Graphs: Intro, DFS & BFS

Pedro Ribeiro

DCC/FCUP

2022/2023

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Concept

Graph Definition
Formally, a graph is:
@ A set of nodes/vertices (V).

@ A set of links/edges (E), that connect pairs of vertices

9‘0 e V=1{1,234,5,6}
e £E=1{(1,6),(1,3),(3,6),(3,4),(2,5)}
@® @ ©

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 2

What are graphs for?

@ Graphs are ubiquitous in Computer Science and they are present,
implicitly or explicitly in many algorithms.
@ They can be used in a multitude of applications.

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Graph Examples

Networks that exist in the real ”physical” world

@ Road Network

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 4

Graph Examples

Networks that exist in the real "physical” world

@ Public Transportation (ex: subway, train)

Péoa de ‘arzim C g 18Mal oraga
AeroportogE Pedras Fubras Zona Industrisl “igo
Travagem
Parcue da Maia
Custié
Cabada
Ermesinde

Caide
Candido dos Reis
Forte do Cuco
Senhor e Aquas sartas
Mercad Matosinhos
Senhora da Hora
Hosnital Sdo Jodo

PO Campinia

Parque Real

Baguim

= Pélo Unversitério
Hau itdria, & RioTinto [e
Salgueiros Levada

Nasoni Wends Nova

Carolina Combatertes
Casa da Misica W ichaelis)
Marqués ABE Fénzeres

Hertage Tras

josto. Heraismo

Jardim ¢o Morro

General Jorres
Cémara de Gaia

oo de Deus

Coimbries
D.Jodo Il
Lisboa

'Santa Ovidia

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Graph Examples

Networks that exist in the real ”physical” world

o Power Grid

Electrical Transmission®
A/ Less than 500 kv
AN/ 500KV or Greater
Source: POWERmap, powermap. ; !
2022/2023 6

sion of The McGraw-Hill Companies .. TEEICO1

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

Graph Examples

Networks that exist in the real "physical” world

@ Computer Network

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Graph Examples

Social Network

@ Facebook (others: Twitter, emails, co-authorship of articles, ...)

TouchGraph
Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Graph Examples

Software Networks

@ Module Dependencies (other examples: state, information flow, ...)

HTTP:Client

Emo

strict

Exporter warnings:register

™

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

wamings

9

Graph Examples

Biological Networks

@ Metabolic Networks (other examples: protein interaction, brain
networks, food webs, phylogenetic trees, ...)

METABOLIC PATHWAYS
S
ComplexCarbohydrates
&
Complex Lipids.

.
‘Biodegradation of
Xemobiotics

Nucleotide
Metahol

Metabolism of
Other Amino Acids

oL100 702

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 10

Graph Examples
Other Graphs

@ Semantic Networks (other examples: world wide web, ...)

has
Vertebra Cat > Fur
has is a has
) is an isa
Animal < Mammal<-— Bear
is
is an
Whale
lives in lives in

Fish ——=> Water

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Terminology

o Directed graph - each link has a starting node (origin) and an end

node (order matters!). Usually we use arrows to indicate the direction.

@ Undirected graphs - There is no origin or end, but just a connection

@ o —®
oRC ® o

Directed Graph Undirected Graph

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

12

Terminology

@ Weighted graph - there is a vale associated with each link (it could
be distance, cost, ...)

@ Unweighted - there are no weights associated with a link

D O

Weighted Graph Unweighted Graph

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 13

Terminology

o Degree - number of connections of a node

@ In directed graphs we can distinguish between indegree and
outdegree

o 1 has degree 2

‘e 2 has degree 1
e 3 has degree 3
4 has degree 1

o @/@ 5 has degree 1

6 has degree 2

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 14

Terminology

@ Adjacent/neighbor node: two nodes are neighbors if they are linked
@ Trivial graph: graph with no edges and a single node
@ Self-loop: link from a node to itself

o Simple graph: graph without self-loops and without repeated links
(we are mostly going to work with simple graphs)

@ Multigraph: graph with multiple links between the same node pair

@ Dense graph: with many links when compared with the maximum
possible - | E| of the order of O(]V|?)

@ Sparse graph: with few links when compared with the maximum
possible - |E| with lower order than O(|V|?)

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 15

Terminology

@ Path: sequence alternating nodes and edges, such that two
consecutive nodes are linked. In simple graphs we typically describe a
path using just the nodes.

126214

@ Cycle: path that starts and ends on the same node (ex: for the above
graph, 1 - 6 —4 — 3 — 1 is a cycle)

@ Acyclic graph: graph without cycles

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 16

Terminology

@ Size of a path: number of edges in the path

@ Cost of a path: if the graph is weighted, we can talk about the cost,
which is the sum of the edge weights

o Distance: size/cost of the smallest path between two nodes

o Diameter of a graph: max distance between two nodes of a graph

112|3(4|5|6

1(0(2(1(2(3]|1

2(2(0(2(|1(1]1

3(1(2]0]1(3]2

4 |12(1|11]0]|2]|1

5/13|1|3|2|0]|2

6112|120

Diameter = 3 Distances between nodes

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

17

Terminology

@ Connected Component: Subset of nodes where there is at least one
path between each of them

@ Connected Graph: Graph with just one connected component (there
is a path between all pairs of nodes)

G
® O

Graph with two connected components: {1,3,4,6} e {2,5}

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 18

Terminology

@ Subgraph: subset of nodes and the edges between them
o Complete graph: with links between all pairs of nodes
o Clique: a complete subgraph

@ Triangle: a clique with 3 nodes

Subgraph examples: {1,3}, {1,6,2}, {2,4,5,6}, etc
Example clique: {2,4,6} (a triangle)

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

2022/2023

19

Terminology

@ Tree: simple, connected acyclic graph
(if it has n nodes, then it will have n — 1 edges)

@ Forest: set of multiple disconnected trees

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

2022/2023

20

Graph Representation

How to represent a graph?

@ Adjacency Matrix: |V/| x |V| matrix where the (i,/) cell indicates if
there is a link between nodes i and j (if the graph is weighted we can
store the weight)

@ Adjacency list: each node stores a list of its neighbors (if the graph
is weighted we have to store pairs (destination,weight))

172734576 136
1 X X 2: 4, 5, 6
2 X | X | X 3:1,4
3|X X 4: 2, 3,6
4 X | X X 5: 2
5 X 6: 1,2 4
6 s s Adjacenc
Adjacency Matrix JList Y

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Graph

Representation

Some pros and cons:

o Adjacency Matrix:

>

>

>

>

>

v

Very simple to implement

Quick to check if there is a connection between two nodes - O(1)
Slow to traverse the neighbors - O(|V|)

Lots of memory wasted (in sparse graphs) - O(|V|?)

Weighted graph implies simply to store the weight in the matrix
Adding/Removing edges is simply changing a cell - O(1)

o Adjacency List:

>

>
>
>
>

Slow to see if there is a link between u and v - O(degree(u))
Quick to traverse the neighbors - O(degree(u))

Efficient usage of memory - O(|V| + |E|)

Weighted graph implies adding an attribute to the list
Removing edge (u, v) implies traversing the list - O(degree(u))
Note: we can use for instante BSTs (set/map) to improve the
efficiency of searching and removing to O(log degree(u))

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

22

Graph datasets

Here are some interesting websites with graphs
@ Network Repository: http://networkrepository.com/

@ Konect: http://konect.cc/

@ SNAP: https://snap.stanford.edu/data/

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

AE ANIMAL SOCIAL NETWORKS 816 T INTERACTION NETWORKS TH SCIENTIFIC COMPUTING

QD BioLosICAL NETWORKS A INFRASTRUCTURE NETWORKS &3 SOCIAL NETWORKS

=

f Facesook neTworks

% BRAIN NETWORKS W LABELED NETWORKS

488 CoLLABoRATION NETWORKS & issIvE NETWORK DATA L TEchNOLOGICAL NETWORKS

A CHEMINFORMATICS 646 &% MISCELLANEOUS NETWORKS Q@ WEB GRAPHS

99 CiTATION NETWORKS & PowER NETWORKS @ DYNAMIC NETWORKS

ccolocy NETWORKS @ PROXIMITY NETWORKS 3G TEMPORAL REACHABILITY

-
$ EconomiC NETWORKS #5 GENERATED GRAPHS I sHosLIB
3 emaiL neTworks ™ RECOMMENDATION NETWORKS i oimacs

/& craPH 500 A ROAD NETWORKS DIMACS10

€D HETEROGENEOUS NETWORKS W RETWEET NETWORKS EEB NON-RELATIONAL ML DATA

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 23

http://networkrepository.com/
http://konect.cc/
https://snap.stanford.edu/data/

Bipartite Graphs

@ A bipartite graph is a graph whose nodes can be divided into two
disjoint sets U and V such that every edge connects a node in U to
one in V

V) \'}
Projection U

Projection V

@ Many (real world) networks come from projections (ex: actors and
movies, diseases and genes)

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

Other Graph Types: Multilayer / Multiplex

@ Graphs can have different layers

a. Grain movement
network

Q\Q e

S T |

e | b. Management
R 6 communication network

c. Insect and fungus
movement network

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

25

Other Graph Types: Temporal Networks
@ Graphs can evolve over time

Pt PFanN
- . - .
. ~ e e . P
N - " y " e
— N —

Original graph An edge added A node remaved

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

26

Network Science / Graph Mining

My main research area

PhD Thesis (2011):
Efficient and Scalable Algorithms for Network Motifs Discovery

Publications: http://www.dcc.fc.up.pt/~pribeiro/pubs_by_year.html

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 27

http://www.dcc.fc.up.pt/~pribeiro/pubs_by_year.html

Graph Traversal

@ One of the most important tasks is to traverse a graph, that is, pass
trough all its nodes using the existing links

@ We call this graph traversal (or graph search)

@ There are two basic traversal types that differ on the order in which
the nodes are traversed:

» Depth-First Search - DFS

Traverse the entire subgraph connected to a neighbor before entering
the next neighbor node

» Breadth-First Search - BFS

Traverse the nodes by increasing distance of number of links to reach
them

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 28

Graph Traversal

DFS BFS

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 29

Graph Traversal

BFS

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 30

Graph Traversal

Graph Traversal

@ In their essence, DFS and BFS do the "same’:
traverse all the nodes

@ When to use one or the other depends on the order that betters
suits the problem that you are solving

@ Let’s see how to implement both and give examples of applications

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

32

Depth-First Search - DFS

The "backbone” of a DFS:

DFS (recursive version)
dfs(node v):

mark v as visited

For all neighbors w of v do

If w has not yet been visited then
dfs(w)

Complexity:

@ Temporal:
» Adjacency List: O(|V/|+ |E])
» Adjacency Matrix: O(|V/|?)
@ Spatial: O(|V])

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

2022/2023

33

Example Application: Connected Components

o Find the number of connected components of a graph G

@ Example: the following graph has 3 connected components

1
L]

11

L
7

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

34

Example Application: Connected Components
The "backbone” of a program to solve it:

Finding connected components

counter < 0
set all nodes as not visited
For all nodes v of the graph do
If v has not yet been visited then
counter-+-+
dfs(v)
write(contador)

Temporal complexity:
e Adjacency List: O(|V|+ |E|)
@ Adjacency Matrix: O(|V|?)

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

35

Implicit Graphs

@ We do not always need to explicitly store the graph

@ Example: find the number of "blobs” (connected spots) in a matrix.
Two cells are adjacent if they are connected vertically or horizontally.

#.## . H#HH 1.22..
#..... ## 1.....
CLHEL L --> 4 blobs -->
CHE.

@ To solve we simply need to do dfs(x, y) to visit the cell (x,y) where
the neighbors are (x +1,y),(x — 1,y),(x,y +1) and (x,y — 1)

@ Using DFS to "color” the connected components is known as doing a
Flood Fill.

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 36

Topological Sorting

@ Given a DAG G (directed acyclic graph), find an order of nodes such
that u comes before v if and only if there is no edge (v, u)

@ Example: For the graph below a possible topological sorting would be:
1,2,3,4,5,6 (or 1,4,2,5,3,6 - there are other possible valid orders)

4 5 (6)

A classic example of application is to decide in which order to execute a
set of tasks with precedences.

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 37

Topological Sorting

@ How to solve this problem with DFS? What is the relationship
between topological sorting and the DFS node order?

Topologic Sorting - O(|V| + |E|) (list) or O(|V|?) (matrix)
order <— empty
set all nodes as not visited
For all nodes v of the graph do
If v has not yet been visited then
dfs(v)
write(order)

dfs(node v):
mark v as visited
For all neighbors w of v do
If w has not yet been visited then
dfs(w)
add v to the begginning of order

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

38

Topologic Sorting

0‘9

Example of execution:

Pedro Ribeiro (DCC/FCUP)

order = ()

start dfs(1
start dfs(4
start dfs(b
start dfs(6
end dfs(6
end dfs(5
end dfs(4
end dfs(1
start dfs(2
end dfs(2
start dfs(3
end dfs(3

order = ()
order = ()
order = ()
order = ()
order = 6
order =
order
order
order
order
order
order

order = 3,2,1,4,5,6

Graphs: Intro, DFS & BFS 2022/2023

39

Cycle Detection

e Find if a (directed) graph G us acyclic

@ Example: the left graph has a cycle; the right graph doesn’t

Graph with cycles Acyclic Graph

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 40

Cycle Detection

Let’s use 3 "colors”:

@ White - node visited node
@ Gray - node being visited (we are exploring its descendants)
@ Black - node already visited (we visited all its descendants)

Cycle Detection - O(|V| + |E|) (list) or O(|V|?) (matrix)

color[v € V] « white
For all nodes v of the graph do
If color[v] = white then
dfs(v)
dfs(node v):
color[v] <+ gray
For all neighbors w of v do
If color[w] = gray then

write()
Else if color[w] = white then
dfs(w)

color[v] < black

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

41

Cycle Detection

7T NI NLTS

NN N

me O—@ Q—E—O G —0O
.m%%@%@“@m’
mo&eo&.y o.&\\‘u

Cycle Detection

Example (starting on node 1) - acyclic graph

3 @ O

Q—®
Il
©

@ @ 6
4 —©
7 O—©

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

2022/2023

43

Classifying DFS Edges

Another "angle” of DFS

@ A DFS implicitly creates a search tree, that corresponds to the
traversed edges

N
N

@ ©

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

44

Classifying DFS Edges

Another "angle” of DFS

@ A DFS visit separates the edges into 4 categories
» Tree Edges - Edges from the DFS tree
» Back Edges - Edge from a node to one of its tree ancestors
» Forward Edges - Edge from a node to one of its tree descendants
> - All other edges (from one branch to another)

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

45

Classifying DFS Edges

Another "angle” of DFS

@ Example application: finding cycles is finding... Back Edges!

@ Knowing the edge types may help to solve problem!

@ Note: an undirected graph has only Tree Edges and Back Edges.

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 46

Strongly Connected Components

A more complex DFS application

@ Decompose a graph into its strongly connected component

A strongly connected component (SCC) its a maximal subgraph where
there is a (directed) path between each of its nodes.

An example graph with 3 SCCs:

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 47

Strongly Connected Components
A more complex DFS application

@ How to compute SCCs?

@ Let's try to use our knowledge about DFS edge types:

0'9 OWRO

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

2022/2023

48

Strongly Connected Components
A more complex DFS application
@ Let’s look at the generated tree:

@ What is the "lowest”
ancestor reachable by a

node?
1:it's1
2:it's 1
bh:it's 1
3:it's 3
4: it's 3
8: it's 3
7:it's7
» 6:it's7
@ Et voilal Here are our
SCCs!

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 49

Strongly Connected Components

A more complex DFS application

@ Let's add 2 attributes to the nodes in a DFS visit:
» num(i): order in which i is visited
> low(i): smallest num(i) reachable by the subtree that starts in /.
It's the minimum between:
* num(i)
* smallest num(v) between all back edges (7, v)
* smallest low(v) between all tree edges (i, v)

|||num |/ow)|
1 1 1
2 2 1
3 3 3
4 4 3
5 8 1
6 7 6
7 6 6
8 5 4

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

50

Strongly Connected Components
A more complex DFS application

Main ideas of Tarjan Algorithm to find SCCs:
@ Make a DFS and in each node i:

» Keep pushing the nodes to a stack S
» Compute and store the values of num(i) and low(i).

» If when finishing the visit of a node i we have that num(i) = low(i),
then i is the "root” of a SCC. In that case, remove all the elements in
the stack until reaching i and report those elements as belonging to a
SCC!

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 51

Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(7), we find that
num(7) = low(7) (7 is the "root” of a SCC)

State of Stack S:

= N W H 0N O

Remove elements from stack until reaching 7; output SCC: {6, 7}

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 52

Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(3), we find that
num(3) = low(3) (3 is the "root” of a SCC)

State of Stack S:

= N W o

Remove elements from stack until reaching 3; output SCC: {8, 4, 3}

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

53

Strongly Connected Components
A more complex DFS application

Example of execution: in the moment we leave dfs(1), we find that
num(1) = low(1) (1 is the "root” of a SCC)

State of Stack S:
5

Remove elements from stack until reaching 1; output SCC:: {5, 2, 1}

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

54

Strongly Connected Components

Tarjan Algorithm for SCCs

index < 0; S+ 0
For all nodes v of the graph do

If num|v] is still undefined then
dfs_scc(v)

dfs_scc(node v):
num[v] < low[v] < index ; index < index + 1 ; S.push(v)
/* Traverse edges of v */
For all neighbors w of v do
If num[w] is still undefined then /* Tree Edge */
dfs_scc(w) ; low[v] <— min(low|[v], low[w])
Else if w is in S then /* Back Edge */
low[v] +— min(low[v], num[w])
/* We know that we are at the root of an SCC */
If num[v] = low[v] then
Start new SCC C
Repeat
w < S.pop() ; Add w to C
Until w = v
Write C

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

55

Articulation Points and Bridges

An articulation point is a node whose removal increases the number of
connected components.

A bridge is an edge whose removal increases the number of connected
components.

Example (in red the articulation points; in blue the bridges):

A graph without articulation points is said to be biconnected.

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 56

Articulation Points

A more complex DFS application

@ Finding articulation points is a very useful problem

» For instance, a "robust” graph should not have articulation points that
when "attacked” will disconnect them.

@ How to compute? A possible (naive) algorithm:

© Make a DFS and count the number of connected components

© Remove a node from the original graph and execute a new DFS,
counting again the connnected components. If this number increased,
them the node is an articulation point.

© Repeat step 2 for all nodes in the graph

@ What would be the complexity of this method? O(|V|(|V|+ |E])),
because we will make |V/| calls to DFS, each one taking | V| + |E|.

o It is possible to do much better... using a single DFS!

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 57

Articulation Points
A more complex DFS application

An idea:
@ Apply DFS to the graph and obtain the DFS tree

o If a node v has a child w without any path to an ancestor of v,
then v is an articulation point! (since removing it would disconnect
w from the resto of the graph)

» This corresponds to verify if low[w] > num][v]

@ The only exception is the root of the DFS tree. If it has more than
one child in the tree... it is also an articulation point!

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 58

Articulation Points
A more complex DFS application

@ An example graph:

@ num(i] - numbers inside the node
@ low(i] - blue numbers
@ articulation points: yellow nodes

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS

2022/2023

59

Articulation Points

A more complex DFS application

1
(D @ 3 is an articulation point:
) low[5] =5 > num[3] =3
(3) @ 5 is an articulation point:

low[6] = 6 > num[5] =5
ou
low[7] =5 > num[5] =5

5 @ 10 is an articulation point:
low[11] = 11 > num[10] = 10

@ 1 is not an articulation point:
it only has a tree edge

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 60

Articulation Points

Algorithm very similar to Tarjan, but with different DFS:

Algorithm to find articulation points
dfs_art(node v):
num|v] < low[v] < index ; index < index + 1 ; S.push(v)
For all neighbors w of v do
If num[w] is not yet defined then /* Tree Edge */
dfs_art(w) ; low[v] < min(low[v], low[w])
If low[w] > num[v] then
write(v + "is an articulation point”)
Else if w is in S then /* Back Edge */
low[v] <— min(low[v], num[w])
S.pop()

Instead of a stack, we could have used colors (gray means it is in the stack)

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

61

Breadth-First Search - BFS

@ A breadth-first search (BFS) is very similar to a DFS. It only changes
the order in which the nodes are visited!

@ Instead of using recursion, we will keep explicitly a queue of not
visited nodes (q)

Backbone of a BFS a - O(|V| + |E])

bfs(node v):
g + 0 /* queue of non visited nodes */
q.enqueue(v)
mark v as visited
While g # 0 /* while there are still unprocessed nodes */
u < q.dequeue() /* remove first element of g */
For all neighbors w of u do
If w has not yet been visited then /* new node! */
q.enqueue(w)
mark w as visited

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

62

Breadth-First Search - BFS

@ An example:

(B)
A @

© ®

@ Initially we have g = {A}

@ We remove A, then we add non visited neighbors (¢ = {B, G})
© We remove B, then we add non visited neighbors (g = {G, C})
@ We remove G, then we add non visited neighbors (g = {C})
© We remove C, then we add non visited neighbors (g = {D})
@ We remove D, then we add non visited neighbors (g = {E, F})
(a=1{F})
(a=1{})

@ We remove E, then we add non visited neighbors
@ We remove F, then we add non visited neighbors
© g empty, we finished our BFS

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

63

Breadth-First Search - BFS

Computing distances

@ Almost everything than can be done with DFS can also be done with
BFS!

@ An important difference is that with BFS we visit the nodes in
increasing order of distance (in terms of number of edges) to the
initial node!

@ In this way, BFS an be used to compute shortest distances between
nodes on a unweighted graph (with ot without direction).

@ Let's see what really changes in the code

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023 64

Breadth-First Search - BFS

Computing distances

@ In red the lines that were added. Em node.distance stores the
distance to node v.

BFS - Computing distances

bfs(node v):
g < 0 /* Queue of non visited nodes */
g.enqueue(v)
v.distance <— 0 /* distance from v to itself it's zero */
mark v as visited
While g # () /* while there are still unprocessed nodes */
u <+ q.dequeue() /* remove first element of g */
For all neighbors w of u do
If w has not yet been visited then /* new node */
q.enqueue(w)
mark w as visited
w.distance < u.distance + 1

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

65

Breadth-First Search - BFS

More applications

@ BFS can be applied in any graph type

@ Consider for instance that you want to know the minimum distance
between points A and B on a 2D maze:

HRRBHHHH HERBHHHH
#A..... # #A12345#
HH#H . ### -—> HURBA##H#
#B..... # BFS starting in A #876567#
HURBHHHH HURBHH#H

» A node is a cell (x,y)

» Neighbors are (x +1,y), (x —1,y), (x,y +1) e (x,y — 1)

» Everything ele in the BFS is the same! (time: O(rows x cols))

» To store on the queue we need to represent a coordinates pair (e.g.:
struct in C, pair or class in C++, class in Java).

Pedro Ribeiro (DCC/FCUP) Graphs: Intro, DFS & BFS 2022/2023

66

