Sorting and variants

Pedro Ribeiro

DCC/FCUP

2021/2022

15 19 26 27 36 38 44 46 47 48 50

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 1/29

@ Sorting is an initial step to many other algorithms
» Ex: finding the median

@ When you don't know what to do... sort!
» Ex: finding repeated elements is much easier after sorting

o Different sorting types might be more adequate to different
scenarios

» Ex: to less general cases, there might be O(n) algorithms

@ It is important to know the sorting functions available on your
language libraries

» Ex: gsort (C), STL sort (C++), Arrays.sort (Java)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 2/29

ut sorting complexity

@ What is the least possible complexity for a general sorting algorithm?
©(nlogn)... but only on the comparative model.

» Comparative model: to distinguish elements | can only use
comparisons (<, >,=,>, <). How many comparisons are needed?

@ A sketch of the proof that comparative sorting is Q(nlogn)

» Input of size n has n! possible permutations
(only one is the desired ordering)

» A comparison has two possible results
(it can distinguish between 2 different permutations)

v

Let f(n) be the function that measures the number of comparisons

v

f(n) comparisons: can distinguish between 2/(") permutations
We need that 27(") > nl, that is, f(n) > log,(n!)
Using Stirling’s approximation, we know that f(n) > nlog, n

v

v

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 3/29

Some sorting algorithms

@ Comparative algorithms

BubbleSort (swap elements)

SelectionSort (selected smallest/largest)

InsertionSort (insert on correct position)

MergeSort (divide in two, sort halves, merge sorted parts)
HeapSort (create heap with all elements, remove one by one)
QuickSort (divide according to a pivot and sort recursively)

vV VY VY VY VY

@ Non Comparative Algorithms

» CountingSort (count number of elements of each type)
» RadixSort (sort according to "digits")

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 4/29

Non Comparative Algorithms

@ To simplify, let's assume that the elements to sort are numbers
@ ldea can be generalized to other data types

@ Suppose we have n elements to sort, stored on an array v with
indexes from 0 to n — 1

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 5/29

o Key idea: count the amount of numbers of each type

CountingSort

count[max_size] < frequencies array
For i = 0 to n—1 do
count[v[i]] + + (one more v[i] element)
i =0
For j = min_size to max_size do
While count[j] > 0 do
v[] = j (put element on array)
count[j] — — (one less element of that size)
i+ 4+ (increments first free position on the array))

You can check an animation at VisuAlgo
@ Let k be the largest number

@ This algorithm will take O(n + k)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 6/29

https://visualgo.net/en/sorting

o Key idea: sort digit by digit
A possible RadixSort (starting on the least significant digit)
bucket[10] <+ array of lists of numbers (one per digit)

For pos = 1 to max_number_digits do
= 0 to n—1do (for each number)

For i
Put v[i]lin bucket[digit_position_pos(v[i])]
For /i = 0 to 9 do (for each possible digit)

While size(bucket[i]) > 0 do
Take first number of bucket[i] and add it to v|]

You can check an animation at VisuAlgo
@ Let k be the largest quantity of digits in a single number

@ This algorithm will take O(k x n)
2021/2022 7/29

Pedro Ribeiro (DCC/FCUP) Sorting and variants

https://visualgo.net/en/sorting

Some sorting algorithms

There are many more!

Exchange sorts
Selection sorts
Insertion sorts
Merge sorts
Distribution sorts
Concurrent sorts
Hybrid sorts
Other

Bubble sort - Cocktail sort - Odd—even sort - Comb sort - Gnome sort - Quicksort - Stooge sort - Bogosort

Selection sort - Heapsort - Smoothsort - Cartesian tree sort - Tournament sort - Cycle sort
Insertion sort - Shellsort - Splaysort - Tree sort - Library sort - Patience sorting

Merge sort - Cascade merge sort - Oscillating merge sort - Polyphase merge sort - Strand sort

American flag sort - Bead sort - Bucket sort - Burstsort - Counting sort - Pigeonhole sort - Proxmap sort - Radix sort - Flashsort

Bitonic sorter - Batcher odd—even mergesort - Pairwise sorting network
Block sort - Timsort - Introsort - Spreadsort - JSort

Topological sorting - Pancake sorting - Spaghetti sort

(source of picture: http://en.wikipedia.org/wiki/Sorting_algorithm)

2021/2022

8/29

http://en.wikipedia.org/wiki/Sorting_algorithm

@ There are many sorting algorithms

@ The "best” algorithm depends on the use case

@ It is possible to combine several algorithms (hybrid approaches)

» Ex: RadixSort might have as internal step another algorithm, as long
as it is a stable sort (keep initial order in case of a tie)

@ In practice, on real implementations, this is what is done (to
combine):
(Note: the exact implementation depends on compiler and version)
» Java: uses Timsort (MergeSort + InsertionSort)
» C++ STL: uses IntroSort (QuickSort + HeapSort) + InsertionSort

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 9/29

Example use cases of sorting

Repetitions

Problem: finding repeated elements

Input Input

9 21 27 38 34 53 19 38 43 11 3] 5 5] 6] 9 9 9|10
51 1 9 10 39 50 6 26 44 10113]14|16[17]19 19|20 20|
5 32 16 20 50 22 41 30 39 21[22 22126 26|27 27|30 30
3 32 30 31 40 50 56 13 19 30 30|31 31|32 32 32 32 32|
46 32 56 26 20 57 32 27 31 34 34 34|37|38 38 38|39 39|
17 32 54 61 34 22 14 54 9 40141143 |44 44146|50 50 50|
34 30 38 10 30 5 37 61 44 51|53|54 54|56 56|57|61 61

~ v

Equal elements are together when sorted!

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 10/29

Example use cases of sorting

Others

Problem: find the frequency of elements
(equal elements are in consecutive positions after being sorted)

Problem: find closest pair of points
(sort and see differences between consecutive numbers)

Problem: find the k-th number
(sort and seek position k)

Problem: sort o top-k
(sort and seek first k numbers)

Problem: set union
(sort and "merge” - like in mergesort)

Problem: ser intersection
(sort and traverse - similar to mergesort)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022

Example use cases of sorting

Anagrams

Problem: Finding anagrams
(words/sets of words that use the same letters)

Exemples:
@ amor, ramo, mora and Roma [amor|
e Ricardo, criador and corrida [acdiorr]
@ algorithm and logarithm [aghilmort]
e Tom Marvolo Riddle and | am Lord Voldemort [addeillmmooorrtv|
o Clint Eastwood and Old West action [acdeilnoosttw]

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 12/29

Example use cases of sorting

Search

Problem: Searching for elements in sorted arrays

Binary search - O(log n)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 13/29

Binary search

A definition

Binary search on a sorted array (bsearch)
Input:
@ an array V|| of n sorted number in increasing order
@ a key to look for
Output:
o Position of key in array v[| (if it exists)
e -1 (if it is not found)

Example:

v= [2]5][6][8]9]12]
bsearch(v, 2) = 0

bsearch(v, 4) =
(

bsearch(v, 8) = 3
bsearch(v, 14) = -1

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 14 /29

Binary search

Algorithm

Binary search on a sorted array
bsearch(v, low, high, key)
While (fow < high) do
middle = low + (high — low)/2

If (key == v[middle]) return(middle)
Else If (key < v[middle]) high = middle —1
Else low = middle +1
return(-1))
v= [2[5][6[8]9]12]| bsearch(v, 0, 5, 8)

low = 0, high =5, middle = 2

Since 8 > v[2]: low = 3, high = 5, middle = 4
Since 8 < v[4]: low = 3, high = 3, middle = 3
Since 8 = v[3]: return(3)

Pedro Ribeiro (DCC/FCUP) Sorting and variants

2021/2022

15/29

Binary Search

A generalization

We can generalize binary search to cases where we have something like:

|no|no|no|no|no|yes|yes|yes|yes|yes|yes|

We want to find the first yes (or in some cases the last no)

Example:

@ Searching for the least number bigger or equal than a certain key
(lower_bound of C++)

2 5|6 8 9 | 12
no | no | no | yes | yes | yes

lower_bound(7) — condition: v[i] >=7
[the smallest number bigger than 7 in this array is 8]

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 16 /29

Binary Search

A generalization

Binary for smallest k such that condition(k) is " yes”
bsearch(low, high, condition)
While (flow < high) do

middle = low + (high — low)/2

If (condition(middle) == yes)) high = middle
Else low = middle+1
If (condition(low) == no) return(-1)
return(low)

v = 215168 ° | 12 bsearch(0, 5, > 7)
no | no | no | yes | yes | yes

low = 0, high =5, middle = 2

Since v[2] > 7 is ndo: low = 3, high = 5, middle = 4
Since v[4] > 7 is yes: low = 3, high = 4, middle = 3
Since v[3] > 7 is yes: low = 3, high = 3 (exits while)
Since v[3] > 7 is yes: return(3)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 17/29

Binary Search

A different example - Balanced Partition

Balanced partition problem

Input: a sequence (a1,...,a,) of n positive integers e an integer k
Output: a way of partitioning the sequence into k contiguous
subsequences, minimizing the sum of the biggest partition

Example:
7938229434799 k = 4 (4 partitions)

703|1822/943/4799 19 + 12 + 16 + 29
7038229434799 — 27 + 13 + 18 + 18
7013822/9434[799 16 + 15 + 20 4 25

Which one is the best (with the smallest maximum)?

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 18/29

Binary Search

A different example - Balanced Partition

@ Exhaustive search would have to test all possible partitions! (can you
estimate how many are they?)

@ This problem could also be solved with dynamic programming, but
that is for another class

@ Here we will discuss how to solve it with... binary search!

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 19/29

Binary Search

A different example - Balanced Partition

Let's think on a "similar” problem: It is possible to create a partition
where the sum of the largest partition is < X?

” Greedy” idea: keep extending the partition while the sum is < X!
Examples:

Let X =21 and k=14
7038229434799
793/8229(434799
7938229434799
7938229434799 -0K!

Seja X =20 and k =4

7938229434799

7038229434799

703822/9434799

793[822(94 3 4|7 9|9 - Wrong! We would need more than 4 partitions

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 20/29

Binary Search

A different example - Balanced Partition

It is possible to create a partition where the sum of the largest
partition is < X?

If we think about the X for which the answer is yes, we have a search
space where:

|no|no|no...|no|no|yes|yes|yes|...|yes|yes|

We can apply binary search on X!
@ Let s be the sum of all numbers
@ X will be at least 1 (or in alternative the largest a;)
@ X will be at most s
@ Verify answer for a certain X: O(n)
@ Binary search on X: O(logs)
@ Global time: ©(nlogs)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 21/29

Binary Search

A different example - Balanced Partition

Example: 7938229434799 = 4 (4 partitions)

low = 1, high = 76, middle = 38 — possible(38)? Yes
low = 1, high = 38, middle = 19 — possible(19)? No
low = 20, high = 38, middle = 29 — possible(29)? Yes
low = 20, high = 29, middle = 24 — possible(24)? Yes
low = 20, high = 24, middle = 22 — possible(22)? Yes
low = 20, high = 22, middle = 21 — possible(21)? Yes
low = 20, high = 21, middle = 20 — possible(20)? No
low = 21, high = 21

— N N

Exits the cycle and verifies that possible(21) is true, and 21 is the answer!

703/182209[4347(99 — 19 + 21 + 18 + 18

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 22/29

Binary Search

A different example - Balanced Partition

2nd Example: 7938229434799 k = 3 (3 partitions)

low = 1, high = 76,
low = 1, high = 38,
low = 20, high = 38,
low = 20, high = 29,
low = 25, high = 29,
low = 25, high = 27,

low = 27, high = 27

middle = 38 — possible(38)7Sim
middle = 19 — possible(19)? Yes
middle = 29 — possible(29)7 Yes
middle = 24 — possible(24)? No
middle = 27 — possible(27)7 Yes
middle = 26 — possible(26)? No

Exits the cycle and verifies that possible(27) is true, and 27 is the answer!

7038229434[799 27 + 24 + 25

Pedro Ribeiro (DCC/FCUP)

Sorting and variants 2021/2022 23/29

Bisection Method

A similar idea do binary search can be used to find the root of a function
@ Let f(n) be a continuous function defined on an interval [a, b] and
where f(a) and f(b) have opposite signs

e f(n) must have at least one root on the interval [a, b]

e Starting in [a, b], look at middle point ¢ and according to f(c)
reduce the interval to [a, c] or [c, b]

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 24 /29

Bisection Method

F(x)

(image: Wikipedia)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022

Bisection Method

Example: f(x) =x3 —x — 2

(1) Find a and b with opposite signals:
fl)=13-1-2=-2 f2)=2%3-2-2=4
(2) Make successive divisions:

a b c f(c)

1 1.0 2.0 1.5 -0.125

2 1.5 2.0 1.75 1.6093750
3 1.5 1.75 1.625 0.6660156
4 1.5 1.625 1.5625 0.2521973
5 1.5 1.5625 1.5312500 0.0591125
6 1.5 1.5312500 1.5156250 -0.0340538
7 1.5156250 1.5312500 1.5234375 0.0122504
8 1.5156250 1.5234375 1.5195313 -0.0109712
9 1.5195313 1.5234375 1.5214844 0.0006222
10 1.5195313 1.5214844 1.5205078 -0.0051789
11 1.5205078 1.5214844 1.5209961 -0.0022794
12 1.5209961 1.5214844 1.5212402 -0.0008289
13 1.5212402 1.5214844 1.5213623 -0.0001034

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 26/29

Bissection Method

@ Stop when you have the required precision
or

@ Stop when you reach your desired number of iterations

@ There are other methods that converge more rapidly

» Newton's method
» Secant method

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 27 /29

Ternary Search

Another similar idea can be used to find the maximum (or minimum) of
an unimodal function (that is, with a "single peak”)

@ Let f(n) be a unimodal function defined on an interval [a, b]

@ Take any two points my and my such that a < m; < mp < b. Then:
» f(my) < f(my) then max cannot be in [a, m]. Continue in [my, b]
» f(my) > f(my) then max cannot be in [my, b]. Continue in [a, m5]
» f(my) = f(my) then max should be in [my, my].

{{{aal) Seves—
F(M2) e

[{C3 50—

ml m2 ml m2

@ We can choose m; and m2 to be 1/3 and 2/3 of [a, b]
@ With each iteration we will eliminate at least 1/3 of the search space!
Runtime: T(n) = T(2n/3) + ©(1) = ©(log n)

2021/2022 28/29

Pedro Ribeiro (DCC/FCUP) Sorting and variants

Binary Search

@ Binary search is very useful and flexible

@ It can be used on a vast number of applications

@ There are many other variations on it (besides the ones we already
described)

> Interpolated (binary) search
(instead of going into the middle, estimate position)

» Exponential (binary) search
(Start by fixing interval in low = 27 and high = 23+1)

Pedro Ribeiro (DCC/FCUP) Sorting and variants 2021/2022 29/29

