Graphs: Intro, DFS \& BFS

Pedro Ribeiro

DCC/FCUP

2022/2023

Concept

Graph Definition

Formally, a graph is:

- A set of nodes/vertices (V).
- A set of links/edges (E), that connect pairs of vertices

What are graphs for?

- Graphs are ubiquitous in Computer Science and they are present, implicitly or explicitly in many algorithms.
- They can be used in a multitude of applications.

Graph Examples

Networks that exist in the real "physical" world

- Road Network

Graph Examples

Networks that exist in the real "physical" world

- Public Transportation (ex: subway, train)

Graph Examples

Networks that exist in the real "physical" world

- Power Grid

Graph Examples

Networks that exist in the real "physical" world

- Computer Network

Graph Examples

Social Network

- Facebook (others: Twitter, emails, co-authorship of articles, ...)

Graph Examples

Software Networks

- Module Dependencies (other examples: state, information flow, ...)

Graph Examples

Biological Networks

- Metabolic Networks (other examples: protein interaction, brain networks, food webs, phylogenetic trees, ...)

Graph Examples

Other Graphs

- Semantic Networks (other examples: world wide web, ...)

Terminology

- Directed graph - each link has a starting node (origin) and an end node (order matters!). Usually we use arrows to indicate the direction.
- Undirected graphs - There is no origin or end, but just a connection

Directed Graph

Undirected Graph

Terminology

- Weighted graph - there is a vale associated with each link (it could be distance, cost, ...)
- Unweighted - there are no weights associated with a link

Weighted Graph

Unweighted Graph

Terminology

- Degree - number of connections of a node
- In directed graphs we can distinguish between indegree and outdegree

1 has degree 2
2 has degree 1
3 has degree 3
4 has degree 1
5 has degree 1
6 has degree 2

Terminology

- Adjacent/neighbor node: two nodes are neighbors if they are linked
- Trivial graph: graph with no edges and a single node
- Self-loop: link from a node to itself
- Simple graph: graph without self-loops and without repeated links (we are mostly going to work with simple graphs)
- Multigraph: graph with multiple links between the same node pair
- Dense graph: with many links when compared with the maximum possible - $|E|$ of the order of $\mathcal{O}\left(|V|^{2}\right)$
- Sparse graph: with few links when compared with the maximum possible - $|E|$ with lower order than $\mathcal{O}\left(|V|^{2}\right)$

Terminology

- Path: sequence alternating nodes and edges, such that two consecutive nodes are linked. In simple graphs we typically describe a path using just the nodes.

- Cycle: path that starts and ends on the same node (ex: for the above graph, $1 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 1$ is a cycle)
- Acyclic graph: graph without cycles

Terminology

- Size of a path: number of edges in the path
- Cost of a path: if the graph is weighted, we can talk about the cost, which is the sum of the edge weights
- Distance: size/cost of the smallest path between two nodes
- Diameter of a graph: max distance between two nodes of a graph

Diameter $=3$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	0	2	1	2	3	1
$\mathbf{2}$	2	0	2	1	1	1
$\mathbf{3}$	1	2	0	1	3	2
$\mathbf{4}$	2	1	1	0	2	1
$\mathbf{5}$	3	1	3	2	0	2
$\mathbf{6}$	1	1	2	1	2	0

Distances between nodes

Terminology

- Connected Component: Subset of nodes where there is at least one path between each of them
- Connected Graph: Graph with just one connected component (there is a path between all pairs of nodes)

Graph with two connected components: $\{1,3,4,6\}$ e $\{2,5\}$

Terminology

- Subgraph: subset of nodes and the edges between them
- Complete graph: with links between all pairs of nodes
- Clique: a complete subgraph
- Triangle: a clique with 3 nodes

Subgraph examples: $\{1,3\},\{1,6,2\},\{2,4,5,6\}$, etc
Example clique: $\{2,4,6\}$ (a triangle)

Terminology

- Tree: simple, connected acyclic graph (if it has n nodes, then it will have $n-1$ edges)
- Forest: set of multiple disconnected trees

Graph Representation

How to represent a graph?

- Adjacency Matrix: $|V| \times|V|$ matrix where the (i, j) cell indicates if there is a link between nodes i and j (if the graph is weighted we can store the weight)
- Adjacency list: each node stores a list of its neighbors (if the graph is weighted we have to store pairs (destination, weight))

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$			X			X
2				X	X	X
3	X			X		
4		X	X			X
5		X				
6	X	X		X		
Adjacency Matrix						

1: 3, 6
2: 4, 5, 6
3: 1,4
4: 2, 3, 6
5: 2
6: 1, 2, 4
Adjacency
List

Graph Representation

Some pros and cons:

- Adjacency Matrix:
- Very simple to implement
- Quick to check if there is a connection between two nodes - $\mathcal{O}(\mathbf{1})$
- Slow to traverse the neighbors - $\mathcal{O}(|\mathbf{V}|)$
- Lots of memory wasted (in sparse graphs) - $\mathcal{O}\left(|\mathbf{V}|^{2}\right)$
- Weighted graph implies simply to store the weight in the matrix
- Adding/Removing edges is simply changing a cell - $\mathcal{O}(\mathbf{1})$
- Adjacency List:
- Slow to see if there is a link between u and $v-\mathcal{O}(\operatorname{degree}(\mathbf{u}))$
- Quick to traverse the neighbors - $\mathcal{O}($ degree($\mathbf{u}))$
- Efficient usage of memory - $\mathcal{O}(|\mathbf{V}|+|\mathbf{E}|)$
- Weighted graph implies adding an attribute to the list
- Removing edge (u, v) implies traversing the list - $\mathcal{O}($ degree $(\mathbf{u}))$ Note: we can use for instante BSTs (set/map) to improve the efficiency of searching and removing to $\mathcal{O}(\log$ degree($u)$)

Graph datasets

Here are some interesting websites with graphs
－Network Repository：http：／／networkrepository．com／
－Konect：http：／／konect．cc／
－SNAP：https：／／snap．stanford．edu／data／

Data \＆Network Collections．Find and interactively VISUALIZE and EXPLORE hundreds of network data

，${ }_{\text {If }}$ ANIMAL SOCIAL NETWORKS	816	\ddagger interaction networks	29	额 SCIENTIFIC Computing	（11）
O biological networks	（37）	X infrastructure networks	8	\sim social networks	77
\＆brain networks	116	－Labeled networks	105	f FACEBOOK networks	$(114$
20\％collaboration networks	20	－massive network data	21	－technological networks	（12）
【 cheminformatics	646	\％Miscellaneous networks	2668	（2）web graphs	36
95 citation networks	（4）	4 power networks	（8）	（－）dynamic networks	115
＊ecology networks	6	（0）PROXIMITY NETWORKS	（13）	C iemporal reachability	38
\＄economic networks	16	c generated graphs	221	亜 внозия	36
\square email networks	6	Erecommendation networks	36	titimacs	78
C GRaph 500	（8）	A road networks	15	Q dimacsio	84
（6）heterogeneous networks	15	\％retweet networks	34	曲 non－relational ml data	211

Bipartite Graphs

- A bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every edge connects a node in U to one in V

Projection V

- Many (real world) networks come from projections (ex: actors and movies, diseases and genes)

Other Graph Types: Multilayer / Multiplex

- Graphs can have different layers

Other Graph Types: Temporal Networks

- Graphs can evolve over time

Network Science / Graph Mining

My main research area

PhD Thesis (2011):
Efficient and Scalable Algorithms for Network Motifs Discovery

Publications: http://www.dcc.fc.up.pt/~pribeiro/pubs_by_year.html

Graph Traversal

- One of the most important tasks is to traverse a graph, that is, pass trough all its nodes using the existing links
- We call this graph traversal (or graph search)
- There are two basic traversal types that differ on the order in which the nodes are traversed:
- Depth-First Search - DFS

Traverse the entire subgraph connected to a neighbor before entering the next neighbor node

- Breadth-First Search - BFS

Traverse the nodes by increasing distance of number of links to reach them

Graph Traversal

Graph Traversal

Graph Traversal

Graph Traversal

- In their essence, DFS and BFS do the "same": traverse all the nodes
- When to use one or the other depends on the order that betters suits the problem that you are solving
- Let's see how to implement both and give examples of applications

Depth-First Search - DFS

The "backbone" of a DFS:

DFS (recursive version)
dfs(node v):
mark v as visited
For all neighbors w of v do
If w has not yet been visited then dfs(w)

Complexity:

- Temporal:
- Adjacency List: $\mathcal{O}(|V|+|E|)$
- Adjacency Matrix: $\mathcal{O}\left(|V|^{2}\right)$
- Spatial: $\mathcal{O}(|V|)$

Example Application: Connected Components

- Find the number of connected components of a graph G
- Example: the following graph has 3 connected components

Example Application: Connected Components

The "backbone" of a program to solve it:

```
Finding connected components
counter }\leftarrow
set all nodes as not visited
For all nodes v of the graph do
    If v}\mathrm{ has not yet been visited then
        counter++
        dfs(v)
write(contador)
```

Temporal complexity:

- Adjacency List: $\mathcal{O}(|V|+|E|)$
- Adjacency Matrix: $\mathcal{O}\left(|V|^{2}\right)$

Implicit Graphs

- We do not always need to explicitly store the graph
- Example: find the number of "blobs" (connected spots) in a matrix. Two cells are adjacent if they are connected vertically or horizontally.
\#.\#\#..\#\#
1.22.. 33
\#......\#\#
1..... 33
...\#\#...
--> 4 blobs -->
...44...
...\#\#...
...44...
- To solve we simply need to do $d f s(x, y)$ to visit the cell (x, y) where the neighbors are $(x+1, y),(x-1, y),(x, y+1)$ and $(x, y-1)$
- Using DFS to "color" the connected components is known as doing a Flood Fill.

Topological Sorting

- Given a DAG G (directed acyclic graph), find an order of nodes such that u comes before v if and only if there is no edge (v, u)
- Example: For the graph below a possible topological sorting would be: $1,2,3,4,5,6$ (or $1,4,2,5,3,6$ - there are other possible valid orders)

A classic example of application is to decide in which order to execute a set of tasks with precedences.

Topological Sorting

- How to solve this problem with DFS? What is the relationship between topological sorting and the DFS node order?

Topologic Sorting - $\mathcal{O}(|V|+|E|)$ (list) or $\mathcal{O}\left(|V|^{2}\right)$ (matrix)

order \leftarrow empty
set all nodes as not visited
For all nodes v of the graph do
If v has not yet been visited then
dfs(v)
write(order)
dfs(node v):
mark v as visited
For all neighbors w of v do
If w has not yet been visited then dfs(w)
add v to the begginning of order

Topologic Sorting

Example of execution:

- order $=\emptyset$
- start dfs (1) |order = \emptyset
- start dfs(4) order $=\emptyset$
- start dfs (5) order = \emptyset
- start dfs(6) order = Ø
- end dfs(6) order $=6$
- end dfs(5) order $=5,6$
- end dfs (4) order $=4,5,6$
- end dfs(1) order $=1,4,5,6$
- start dfs(2) order $=1,4,5,6$
- end dfs(2) order $=2,1,4,5,6$
- start dfs(3) order $=2,1,4,5,6$
- end dfs(3) order $=3,2,1,4,5,6$
- order $=3,2,1,4,5,6$

Cycle Detection

- Find if a (directed) graph G us acyclic
- Example: the left graph has a cycle; the right graph doesn't

Graph with cycles

Acyclic Graph

Cycle Detection

Let's use 3 "colors":

- White - node visited node
- Gray - node being visited (we are exploring its descendants)
- Black - node already visited (we visited all its descendants)

Cycle Detection - $\mathcal{O}(|V|+|E|)$ (list) or $\mathcal{O}\left(|V|^{2}\right)$ (matrix)

color $[v \in V] \leftarrow$ white
For all nodes v of the graph do
If color $[v]=$ white then dfs(v)
dfs(node v):
color $[v] \leftarrow$ gray
For all neighbors w of v do
If $\operatorname{color}[w]=$ gray then write("Cycle found!")
Else if color $[w]=$ white then
dfs(w)
color $[v] \leftarrow$ black

Cycle Detection

Example (starting on node 1) - graph with two cycles

Cycle Detection

Example (starting on node 1) - acyclic graph

Classifying DFS Edges

Another "angle" of DFS

- A DFS implicitly creates a search tree, that corresponds to the traversed edges

Classifying DFS Edges

Another "angle" of DFS

- A DFS visit separates the edges into 4 categories
- Tree Edges - Edges from the DFS tree
- Back Edges - Edge from a node to one of its tree ancestors
- Forward Edges - Edge from a node to one of its tree descendants
- Cross Edges - All other edges (from one branch to another)

Classifying DFS Edges
 Another "angle" of DFS

- Example application: finding cycles is finding... Back Edges!
- Knowing the edge types may help to solve problem!
- Note: an undirected graph has only Tree Edges and Back Edges.

Strongly Connected Components

A more complex DFS application

- Decompose a graph into its strongly connected component

A strongly connected component (SCC) its a maximal subgraph where there is a (directed) path between each of its nodes.

An example graph with 3 SCCs:

Strongly Connected Components

A more complex DFS application

- How to compute SCCs?
- Let's try to use our knowledge about DFS edge types:

Strongly Connected Components

A more complex DFS application

- Let's look at the generated tree:

- What is the "lowest" ancestor reachable by a node?
- 1 : it's 1
- 2: it's 1
- 5: it's 1
- 3: it's 3
- 4: it's 3
- 8: it's 3
- 7: it's 7
- 6: it's 7
- Et voilà! Here are our SCCs!

Strongly Connected Components

A more complex DFS application

- Let's add 2 attributes to the nodes in a DFS visit:
- num(i): order in which i is visited
- low(i): smallest num(i) reachable by the subtree that starts in i. It's the minimum between:
* num(i)
* smallest num (v) between all back edges (i, v)
\star smallest low (v) between all tree edges (i, v)

Strongly Connected Components

A more complex DFS application

Main ideas of Tarjan Algorithm to find SCCs:

- Make a DFS and in each node i :
- Keep pushing the nodes to a stack S
- Compute and store the values of num(i) and $\operatorname{low}(\mathbf{i})$.
- If when finishing the visit of a node i we have that num($\mathbf{i})=\operatorname{low}(\mathbf{i})$, then i is the "root" of a SCC. In that case, remove all the elements in the stack until reaching i and report those elements as belonging to a SCC!

Strongly Connected Components

A more complex DFS application

Example of execution: in the moment we leave $d f s(7)$, we find that $\operatorname{num}(7)=\operatorname{low}(7)$ (7 is the "root" of a SCC)

State of Stack S:
6
7
8
4
3
2
1

Remove elements from stack until reaching 7; output SCC: $\{6,7\}$

Strongly Connected Components

A more complex DFS application

Example of execution: in the moment we leave $d f s(3)$, we find that num $(3)=\operatorname{low}(3)$ (3 is the "root" of a SCC)

State of Stack S:
8
4
3
2
1

Remove elements from stack until reaching 3; output SCC: $\{8,4,3\}$

Strongly Connected Components

A more complex DFS application

Example of execution: in the moment we leave $d f s(1)$, we find that $\operatorname{num}(1)=\operatorname{low}(1)$ (1 is the "root" of a SCC)

State of Stack S:
5
2
1

Remove elements from stack until reaching 1; output SCC:: $\{5,2,1\}$

Strongly Connected Components

```
Tarjan Algorithm for SCCs
index }\leftarrow0;S\leftarrow
For all nodes v of the graph do
    If num[v] is still undefined then
        dfs_scc(v)
dfs_scc(node v):
    num[v]}\leftarrow\mathrm{ low }[v]\leftarrow\mathrm{ index ; index }\leftarrow\mathrm{ index + 1; S.push(v)
    /* Traverse edges of v*/
    For all neighbors }w\mathrm{ of v do
        If num[w] is still undefined then /* Tree Edge */
            dfs_scc(w) ; low[v]}\leftarrow\operatorname{min}(low[v],low[w]
        Else if w is in S then /* Back Edge */
            low[v]}\leftarrow\operatorname{min}(\operatorname{low}[v],num[w]
    /* We know that we are at the root of an SCC */
    If num[v] = low[v] then
        Start new SCC C
        Repeat
            w\leftarrowS.pop() ; Add w to C
        Until w=v
        Write C
```


Articulation Points and Bridges

An articulation point is a node whose removal increases the number of connected components.

A bridge is an edge whose removal increases the number of connected components.

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is said to be biconnected.

Articulation Points

A more complex DFS application

- Finding articulation points is a very useful problem
- For instance, a "robust" graph should not have articulation points that when "attacked" will disconnect them.
- How to compute? A possible (naive) algorithm:
(1) Make a DFS and count the number of connected components
(2) Remove a node from the original graph and execute a new DFS, counting again the connnected components. If this number increased, them the node is an articulation point.
(3) Repeat step 2 for all nodes in the graph
- What would be the complexity of this method? $\mathcal{O}(|V|(|V|+|E|))$, because we will make $|V|$ calls to DFS, each one taking $|V|+|E|$.
- It is possible to do much better... using a single DFS!

Articulation Points

A more complex DFS application

An idea:

- Apply DFS to the graph and obtain the DFS tree
- If a node v has a child w without any path to an ancestor of v, then v is an articulation point! (since removing it would disconnect w from the resto of the graph)
- This corresponds to verify if low $[w] \geq n u m[v]$
- The only exception is the root of the DFS tree. If it has more than one child in the tree... it is also an articulation point!

Articulation Points

A more complex DFS application

- An example graph:

- num [i] - numbers inside the node
- low[i] - blue numbers
- articulation points: yellow nodes

Articulation Points

A more complex DFS application

- 3 is an articulation point: $\operatorname{low}[5]=5 \geq n u m[3]=3$
- 5 is an articulation point: $\operatorname{low}[6]=6 \geq$ num $[5]=5$
ou
$\operatorname{low}[7]=5 \geq \operatorname{num}[5]=5$
- 10 is an articulation point: $\operatorname{low}[11]=11 \geq \operatorname{num}[10]=10$
- 1 is not an articulation point: it only has a tree edge

Articulation Points

Algorithm very similar to Tarjan, but with different DFS:

```
Algorithm to find articulation points
dfs_art(node v):
    num[v]}\leftarrow\mathrm{ low }[v]\leftarrow\mathrm{ index ; index }\leftarrow\mathrm{ index +1; S.push(v)
    For all neighbors }w\mathrm{ of v do
        If num[w] is not yet defined then /* Tree Edge */
            dfs_art(w); low[v] \leftarrow min(low[v], low[w])
            If low[w]\geq num[v] then
                write(v + "is an articulation point")
        Else if w is in S then /* Back Edge */
            low[v]}\leftarrow\operatorname{min}(low[v],num[w]
    S.pop()
```

Instead of a stack, we could have used colors (gray means it is in the stack)

Breadth-First Search - BFS

- A breadth-first search (BFS) is very similar to a DFS. It only changes the order in which the nodes are visited!
- Instead of using recursion, we will keep explicitly a queue of not visited nodes (q)

Backbone of a BFS a- $\mathcal{O}(|V|+|E|)$
bfs(node v):
$q \leftarrow \emptyset / *$ queue of non visited nodes */
q.enqueue(v)
mark v as visited
While $q \neq \emptyset / *$ while there are still unprocessed nodes */
$u \leftarrow q$.dequeue() /* remove first element of $q^{*} /$
For all neighbors w of u do
If w has not yet been visited then /* new node! */ q.enqueue(w) mark w as visited

Breadth-First Search - BFS

- An example:

(1) Initially we have $q=\{A\}$
(2) We remove \mathbf{A}, then we add non visited neighbors $(q=\{B, G\})$
(3) We remove \mathbf{B}, then we add non visited neighbors $(q=\{G, C\})$
(9) We remove \mathbf{G}, then we add non visited neighbors $(q=\{C\})$
(3) We remove \mathbf{C}, then we add non visited neighbors $(q=\{D\})$
(0) We remove \mathbf{D}, then we add non visited neighbors $(q=\{E, F\})$
(1) We remove \mathbf{E}, then we add non visited neighbors $(q=\{F\})$
(8) We remove \mathbf{F}, then we add non visited neighbors $(q=\{ \})$
(0) q empty, we finished our BFS

Breadth-First Search - BFS

Computing distances

- Almost everything than can be done with DFS can also be done with BFS!
- An important difference is that with BFS we visit the nodes in increasing order of distance (in terms of number of edges) to the initial node!
- In this way, BFS an be used to compute shortest distances between nodes on a unweighted graph (with ot without direction).
- Let's see what really changes in the code

Breadth-First Search - BFS

Computing distances

- In red the lines that were added. Em node.distance stores the distance to node v.

BFS - Computing distances

bfs(node v):
$q \leftarrow \emptyset / *$ Queue of non visited nodes */
q.enqueue(v)
v. distance $\leftarrow 0 / *$ distance from v to itself it's zero */
mark v as visited
While $q \neq \emptyset /^{*}$ while there are still unprocessed nodes */
$u \leftarrow q$.dequeue() /* remove first element of $q^{*} /$
For all neighbors w of u do
If w has not yet been visited then /* new node */
q.enqueue(w)
mark w as visited
w.distance $\leftarrow u$.distance +1

Breadth-First Search - BFS

More applications

- BFS can be applied in any graph type
- Consider for instance that you want to know the minimum distance between points \mathbf{A} and \mathbf{B} on a 2D maze:

\#\#\#\#\#\#\#\#		\#\#\#\#\#\#\#\#
\#A.....\#		\#A12345\#
\#\#\#\#.\#\#\#	$--->$	\#\#\#\#4\#\#\#
\#B.....\#	BFS starting in A	\#876567\#
\#\#\#\#\#\#\#		\#\#\#\#\#\#\#\#

- A node is a cell (x, y)
- Neighbors are $(x+1, y),(x-1, y),(x, y+1) \mathrm{e}(x, y-1)$
- Everything ele in the BFS is the same! (time: \mathcal{O} (rows \times cols))
- To store on the queue we need to represent a coordinates pair (e.g.: struct in C, pair or class in C ++ , class in Java).

