Recursion

Pedro Ribeiro

DCC/FCUP

2024 /2025

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 1/22

Recursion

Mathematics:
@ A formula is said to be recursive when it includes references to itself
Examples:
» Factorial: nl =nx (n—1)!
» Fibonacci: fib(n) = fib(n — 1) + fib(n — 2)

Computer Science:
@ A function is said to be recursive when it includes calls to itself
» A non-recursive function is iterative

@ Recursion is one of the most used algorithmic techniques
» Many algorithms can be expressed more easily (and elegantly) with
recursion
» Understanding the recursive formulation will often give you insight on
the structure of the problem at hand

@ In this lecture we will see several recursion examples

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 2/22

Recursion: a first example

@ Let's image we have an integer array and that we want to find the
largest number between positions (indices) start and end.

@ Let's first create a function that return the maximum between two
integers: (easy to understand, right?)

int max(int a, int b) {
if (a > b) return a;
else return b;

@ The classical iterative solution to this problem is to make a cycle
between start and end and store the max until the current position:

int maxIt(int v[], int start, int end) {
int maxSoFar = v[start];
for (int i=start+1; i<=end; i++)
maxSoFar = max(maxSoFar, v[i]);
return maxSoFar;

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 3/22

Recursion: a first example

@ How could we recursively define the maximum of an array?

@ In any recursive function we usually need the following:
(divide and conquer strategy)

» Base Case: "small case” where we return the result without recursion

» Divide the problem into one or more small cases smaller than the
original, closer to the base case
» Recursively call the function for the smaller cases

» Combine the results to obtain the global solution

Note: you can download the code for all the versions of the maximum
function given in the slides: max.c (source)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 4/22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/max.c

Recursion: a first example

@ How can we divide the array into smaller pieces?
» One way is to consider the entire array except the first element:
max(v) = maximum between the 1st element and max(rest of the array v)

@ The base case is an array of size 1: the maximum is that element

int maxRecl(int v[], int start, int end) {
if (start == end) return v[start]; // base case
int maxOther = maxRecl(v, start+l, end); // recursive call
return max(v[start], maxOther); // combine result
}
first call resultis 4

maxRecl1([1,2,3,4]) retums 4

"
max(1 ,maxRecl([2,3,4]))
" 'B retumns 4
max(2 ,maxRecl([3.,4]))
“u % retums 4
max(3, maxRecl([4]))

retums 4;

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 5/22

Recursion: a first example

@ How can we divide the array into smaller pieces?
> Another way is to divide the array into two halves:
max(v) = maximum between max(left half) and max(right half)

@ The base case is still an array of size 1

int maxRec2(int v[], int start, int end) {
if (start == end) return v[start]; // base case
int middle = (start + end) / 2;
int maxl = maxRec2(v, start, middle); // recursive call
int max2 = maxRec2 (v, middle+1l, end); // recursive call
return max(maxl, max2); // combine result

first caH result is 4

(-» maxRecl ([1,2,3 4]]
1 max(maxRec1([1,2]) ,maxRecl([3 4]))474
S S T

maxRecl([1]) maxRecl([2]) maxRec1([3]) maxRecl([4])
Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 6/22

Recursion: MergeSort

o Let's now see the same pattern, but for sorting elements:
MergeSort
Base Case: if the array is of size 1, than it is already sorted
Divide: divide the initial array into two halves

Recursion: sort recursively both halves

Combine: join both sorted halves (merge) into a final global sorted array

first ca\l result is [1 2,3,4]

mergeSort([4 1,3,21)
[1,4] <.) [2 3]
merge(mergeSort([4,1]), mergeSort([B 21)) 47[2]
[4]
(o Yt oly

mergeSort([4]) mergeSort([1]) mergeSort([3]) mergeSort([2])

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 7/22

Recursion: MergeSort

What happens from the point of view of the 1st call to the recursive function:
1

51|13| 7 |20{18| 3 |45|36
51|13| 7 |20 18| 3 |45(36
L J L J
mergeSort (recursively) mergeSort (recursively)
¥ ¥
7 |13(20(51 3 118|36(45
Merge

3|7 |13(18|20|36|45(51

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 8/22

Recursion: MergeSort

Division (and recursion):

51|13| 7 |20,18| 3 |45|36

51|13}, 7 |20 18| 3 |45|36

5113 7 {20 18| 3 45|36

51(|13 7 20(|18 3 45| |36

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 9/22

Recursion: MergeSort

Combine:
51 13 7 20| |18 3 45| |36
13|51 7 |20 3|18 36|45
MERGE MERG
7 |113|20|51 3 (18|36|45
MERGE

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 10/22

Recursion: MergeSort

@ Let's see this in actual C code

@ We will assume we are sorting between positions start and end (to
sort everything we just need to call with arguments 0 and size — 1)

@ The main function is very similar to our previous ones:

void mergeSort(int v[], int start, int end) {
if (start == end) return; // base case
int middle = (start + end) / 2;
mergeSort (v, start, middle); // recursive call
mergeSort (v, middle+1, end); // recursive call
merge (v, start, middle, end); // combine results
}

@ The "hard” part is merging two sorted halves...

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 1122

Recursion: MergeSort

How to (efficiently) merge two sorted arrays?

7 [13]20[51] [3fasfssfas				[[
7 [13]20[51] [3fasssfas	[3]	[[
7 [13]20[51] [3asssfas	[3]7] [[
7 [3]20[51] [3]asse[as	[3]7]as]						
aEm

|7|13|zo|51| |3|18|36|45| |3|7|13|18|20|36|45|51|

Only n comparisons to produce final merged array (linear execution time)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 12/22

Recurs MergeSort

@ The merge part in C code:

void merge(int v[], int start, int middle, int end) {
int aux[end-start+1]; // new temporary array

int pl = start; // "Position" in the left half array
int p2 = middle+1; // "Position" in the right half array
int cur = 0; // "Position" in the array aux[]

while (pl <= middle && p2 <= end) { // While we can compare
if (vipl] <= v[p2]) aux[cur++] = v[pl++]; // choose smaller
else aux[cur++] = v[p2++]; // and add

3

while (pl<=middle) aux[cur++] = v[pl++]; // Add remainder
while (p2<=end) aux[cur++] = v[p2++]; // elements

// Copy array aux[] to v[]
for (int i=0; i<cur; i++) v[start+i] = aux[i];

}

o Fully functional MergeSort code: mergesort.c (source)

@ Note: MergeSort is very efficient and much faster than algorithms such as

BubbleSort, InsertionSort or SelectionSort
Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 13/22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/mergesort.c
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Selection_sort

Recursion: a few caveats

@ The most common errors with recursion are:

» The base case has been forgotten, or not all base cases have been
dealt with

» The recursive case is not applied to smaller cases, and so the recursion
does not converge

@ In both cases the recursion becomes " infinite” and the function will
run out of memory until it gets a Stack Overflow error

Note: a recursion "internally” uses a stack to store the state of
previous calls
(when it exits a call, it returns to the last call before it)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 14 /22

Recursion: inverting an array

@ The most "complicated” part is choosing the recursive division that
fits the problem

@ Let’s look at another case: how to invert the contents of an array?
Example: [1,2,3,4,5] — [5,4,3,2,1]

> If we swap the first with the last element... all that's left is inverting
the rest

» The base case is any array of size less than 2: the inverted array is
equal to it

> Let's assume we're inverting between positions start and end

Code: reverse.c (source)

void reverse(int v[], int start, int end) {
if (start>=end) return; // Base case: array size < 2
int tmp = v[start]; // Swap first with last

v[start] = v[end];
v[end] = tmp;
reverse(v, start+l, end-1); // Recursive call for the rest

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 15/22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/reverse.c

Recursion: flood fill

@ It can be useful to have more than two recursive calls

@ Consider a matrix where two cells are neighbours if they are adjacent
vertical or horizontally

@ A connected component is a set of non-empty neighbouring cells.
For example, in the following figure, we have 3 spots:
> A red component with 6 cells
» A green component with 4 cells
» A blue component with 3 cells

#|#| . |#].
|
-] |FEE
CFE] |FEE
#|#| .

@ How to calculate the size of a component?

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 1622

Recursion: flood fill

@ Recursive definition:
» Let m[R][C] be the matrix of cells with R rows and C columns
» Let f(y, x) be the component of the spot at position (y, x)
> If m[y][x] is an empty cell, then f(y,x) =0
Otherwise, f(y,x) =1+ f(y+1,x)+f(y —1,x)+f(y,x+ 1)+ f(y,x—1)

An incorrect implementation:

// We are assuming that m[][], R and C are global variables
int £f(int y, int x) {

if (m[yl[x] == ’.’) return 0; // Base case: empty cell
int count = 1; // Non-empty cell
count += f(y-1, x); // Adding neighbor cells

count += f(y+1, x);
count += f(y, x+1);
count += f(y, x-1);
return count;

}

@ Problems with this implementation? Array boundaries!
e.g. £(0,0) will call f(—1,0), which tries to access a cell outside the limits of the matrix

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 1722

Recursion: flood fill

@ An implementation that is still incorrect:

// We are assuming that m[][], R and C are global variables

int £fCint y, int x) {
if (y<0 || y>=R || %<0 || x>=C) return 0; // Out of bounds

if (m[yl[x] == ’.’) return ®; // Base case: empty cell
int count = 1; // Non-empty cell
count += f(y-1, x); // Adding neighbor cells

count += f(y+1, x);
count += f(y, x+1);
count += f(y, x-1);
return count;

}

@ Problems with this implementation? Infinite recursion!
e.g.: 1(0,0) calls f(1,0), which calls f(0,0), which calls f(0,1), which calls
f(0,0), which calls f(0,1), ...

@ We need to make sure we don't go back to a cell we've already visited

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 1822

Recursion: flood fill

@ A correct implementation
» visited[R][C] is an int array initialized with zeros (false)

// We’re assuming that m[][], R, C and visited[][] are global variables
int £fCint y, int x) {

if (y<0 || y>=R || %<0 || x>=C) return 0; // Out of bounds

if (visited[y]l[x]) return 0; // Cell already visited

if (m[y]l[x] == ’.’) return 0; // Base case: empty cell
int count = 1; // Non-empty cell
visited[y][x] = 1; // Mark as visited
count += f(y-1, x); // Adding neighbor cells

count += f(y+1, x);
count += f(y, x+1);
count += f(y, x-1);
return count;

}

@ You can check a functional implementation
» Code: floodfill.c (source) | Example input: (floodfill_input.txt)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 19/22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/floodfill.c
https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/floodfill_input.txt

Recursion: generating subsets

@ How do you generate all subsets of a given set?
Example: {1,2,3} has 8 subsets:

» {1.2.3} {1.2}, {1,3}, {2.3}, {1}, {2}, {3}, {}

o Recursive definition? Subsets of {1,2,3} are:
» {1} U subsets of {2,3}: {1,2,3}, {1,2}, {1,3}, {1}

» {} U subsets of {2,3}: {2,3}, {2}, {3}, {}

@ In other words, the 1st element is either in the set or it isn't, and for
each of these cases, we have all the subsets of the ‘remainder’

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 20/22

Recursion: generating subsets

@ Let the inclusion in the set be represented by an array of True/False:
Examples: [T,T,T] represents {1,2,3}; [T, T,F] represents {1,2}

@ Then all subsets are:

> Arrays where the 1st position is T + all following subsets
plus
» Arrays where the 1st position is F 4 all following subsets

[T, T,T] ={1,2,3}

[T.T,F] = {12}
[T.F.T] = {13}
[T.F.F] = {1}
[F,T.T] = {23}
[F,T.F] = {2}
[F.F.T] = {3}
[FRF={

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 21/22

Recurs generating subsets

@ Implementing: subsets.c (source)

// Generate all subsets starting at position "cur"
void goSubsets(int cur, int v[], int n, int used[]) {

if (cur == n) { // Base case: we finish the subset

for (int i=0; i<n; i++) // Write subset
if (used[i]) printf("%d ", v[il);
printf("\n");

} else { // If we haven’t finished, continue generating
used[cur] = 1; // Subsets that include the current element
goSubsets(cur+l, v, n, used); // Recursive call
used[cur] = O®; // Subsets that don’t include the current element
goSubsets(cur+l, v, n, used); // Recursive call

}

}

// Write all subsets of the array v[] of size n
void subsets(int v[], int n) {
// array of ints (T/F) to represent the subset
int used[n];
goSubsets (0, v, n, used); // call recursive function

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025

22/22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/subsets.c

