
Recursion

Pedro Ribeiro

DCC/FCUP

2024/2025

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 1 / 22

Recursion

Mathematics:

A formula is said to be recursive when it includes references to itself
Examples:

I Factorial: n! = n × (n − 1)!
I Fibonacci: fib(n) = fib(n − 1) + fib(n − 2)

Computer Science:

A function is said to be recursive when it includes calls to itself
I A non-recursive function is iterative

Recursion is one of the most used algorithmic techniques
I Many algorithms can be expressed more easily (and elegantly) with

recursion
I Understanding the recursive formulation will often give you insight on

the structure of the problem at hand

In this lecture we will see several recursion examples

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 2 / 22

Recursion: a first example

Let’s image we have an integer array and that we want to find the
largest number between positions (indices) start and end .

Let’s first create a function that return the maximum between two
integers: (easy to understand, right?)

i n t max(i n t a, i n t b) {
i f (a >= b) return a;

e l s e return b;

}

The classical iterative solution to this problem is to make a cycle
between start and end and store the max until the current position:

i n t maxIt(i n t v[], i n t start, i n t end) {
i n t maxSoFar = v[start];
f o r (i n t i=start+1; i<=end; i++)
maxSoFar = max(maxSoFar , v[i]);

return maxSoFar;

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 3 / 22

Recursion: a first example

How could we recursively define the maximum of an array?

In any recursive function we usually need the following:
(divide and conquer strategy)

I Base Case: ”small case” where we return the result without recursion

I Divide the problem into one or more small cases smaller than the
original, closer to the base case

I Recursively call the function for the smaller cases

I Combine the results to obtain the global solution

Note: you can download the code for all the versions of the maximum
function given in the slides: max.c (source)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 4 / 22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/max.c

Recursion: a first example

How can we divide the array into smaller pieces?
I One way is to consider the entire array except the first element:

max(v) = maximum between the 1st element and max(rest of the array v)

The base case is an array of size 1: the maximum is that element

i n t maxRec1(i n t v[], i n t start, i n t end) {
i f (start == end) return v[start]; // base case

i n t maxOther = maxRec1(v, start+1, end); // recursive call
return max(v[start], maxOther); // combine result

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 5 / 22

Recursion: a first example

How can we divide the array into smaller pieces?
I Another way is to divide the array into two halves:

max(v) = maximum between max(left half) and max(right half)

The base case is still an array of size 1

i n t maxRec2(i n t v[], i n t start, i n t end) {
i f (start == end) return v[start]; // base case

i n t middle = (start + end) / 2;
i n t max1 = maxRec2(v, start, middle); // recursive call
i n t max2 = maxRec2(v, middle+1, end); // recursive call
return max(max1, max2); // combine result

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 6 / 22

Recursion: MergeSort

Let’s now see the same pattern, but for sorting elements:

MergeSort

Base Case: if the array is of size 1, than it is already sorted

Divide: divide the initial array into two halves

Recursion: sort recursively both halves

Combine: join both sorted halves (merge) into a final global sorted array

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 7 / 22

Recursion: MergeSort

What happens from the point of view of the 1st call to the recursive function:

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 8 / 22

Recursion: MergeSort

Division (and recursion):

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 9 / 22

Recursion: MergeSort

Combine:

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 10 / 22

Recursion: MergeSort

Let’s see this in actual C code

We will assume we are sorting between positions start and end (to
sort everything we just need to call with arguments 0 and size − 1)

The main function is very similar to our previous ones:

void mergeSort(i n t v[], i n t start, i n t end) {
i f (start == end) return; // base case

i n t middle = (start + end) / 2;
mergeSort(v, start, middle); // recursive call

mergeSort(v, middle+1, end); // recursive call

merge(v, start, middle, end); // combine results

}

The ”hard” part is merging two sorted halves...

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 11 / 22

Recursion: MergeSort

How to (efficiently) merge two sorted arrays?

Only n comparisons to produce final merged array (linear execution time)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 12 / 22

Recursion: MergeSort

The merge part in C code:

void merge(i n t v[], i n t start, i n t middle, i n t end) {
i n t aux[end-start+1]; // new temporary array
i n t p1 = start; // "Position" in the left half array

i n t p2 = middle+1; // "Position" in the right half array

i n t cur = 0; // "Position" in the array aux[]

whi le (p1 <= middle && p2 <= end) { // While we can compare
i f (v[p1] <= v[p2]) aux[cur++] = v[p1++]; // choose smaller
e l s e aux[cur++] = v[p2++]; // and add

}

whi le (p1<=middle) aux[cur++] = v[p1++]; // Add remainder
whi le (p2<=end) aux[cur++] = v[p2++]; // elements

// Copy array aux[] to v[]

f o r (i n t i=0; i<cur; i++) v[start+i] = aux[i];
}

Fully functional MergeSort code: mergesort.c (source)

Note: MergeSort is very efficient and much faster than algorithms such as
BubbleSort, InsertionSort or SelectionSort

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 13 / 22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/mergesort.c
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Selection_sort

Recursion: a few caveats

The most common errors with recursion are:

I The base case has been forgotten, or not all base cases have been
dealt with

I The recursive case is not applied to smaller cases, and so the recursion
does not converge

In both cases the recursion becomes ”infinite” and the function will
run out of memory until it gets a Stack Overflow error

Note: a recursion ”internally” uses a stack to store the state of
previous calls
(when it exits a call, it returns to the last call before it)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 14 / 22

Recursion: inverting an array

The most ”complicated” part is choosing the recursive division that
fits the problem

Let’s look at another case: how to invert the contents of an array?
Example: [1, 2, 3, 4, 5]→ [5, 4, 3, 2, 1]

I If we swap the first with the last element... all that’s left is inverting
the rest

I The base case is any array of size less than 2: the inverted array is
equal to it

I Let’s assume we’re inverting between positions start and end

Code: reverse.c (source)

void reverse(i n t v[], i n t start, i n t end) {
i f (start >=end) return; // Base case: array size < 2

i n t tmp = v[start]; // Swap first with last

v[start] = v[end];

v[end] = tmp;

reverse(v, start+1, end-1); // Recursive call for the rest

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 15 / 22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/reverse.c

Recursion: flood fill

It can be useful to have more than two recursive calls

Consider a matrix where two cells are neighbours if they are adjacent
vertical or horizontally

A connected component is a set of non-empty neighbouring cells.
For example, in the following figure, we have 3 spots:

I A red component with 6 cells
I A green component with 4 cells
I A blue component with 3 cells

How to calculate the size of a component?

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 16 / 22

Recursion: flood fill

Recursive definition:
I Let m[R][C] be the matrix of cells with R rows and C columns
I Let f (y , x) be the component of the spot at position (y , x)
I If m[y][x] is an empty cell, then f (y , x) = 0

Otherwise, f (y , x) = 1+ f (y +1, x) + f (y − 1, x) + f (y , x +1)+ f (y , x − 1)

An incorrect implementation:

// We are assuming that m[][], R and C are global variables

i n t f(i n t y, i n t x) {
i f (m[y][x] == ’.’) return 0; // Base case: empty cell

i n t count = 1; // Non-empty cell

count += f(y-1, x); // Adding neighbor cells

count += f(y+1, x);

count += f(y, x+1);

count += f(y, x-1);

return count;

}

Problems with this implementation? Array boundaries!
e.g. f (0, 0) will call f (−1, 0), which tries to access a cell outside the limits of the matrix

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 17 / 22

Recursion: flood fill

An implementation that is still incorrect:

// We are assuming that m[][], R and C are global variables

i n t f(i n t y, i n t x) {
i f (y<0 || y>=R || x<0 || x>=C) return 0; // Out of bounds

i f (m[y][x] == ’.’) return 0; // Base case: empty cell

i n t count = 1; // Non-empty cell

count += f(y-1, x); // Adding neighbor cells

count += f(y+1, x);

count += f(y, x+1);

count += f(y, x-1);

return count;

}

Problems with this implementation? Infinite recursion!
e.g.: f(0,0) calls f(1,0), which calls f(0,0), which calls f(0,1), which calls
f(0,0), which calls f(0,1), ...

We need to make sure we don’t go back to a cell we’ve already visited

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 18 / 22

Recursion: flood fill

A correct implementation
I visited [R][C] is an int array initialized with zeros (false)

// We’re assuming that m[][], R, C and visited[][] are global variables

i n t f(i n t y, i n t x) {
i f (y<0 || y>=R || x<0 || x>=C) return 0; // Out of bounds

i f (visited[y][x]) return 0; // Cell already visited

i f (m[y][x] == ’.’) return 0; // Base case: empty cell

i n t count = 1; // Non-empty cell

visited[y][x] = 1; // Mark as visited

count += f(y-1, x); // Adding neighbor cells

count += f(y+1, x);

count += f(y, x+1);

count += f(y, x-1);

return count;

}

You can check a functional implementation
I Code: floodfill.c (source) | Example input: (floodfill input.txt)

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 19 / 22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/floodfill.c
https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/floodfill_input.txt

Recursion: generating subsets

How do you generate all subsets of a given set?
Example: {1,2,3} has 8 subsets:

I {1,2,3}, {1,2}, {1,3}, {2,3}, {1}, {2}, {3}, {}

Recursive definition? Subsets of {1,2,3} are:
I {1} ∪ subsets of {2,3}: {1,2,3}, {1,2}, {1,3}, {1}

e
I {} ∪ subsets of {2,3}: {2,3}, {2}, {3}, {}

In other words, the 1st element is either in the set or it isn’t, and for
each of these cases, we have all the subsets of the ‘remainder’

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 20 / 22

Recursion: generating subsets

Let the inclusion in the set be represented by an array of True/False:
Examples: [T,T,T] represents {1,2,3}; [T,T,F] represents {1,2}

Then all subsets are:
I Arrays where the 1st position is T + all following subsets

plus
I Arrays where the 1st position is F + all following subsets

[T,T,T] = {1,2,3}
[T,T,F] = {1,2}
[T,F,T] = {1,3}
[T,F,F] = {1}
[F,T,T] = {2,3}
[F,T,F] = {2}
[F,F,T] = {3}
[F,F,F] = {}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 21 / 22

Recursion: generating subsets

Implementing: subsets.c (source)

// Generate all subsets starting at position "cur"

void goSubsets(i n t cur, i n t v[], i n t n, i n t used[]) {
i f (cur == n) { // Base case: we finish the subset

f o r (i n t i=0; i<n; i++) // Write subset
i f (used[i]) printf("%d ", v[i]);

printf("\n");

} e l s e { // If we haven’t finished, continue generating
used[cur] = 1; // Subsets that include the current element

goSubsets(cur+1, v, n, used); // Recursive call

used[cur] = 0; // Subsets that don’t include the current element

goSubsets(cur+1, v, n, used); // Recursive call

}

}

// Write all subsets of the array v[] of size n

void subsets(i n t v[], i n t n) {
// array of ints (T/F) to represent the subset

i n t used[n];
goSubsets(0, v, n, used); // call recursive function

}

Pedro Ribeiro (DCC/FCUP) Recursion 2024/2025 22 / 22

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/subsets.c

