
Other Material

Pedro Ribeiro

DCC/FCUP

2024/2025

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 1 / 12

Assorted Material

This set of slides covers very briefly a couple of aspects we will not
have time to explore in more detail, namely:

I C Libraries

I Global Variables

I Structs

I Pointers

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 2 / 12

C Libraries

The C language has provides many useful functions that you can call
using an #include directive.

You already used some (e.g. stdio.h with functions such as
printf and scanf) but there are many other examples

You can check a full list on the documentation.

E.g.: cppreference: C Standard Library Headers
I stdlib.h (see) - memory management, program utilities, string

conversions, random numbers, algorithms
I stdio.h (see) - input/output
I string.h (see) - string handling

I ctype.h (see) - determining character types

I math.h (see) - mathematical functions
I limits.h (see) - ranges of integer types
I float.h (see) - ranges of floating point types
I time.h (see) - time/data utilities
I (...)

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 3 / 12

https://en.cppreference.com/w/c/header
https://en.cppreference.com/w/c/header/stdlib
https://en.cppreference.com/w/c/header/stdio
https://en.cppreference.com/w/c/header/string
https://en.cppreference.com/w/c/header/ctype
https://en.cppreference.com/w/c/header/math
https://en.cppreference.com/w/c/header/limits
https://en.cppreference.com/w/c/header/float
https://en.cppreference.com/w/c/header/time

Global Variables

In C variables exist only within their scope
e.g. variables of a function only exist within that function

If a variable is declared outside of all functions it is a global variable
and can be accessed anywhere (use them with care...)

#inc lude <stdio.h>

i n t a; // global variable

void function() {
a++; // a can be accessed here

}

i n t main(void) {
a = 42; // a can be accessed here

function(); // an also inside the function

printf("%d\n", a);

return 0;
}

43

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 4 / 12

Structs

A structure is a user-defined data type that can be used to group
items of possibly different types into a single type.

The struct keyword is used to define a structure.

The items in the structure are called its members

s t ruc t Point {
i n t x, y;
char name;

};

To access an element we can use the . operator:

s t ruc t Point p;

p.x = 1;

p.y = 42;

p.name = ’A’;

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 5 / 12

Pointers

We can think of the memory in a computer almost as a ”large array
of bytes” (8 bits each):

When you declare a variable you are ”reserving” a space in memory to
contain that variable (and telling how to interpret the bits):

A pointer is a variable that stores a memory address

Instead of holding a direct value, it holds the address (position) where
the value is stored in memory.

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 6 / 12

Pointers - Operators

There are 2 important operators to work with pointers:
I * Dereferencing operator - used to declare a pointer variable and

access the value stored in the address
I & Address operator - used to returns the address of a variable

i n t i = 42;

// pointer variable ptr with the address of variable i

i n t *ptr = &i;
// Value of variable m

printf("Variable i: %d\n", i);

// Memory address of variable m (hexadecimal format)

printf("Memory address of variable m is: %p\n", &i);

// Memory address using pointer

printf("Memory address using pointer ptr: %p\n", ptr);

// Content of i using pointer

printf("Value stored in i using pointer: %d\n", *ptr);

Variable i: 42

Memory address of variable m is: 0x7ffeaad7174c

Memory address using pointer ptr: 0x7ffeaad7174c

Value stored in i using pointer: 42

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 7 / 12

Pointers - Usage Example

Image you want to create a function that actually changes the
contents of the variables passed as arguments

Incorrect version of a swap function
#inc lude <stdio.h>

void swap(i n t a, i n t b) {
i n t tmp = a;
a = b;

b = tmp;

}

i n t main(void) {
i n t a = 10;
i n t b = 42;
printf("Before swap | a=%d, b=%d\n", a, b);

swap(a, b);

printf(" After swap | a=%d, b=%d\n", a, b);

return 0;
}

Before swap | a=10, b=42

After swap | a=10, b=42

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 8 / 12

Pointers - Usage Example

Image you want to create a function that actually changes the
contents of the variables passed as arguments

Correct version of a swap function
#inc lude <stdio.h>

void swap(i n t *a, i n t *b) { // uses pointers

i n t tmp = *a;
*a = *b;

*b = tmp;

}

i n t main(void) {
i n t a = 10;
i n t b = 42;
printf("Before swap | a=%d, b=%d\n", a, b);

swap(&a, &b); // we now pass the addresses

printf(" After swap | a=%d, b=%d\n", a, b);

return 0;
}

Before swap | a=10, b=42

After swap | a=42, b=10

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 9 / 12

Pointers, scanf and arrays

Now you know why you need to use & before a variable in scanf

You are passing its address and letting scanf modify its contents:

i n t n;
scanf("%d", &n);

But why don’t we need to pass the address when working with arrays?

char str[100];
scanf("%s", str);

Because a variable pointing to an array is already (for all practical
effects) a pointer!

the [] operator is in its essence ”syntactic sugar”

I a+i is equivalent to &a[i]

I a[i] is equivalent to *(a+i)

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 10 / 12

Pointers and Arrays

This is also the reason why when passing an array as argument you
can change its contents on the function:

#inc lude <stdio.h>

void increment(i n t v[], i n t n) {
f o r (i n t i=0; i<n; i++)
v[i]++;

}

i n t main(void) {
i n t v[] = {1,2,3,4};
increment(v, 4);

f o r (i n t i=0; i<4; i++) printf("%d ", v[i]);
printf("\n");

return 0;
}

2 3 4 5

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 11 / 12

Pointers and Arrays

You can even use int *v instead of int v[] :

#inc lude <stdio.h>

void increment(i n t *v, i n t n) { // notice the usage of int *
f o r (i n t i=0; i<n; i++)
v[i]++;

}

i n t main(void) {
i n t v[] = {1,2,3,4};
increment(v, 4);

f o r (i n t i=0; i<4; i++) printf("%d ", v[i]);
printf("\n");

return 0;
}

2 3 4 5

There is much more to know about pointers, but for today this is enough

Pedro Ribeiro (DCC/FCUP) Other Material 2024/2025 12 / 12

