Sorting, Binary Search and Variants

Pedro Ribeiro

DCC/FCUP

2022/2023



Sorting

- Sorting is an initial step to many other algorithms
 - Ex: finding the median
- When you don't know what to do... sort!
 - Ex: finding repeated elements is much easier after sorting
- Different sorting types might be more adequate to different scenarios
 - **E**x: to less general cases, there might be $\mathcal{O}(n)$ algorithms
- It is important to know the sorting functions available on your language libraries
 - ► Ex: qsort (C), STL sort (C++), Arrays.sort (Java)

About sorting complexity

- What is the least possible complexity for a general sorting algorithm? $\Theta(n \log n)$... but only on the **comparative model**.
 - ▶ **Comparative model:** to distinguish elements I can only use comparisons $(<,>,=,\geq,\leq)$. How many comparisons are needed?
- A sketch of the **proof** that comparative sorting is $\Omega(n \log n)$
 - ► Input of size *n* has n! **possible permutations** (only one is the desired ordering)
 - A comparison has two possible results
 (it can distinguish between 2 different permutations)
 - Let f(n) be the function that measures the **number of comparisons**
 - f(n) comparisons: can **distinguish** between $2^{f(n)}$ permutations
 - We need that $2^{f(n)} \ge n!$, that is, $f(n) \ge \log_2(n!)$
 - ▶ Using **Stirling's approximation**, we know that $f(n) \ge n \log_2 n$

Some sorting algorithms

Comparative algorithms

- BubbleSort (swap elements)
- SelectionSort (selected smallest/largest)
- InsertionSort (insert on correct position)
- MergeSort (divide in two, sort halves, merge sorted parts)
- ► HeapSort (create heap with all elements, remove one by one)
- QuickSort (divide according to a pivot and sort recursively)

Non Comparative Algorithms

- CountingSort (count number of elements of each type)
- RadixSort (sort according to "digits")

Non Comparative Algorithms

- To simplify, let's assume that the elements to sort are numbers
- Idea can be generalized to other data types
- Suppose we have n elements to sort, stored on an array v with indexes from 0 to n-1

CountingSort

Key idea: count the amount of numbers of each type

You can check an animation at VisuAlgo

- Let k be the largest number
- This algorithm will take $\mathcal{O}(n+k)$

RadixSort

• Key idea: sort digit by digit

```
A possible RadixSort (starting on the least significant digit)

bucket[10] ← array of lists of numbers (one per digit)

For pos = 1 to max_number_digits do

For i = 0 to n-1 do (for each number)

Put v[i]in bucket[digit_position_pos(v[i])]

For i = 0 to 9 do (for each possible digit)

While size(bucket[i]) > 0 do

Take first number of bucket[i] and add it to v[]
```

You can check an animation at VisuAlgo

- Let k be the largest quantity of digits in a single number
- This algorithm will take $\mathcal{O}(k \times n)$

Some sorting algorithms

There are many more!

Exchange sorts	$Bubble\ sort \cdot Cocktail\ sort \cdot Odd-even\ sort \cdot Comb\ sort \cdot Gnome\ sort \cdot Quicksort \cdot Stooge\ sort \cdot Bogosort$
Selection sorts	$Selection\ sort \cdot Heapsort \cdot Smoothsort \cdot Cartesian\ tree\ sort \cdot Tournament\ sort \cdot Cycle\ sort$
Insertion sorts	Insertion sort · Shellsort · Splaysort · Tree sort · Library sort · Patience sorting
Merge sorts	Merge sort · Cascade merge sort · Oscillating merge sort · Polyphase merge sort · Strand sort
Distribution sorts	$American \ flag \ sort \cdot Bead \ sort \cdot Bucket \ sort \cdot Burstsort \cdot Counting \ sort \cdot Pigeonhole \ sort \cdot Proxmap \ sort \cdot Radix \ sort \cdot Flashsort$
Concurrent sorts	Bitonic sorter · Batcher odd–even mergesort · Pairwise sorting network
Hybrid sorts	Block sort · Timsort · Introsort · Spreadsort · JSort
Other	Topological sorting • Pancake sorting • Spaghetti sort

(source of picture: http://en.wikipedia.org/wiki/Sorting_algorithm)

Overview

- There are many sorting algorithms
- The "best" algorithm depends on the use case
- It is possible to **combine** several algorithms (hybrid approaches)
 - ► Ex: RadixSort might have as internal step another algorithm, as long as it is a **stable sort** (keep initial order in case of a tie)
- In practice, on real implementations, this is what is done (to combine):

(Note: the exact implementation depends on compiler and version)

- Java: uses Timsort (MergeSort + InsertionSort)
 - ► C++ STL: uses IntroSort (QuickSort + HeapSort) + InsertionSort

Repetitions

Problem: finding **repeated** elements

Input								
9	21	27	38	34	53	19	38	43
51	1	9	10	39	50	6	26	44
5	32	16	20	50	22	41	30	39
3	32	30	31	40	50	56	13	19
46	32	56	26	20	57	32	27	31
17	32	54	61	34	22	14	54	9
34	30	38	10	30	5	37	61	44

```
Input

1 | 3 | 5 | 5 | 6 | 9 | 9 | 9 | 10

10 | 13 | 14 | 16 | 17 | 19 | 19 | 20 | 20 |

21 | 22 | 22 | 26 | 26 | 27 | 27 | 30 | 30

30 | 30 | 31 | 31 | 32 | 32 | 32 | 32 | 32 |

34 | 34 | 34 | 37 | 38 | 38 | 39 | 39 |

40 | 41 | 43 | 44 | 44 | 46 | 50 | 50 | 50 |

51 | 53 | 54 | 54 | 56 | 56 | 57 | 61 | 61
```

Equal elements are together when sorted!

Others

Problem: find the **frequency** of elements

(equal elements are in consecutive positions after being sorted)

Problem: find closest pair of points

(sort and see differences between consecutive numbers)

Problem: find the k-th number

(sort and seek position k)

Problem: find the **top**-*k*

(sort and seek first k numbers)

Problem: set union

(sort and "merge" - like in mergesort)

Problem: set intersection

(sort and traverse - similar to mergesort)

Anagrams

Problem: Finding anagrams

(words/sets of words that use the same letters)

Examples:

- amor, ramo, mora and Roma [amor]
- Ricardo, criador and corrida [acdiorr]
- algorithm and logarithm [aghilmort]
- Tom Marvolo Riddle and I am Lord Voldemort [addeillmmooorrtv]
- Clint Eastwood and Old West action [acdeilnoosttw]

Search

Problem: Searching for elements in sorted arrays

Binary search - $\Theta(\log n)$

A definition

Binary search on a sorted array (bsearch)

Input:

- an array v[] of n sorted number in increasing order
- a key to look for

Output:

- **Position** of *key* in array v[] (if it exists)
- -1 (if it is not found)

Example:

$$bsearch(v, 2) = 0$$

bsearch(v, 4) =
$$-1$$

$$bsearch(v, 8) = 3$$

$$bsearch(v, 14) = -1$$

Algorithm

```
Binary search on a sorted array
```

$$v = |2|5|6|8|9|12$$
 bsearch(v, 0, 5, 8)
 $low = 0$, $high = 5$, $middle = 2$
Since $8 > v[2]$: $low = 3$, $high = 5$, $middle = 4$
Since $8 < v[4]$: $low = 3$, $high = 3$, $middle = 3$

Since 8 = v[3]: return(3)

A generalization

We can generalize **binary search** to cases where we have something like:

no	no	no	no	no	yes	yes	yes	yes	yes	yes

We want to find the **first yes** (or in some cases the **last no**)

Example:

 Searching for the least number bigger or equal than a certain key (lower_bound of C++)

2	5	6	8	9	12
no	no	no	yes	yes	yes

lower_bound(7) \rightarrow condition: v[i] >= 7

[the smallest number bigger than 7 in this array is 8]

A generalization

bsearch(0, 5, \geq 7)

$$low = 0, high = 5, middle = 2$$

Since
$$v[2] \ge 7$$
 is no: $low = 3$, $high = 5$, $middle = 4$

Since
$$v[4] \ge 7$$
 is yes: $low = 3$, $high = 4$, $middle = 3$

Since
$$v[3] \ge 7$$
 is yes: $low = 3$, $high = 3$ (exits while)

Since $v[3] \ge 7$ is yes: **return(3)**

A different example - Balanced Partition

Balanced partition problem

Input: a sequence $\langle a_1, \ldots, a_n \rangle$ of n positive integers e an integer k **Output:** a way of partitioning the sequence into k contiguous subsequences, minimizing the sum of the biggest partition

Example:

$$7938229434799$$
 $k = 4 (4 partitions)$

...

Which one is the best (with the smallest maximum)?

A different example - Balanced Partition

- Exhaustive search would have to test all possible partitions! (can you estimate how many are they?)
- This problem could also be solved with dynamic programming, but that is for another class
- Here we will discuss how to solve it with... binary search!

A different example - Balanced Partition

Let's think on a "similar" problem: It is possible to create a partition where the sum of the largest partition is $\leq X$?

"Greedy" idea: keep extending the partition while the sum is $\leq X!$

Examples:

```
Let X = 21 and k = 4
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9 - OK!
Let X = 20 and k = 4
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9
7 9 3 8 2 2 9 4 3 4 7 9 9
```

7 9 3 8 2 2 9 4 3 4 7 9 9 - Wrong! We would need more than 4 partitions

A different example - Balanced Partition

It is possible to create a partition where the sum of the largest partition is $\leq X$?

If we think about the X for which the answer is yes, we have a search space where:

no	no	no	no	no	yes	yes	yes		yes	yes
----	----	----	----	----	-----	-----	-----	--	-----	-----

We can apply binary search on X!

- Let s be the sum of all numbers
- X will be at least 1 (or in alternative the largest a_i)
- X will be at most s
- Verify answer for a certain $X: \Theta(n)$
- Binary search on $X: \Theta(\log s)$
- Global time: $\Theta(n \log s)$

A different example - Balanced Partition

```
Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 4 (4 partitions) low = 1, high = 76, middle = 38 \rightarrow possible(38)? Yes low = 1, high = 38, middle = 19 \rightarrow possible(19)? No low = 20, high = 38, middle = 29 \rightarrow possible(29)? Yes low = 20, high = 29, middle = 24 \rightarrow possible(24)? Yes low = 20, high = 24, middle = 22 \rightarrow possible(22)? Yes low = 20, high = 22, middle = 21 \rightarrow possible(21)? Yes low = 20, high = 21, middle = 20 \rightarrow possible(20)? No low = 21, high = 21
```

Exits the cycle and verifies that possible(21) is true, and 21 is the answer!

$$793|8229|4347|99 \rightarrow 19 + 21 + 18 + 18$$

A different example - Balanced Partition

```
2nd Example: 7 9 3 8 2 2 9 4 3 4 7 9 9 k = 3 (3 partitions) low = 1, high = 76, middle = 38 \rightarrow possible(38)? Yes low = 1, high = 38, middle = 19 \rightarrow possible(19)? No low = 20, high = 38, middle = 29 \rightarrow possible(29)? Yes low = 20, high = 29, middle = 24 \rightarrow possible(24)? No low = 25, high = 29, middle = 27 \rightarrow possible(27)? Yes low = 25, high = 27, middle = 26 \rightarrow possible(26)? No low = 27, high = 27
```

Exits the cycle and verifies that **possible(27)** is true, and 27 is the answer!

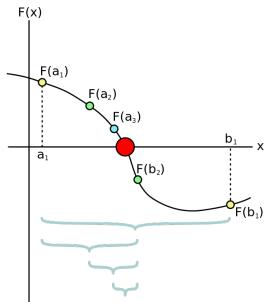
$$7938|229434|799 \rightarrow 27 + 24 + 25$$

Bisection Method

A similar idea to binary search can be used to find the root of a function

- Let f(n) be a **continuous** function defined on an interval [a,b] and where f(a) and f(b) have **opposite signs**
- f(n) must have at least one root on the interval [a, b]
- Starting in [a, b], look at **middle point** c and according to f(c) reduce the interval to [a, c] or [c, b]

Bisection Method



(image: Wikipedia)

Bisection Method

Example:
$$f(x) = x^3 - x - 2$$

(1) Find a and b with opposite signals:

$$f(1) = 1^3 - 1 - 2 = -2$$
 $f(2) = 2^3 - 2 - 2 = 4$

(2) Make successive divisions:

#	a	b	С	f(c)
1	1.0	2.0	1.5	-0.125
2	1.5	2.0	1.75	1.6093750
3	1.5	1.75	1.625	0.6660156
4	1.5	1.625	1.5625	0.2521973
5	1.5	1.5625	1.5312500	0.0591125
6	1.5	1.5312500	1.5156250	-0.0340538
7	1.5156250	1.5312500	1.5234375	0.0122504
8	1.5156250	1.5234375	1.5195313	-0.0109712
9	1.5195313	1.5234375	1.5214844	0.0006222
10	1.5195313	1.5214844	1.5205078	-0.0051789
11	1.5205078	1.5214844	1.5209961	-0.0022794
12	1.5209961	1.5214844	1.5212402	-0.0008289
13	1.5212402	1.5214844	1.5213623	-0.0001034

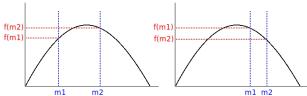
Bissection Method

- Stop when you have the required precision or
- Stop when you reach your desired number of iterations
- There are other methods that converge more rapidly
 - Newton's method
 - Secant method

Ternary Search

Another similar idea can be used to find the **maximum** (or minimum) of an **unimodal** function (that is, with a "single peak")

- Let f(n) be a **unimodal** function defined on an interval [a, b]
- Take any two points m_1 and m_2 such that $a < m_1 < m_2 < b$. Then:
 - $f(m_1) < f(m_2)$ then max cannot be in $[a, m_1]$. Continue in $[m_1, b]$
 - $f(m_1) > f(m_2)$ then max cannot be in $[m_2, b]$. Continue in $[a, m_2]$
 - $f(m_1) = f(m_2)$ then max should be in $[m_1, m_2]$.



- We can choose m_1 and m_2 to be 1/3 and 2/3 of [a, b]
- With each iteration we will eliminate at least 1/3 of the search space! Runtime: $T(n) = T(2n/3) + \Theta(1) = \Theta(\log n)$

- Binary search is very useful and flexible
- It can be used on a vast number of applications
- There are many other variations on it (besides the ones we already described)
 - Interpolated (binary) search (instead of going into the middle, estimate position)
 - Exponential (binary) search (Start by fixing interval in $low = 2^a$ and $high = 2^{a+1}$)