency Matrix:

I Very simple to implement
I Quick to check if there is a connection between two nodes - O(1)
I Slow to traverse the neighbors - O(|V|)
I Lots of memory wasted (in sparse graphs) - O(|V|2)
I Weighted graph implies simply to store the weight in the matrix
I Adding/Removing edges is simply changing a cell - O(1)

Adjacency List:
I Slow to see if there is a link between u and v - O(degree(u))
I Quick to traverse the neighbors - O(degree(u))
I Efficient usage of memory - O(|V|+ |E|)
I Weighted graph implies adding an attribute to the list
I Removing edge (u, v) implies traversing the list - O(degree(u))

Note: we can use for instante BSTs (set/map) to improve the
efficiency of searching and removing to O(log degree(u))
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Graph datasets

Here are some interesting websites with graphs
Network Repository: http://networkrepository.com/

Konect: http://konect.cc/

SNAP: https://snap.stanford.edu/data/
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Network Science / Graph Mining
My main research area

PhD Thesis (2011):
Efficient and Scalable Algorithms for Network Motifs Discovery

Publications: http://www.dcc.fc.up.pt/˜pribeiro/pubs_by_year.html
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Graph Traversal

One of the most important tasks is to traverse a graph, that is, pass
trough all its nodes using the existing links

We call this graph traversal (or graph search)

There are two basic traversal types that differ on the order in which
the nodes are traversed:

I Depth-First Search - DFS
Traverse the entire subgraph connected to a neighbor before entering
the next neighbor node

I Breadth-First Search - BFS
Traverse the nodes by increasing distance of number of links to reach
them
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Graph Traversal
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Graph Traversal
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Graph Traversal
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Graph Traversal

In their essence, DFS and BFS do the ”same”:
traverse all the nodes

When to use one or the other depends on the order that betters
suits the problem that you are solving

Let’s see how to implement both and give examples of applications
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Depth-First Search - DFS
The ”backbone” of a DFS:

DFS (recursive version)
dfs(node v):

mark v as visited
For all neighbors w of v do

If w has not yet been visited then
dfs(w)

Complexity:

Temporal:
I Adjacency List: O(|V |+ |E |)
I Adjacency Matrix: O(|V |2)

Spatial: O(|V |)
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Example Application: Connected Components

Find the number of connected components of a graph G

Example: the following graph has 3 connected components
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Example Application: Connected Components

The ”backbone” of a program to solve it:

Finding connected components
counter ← 0
set all nodes as not visited
For all nodes v of the graph do

If v has not yet been visited then
counter++
dfs(v)

write(contador)

Temporal complexity:
Adjacency List: O(|V |+ |E |)
Adjacency Matrix: O(|V |2)
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Implicit Graphs

We do not always need to explicitly store the graph

Example: find the number of ”blobs” (connected spots) in a matrix.
Two cells are adjacent if they are connected vertically or horizontally.

#.##..## 1.22..33

#.....## 1.....33

...##... --> 4 blobs --> ...44...

...##... ...44...

To solve we simply need to do dfs(x , y) to visit the cell (x , y) where
the neighbors are (x + 1, y), (x − 1, y), (x , y + 1) and (x , y − 1)

Using DFS to ”color” the connected components is known as doing a
Flood Fill.
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Topological Sorting

Given a DAG G (directeed acyclic graph), find an order of nodes such
that u comes before v if and only if there is no edge (v , u)

Example: For the graph below a possible topological sorting would be:
1, 2, 3, 4, 5, 6 (or 1, 4, 2, 5, 3, 6 - there are other possible valid orders)

A classic example of application is to decide in which order to execute a
set of tasks with precedences.
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Topological Sorting
How to solve this problem with DFS? What is the relationship
between topological sorting and the DFS node order?

Topologic Sorting - O(|V |+ |E |) (list) or O(|V |2) (matrix)
order ← empty
set all nodes as not visited
For all nodes v of the graph do

If v has not yet been visited then
dfs(v)

write(order)

dfs(node v):
mark v as visited
For all neighbors w of v do

If w has not yet been visited then
dfs(w)

add v to the begginning of order
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Topologic Sorting

Example of execution:
order = ∅
start dfs(1) |order = ∅
start dfs(4) |order = ∅
start dfs(5) |order = ∅
start dfs(6) |order = ∅
end dfs(6) |order = 6
end dfs(5) |order = 5, 6
end dfs(4) |order = 4, 5, 6
end dfs(1) |order = 1, 4, 5, 6

start dfs(2) |order = 1, 4, 5, 6
end dfs(2) |order = 2, 1, 4, 5, 6

start dfs(3) |order = 2, 1, 4, 5, 6
end dfs(3) |order = 3, 2, 1, 4, 5, 6

order = 3, 2, 1, 4, 5, 6
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Cycle Detection

Find if a (directed) graph G us acyclic

Example: the left graph has a cycle; the right graph doesn’t
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Cycle Detection
Let’s use 3 ”colors”:

White - node visited node
Gray - node being visited (we are exploring its descendants)
Black - node already visited (we visited all its descendants)

Cycle Detection - O(|V |+ |E |) (list) or O(|V |2) (matrix)
color[v ∈ V ] ← white
For all nodes v of the graph do

If color [v ] = white then
dfs(v)

dfs(node v):
color[v ] ← gray
For all neighbors w of v do

If color[w ] = gray then
write(”Cycle found!”)

Else if color[w ] = white then
dfs(w)

color[v ] ← black
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Cycle Detection
Example (starting on node 1) - graph with two cycles
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Cycle Detection
Example (starting on node 1) - acyclic graph
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Classifying DFS Edges
Another ”angle” of DFS

A DFS implicitly creates a search tree, that corresponds to the
traversed edges
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Classifying DFS Edges
Another ”angle” of DFS

A DFS visit separates the edges into 4 categories
I Tree Edges - Edges from the DFS tree
I Back Edges - Edge from a node to one of its tree ancestors
I Forward Edges - Edge from a node to one of its tree descendants
I Cross Edges - All other edges (from one branch to another)
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Classifying DFS Edges
Another ”angle” of DFS

Example application: finding cycles is finding... Back Edges!

Knowing the edge types may help to solve problem!

Note: an undirected graph has only Tree Edges and Back Edges.
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Strongly Connected Components
A more complex DFS application

Decompose a graph into its strongly connected component

A strongly connected component (SCC) its a maximal subgraph where
there is a (directed) path between each of its nodes.

An example graph with 3 SCCs:
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Strongly Connected Components
A more complex DFS application

How to compute SCCs?

Let’s try to use our knowledge about DFS edge types:
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Strongly Connected Components
A more complex DFS application

Let’s look at the generated tree:

What is the ”lowest”
ancestor reachable by a
node?

I 1: it’s 1
I 2: it’s 1
I 5: it’s 1
I 3: it’s 3
I 4: it’s 3
I 8: it’s 3
I 7: it’s 7
I 6: it’s 7

Et voilà! Here are our
SCCs!

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2021/2022 46



Strongly Connected Components
A more complex DFS application

Let’s add 2 attributes to the nodes in a DFS visit:
I num(i): order in which i is visited
I low(i): smallest num(i) reachable by the subtree that starts in i .

É o ḿınimo entre:
F num(i)
F smallest num(v) between all back edges (i , v)
F smallest low(v) between all tree edges (i , v)

i num(i) low(i)
1 1 1
2 2 1
3 3 3
4 4 3
5 8 1
6 7 6
7 6 6
8 5 4
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Strongly Connected Components
A more complex DFS application

Main ideas of Tarjan Algorithm to find SCCs:

Make a DFS and in each node i :
I Keep pushing the nodes to a stack S
I Compute and store the values of num(i) and low(i).
I If when finishing the visit of a node i we have that num(i) = low(i),

then i is the ”root” of a SCC. In that case, remove all the elements in
the stack until reaching i and report those elements as belonging to a
SCC!
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Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(7), we find that
num(7) = low(7) (7 is the ”root” of a SCC)

State of Stack S:

6

7

8

4

3

2

1

Remove elements from stack until reaching 7; output SCC: {6, 7}
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Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(3), we find that
num(3) = low(3) (3 is the ”root” of a SCC)

State of Stack S:

8

4

3

2

1

Remove elements from stack until reaching 3; output SCC: {8, 4, 3}
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Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(1), we find that
num(1) = low(1) (1 is the ”root” of a SCC)

State of Stack S:

5

2

1

Remove elements from stack until reaching 1; output SCC:: {5, 2, 1}
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Strongly Connected Components
Tarjan Algorithm for SCCs
index ← 0 ; S ← ∅
For all nodes v of the graph do

If num[v ] is still undefined then
dfs scc(v)

dfs scc(node v):
num[v ]← low [v ]← index ; index ← index + 1 ; S.push(v)
/* Traverse edges of v */
For all neighbors w of v do

If num[w ] is still undefined then /* Tree Edge */
dfs scc(w) ; low [v ]← min(low [v ], low [w ])

Else if w is in S then /* Back Edge */
low [v ]← min(low [v ], num[w ])

/* We know that we are at the root of an SCC */
If num[v ] = low [v ] then

Start new SCC C
Repeat

w ← S.pop() ; Add w to C
Until w = v
Write C

Complexity: O(|V |+ |E |) (adjacency list)
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Articulation Points and Bridges

An articulation point is a node whose removal increases the number of
connected components.

A bridge is an edge whose removal increases the number of connected
components.

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is said to be biconnected.
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Articulation Points
A more complex DFS application

Finding articulation points is a very useful problem
I For instance, a ”robust” graph should not have articulation points that

when ”attacked” will disconnect them.

How to compute? A possible (naive) algorithm:
1 Make a DFS and count the number of connected components
2 Remove a node from the original graph and execute a new DFS,

counting again the connnected components. If this number increased,
them the node is an articulation point.

3 Repeat step 2 for all nodes in the graph

What would be the complexity of this method? O(|V |(|V |+ |E |)),
because we will make |V | calls to DFS, each one taking |V |+ |E |.

It is possible to do much better... using a single DFS!
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Articulation Points
A more complex DFS application

An idea:
Apply DFS to the graph and obtain the DFS tree

If a nó v has a child w without any path to an ancestor of v ,
then v is an articulation point! (since removing it would disconnect
w from the resto of the graph)

I This corresponds to verify if low [w ] ≥ num[v ]

The only exception is the root of the DFS tree. If it has more than
one child in the tree... it is also an articulation point!
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Articulation Points
A more complex DFS application

An example graph:

num[i ] - numbers inside the node
low [i ] - blue numbers
articulation points: yellow nodes
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Articulation Points
A more complex DFS application

3 is an articulation point:
low [5] = 5 ≥ num[3] = 3

5 is an articulation point:
low [6] = 6 ≥ num[5] = 5
ou
low [7] = 5 ≥ num[5] = 5

10 is an articulation point:
low [11] = 11 ≥ num[10] = 10

1 is not an articulation point:
it only has a tree edge
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Articulation Points

Algorithm very similar to Tarjan, but with different DFS:

Algorithm to find articulation points
dfs art(node v):

num[v ]← low [v ]← index ; index ← index + 1 ; S.push(v)
For all neighbors w of v do

If num[w ] is not yet defined then /* Tree Edge */
dfs art(w) ; low [v ]← min(low [v ], low [w ])
If low [w ] ≥ num[v ] then

write(v + ”is an articulation point”)
Else if w is in S then /* Back Edge */

low [v ]← min(low [v ], num[w ])
S.pop()

Instead of a stack, we could have used colors (gray means it is in the stack)
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Breadth-First Search - BFS

A breadth-first search (BFS) is very similar to a DFS. It only changes
the order in which the nodes are visited!
Instead of using recursion, we will keep explicitly a queue of not
visited nodes (q)

Backbone of a BFS a - O(|V |+ |E |)
bfs(node v):

q ← ∅ /* queue of non visited nodes */
q.enqueue(v)
mark v as visited
While q 6= ∅ /* while there are still unprocessed nodes */

u ← q.dequeue() /* remove first element of q */
For all neighbors w of u do

If w has not yet been visited then /* new node! */
q.enqueue(w)
mark w as visited
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Breadth-First Search - BFS

An example:

1 Initially we have q = {A}
2 We remove A, then we add non visited neighbors (q = {B, G})
3 We remove B, then we add non visited neighbors (q = {G , C})
4 We remove G, then we add non visited neighbors (q = {C})
5 We remove C, then we add non visited neighbors (q = {D})
6 We remove D, then we add non visited neighbors (q = {E , F})
7 We remove E, then we add non visited neighbors (q = {F})
8 We remove F, then we add non visited neighbors (q = {})
9 q empty, we finished our BFS
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Breadth-First Search - BFS
Computing distances

Almost everything than can be done with DFS can also be done with
BFS!

An important difference is that with BFS we visit the nodes in
increasing order of distance (in terms of number of edges) to the
initial node!

In this way, BFS an be used to compute shortest distances between
nodes on a unweighted graph (with ot without direction).

Let’s see what really changes in the code
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Breadth-First Search - BFS
Computing distances

In red the lines that were added. Em node.distance stores the
distance to node v .

BFS - Computing distances
bfs(node v):

q ← ∅ /* Queue of non visited nodes */
q.enqueue(v)
v .distance ← 0 /* distance from v to itself it’s zero */
mark v as visited
While q 6= ∅ /* while there are still unprocessed nodes */

u ← q.dequeue() /* remove first element of q */
For all neighbors w of u do

If w has not yet been visited then /* new node */
q.enqueue(w)
mark w as visited
w .distance ← u.distance + 1
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Breadth-First Search - BFS
More applications

BFS can be applied in any graph type

Consider for instance that you want to know the minimum distance
between points A and B on a 2D maze:

######## ########

#A.....# #A12345#

####.### ---> ####4###

#B.....# BFS starting in A #876567#

######## ########

I A node is a cell (x , y)
I Neighbors are (x + 1, y), (x − 1, y), (x , y + 1) e (x , y − 1)
I Everything ele in the BFS is the same! (time: O(rows × cols))
I To store on the queue we need to represent a coordinates pair (e.g.:

struct in C, pair or class in C++, class in Java).
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