
C Fundamentals

Pedro Ribeiro

DCC/FCUP

2024/2025

(based and/or partially inspired by Pedro Vasconcelos’s slides for Imperative Programming)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 1 / 48

What are we doing at this course?

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 2 / 48

Our course

What is the name of this course?

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 3 / 48

Programming vs Coding

Programming is the mental process of thinking up instructions to
give to a ”machine” (like a computer).

Coding is the process of transforming those ideas into a (written)
language that a computer can understand.

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 4 / 48

Computational Thinking

You will eventually learn other programming languages
(including some that do not even exist nowadays...)

The most fundamental aspect is how to think and to express our
ideas as algorithms

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 5 / 48

Why C?

C is a very influential language initially developed in the early 1970s
by Dennis Ritchie (more than 50 years ago!):

C in Wikipedia

Dennis Ritchie in Wikipedia | Turing Award

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 6 / 48

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/Turing_Award

Why C?

TIOBE Index

C has been on the top-3 for the last 40 years

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 7 / 48

https://www.tiobe.com/tiobe-index/

Why C?

Initially developed as a system programming language to write an
operating system (Unix).

C has low-level access to memory

C helps to understand the underlying architecture of how a computer works

Analogy:

Imagine you learn how to drive on a car with automatics gears:
I Automatic gears (”Python”) can make your life easier but,
I You will not understand how gears work and its intricacies
I You will not be able to drive a manual gear car if you need to

C is like learning to drive on manual gears:
I If you know how to ”drive” it, you can also drive automatic gears
I You will also understand better the mechanism and how the car works

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 8 / 48

Some characteristics of C

C is a ”Middle-Level” Language

Somewhere between low-level machine understandable assembly
languages and high-level super user friendly languages
(bridging the gap between both levels)

Helps to understand the fundamentals of computing

Aspects such as networks, compiler, computer architecture, operating
systems are based on C programming language and requires a good
knowledge of C programming if you are working on them.

In modern high level languages (such as Python), machine level
details are hidden from the user, so in order to work with CPU cache,
memory, network adapters, learning C programming is a must.

C is very portable

There are C compilers for practically all processors and operating syst.

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 9 / 48

Some characteristics of C

Fewer Libraries, simple set of keywords.

C programming language has fewer libraries in comparison with other
high-level languages and will help you focus on the fundamentals.

You will not be dependent on the programming language entirely for
implementing some basic operations and implementing them on your
own will also help you to build your analytical skills.

C is very fast in terms of execution time.

Programs written and compiled in C execute much faster than
compared to (almost) any other programming language.

C programming language is very fast in terms of execution as it does
not have any additional processing overheads such as garbage
collection or preventing memory leaks etc. The programmer must
take care of these things on his own.

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 10 / 48

C vs Python

Comparison between equivalent (naive) code to compute number of
primes less than 10 million (see source code in C and Python):

C: 2.6s

Python: 1m33.2s (93.2s, 35× slower)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 11 / 48

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/primes.c
https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/primes.py

C vs Python

C also has (many) disadvantages:

Forces the programmer to specify many implementation details

I e.g. managing memory allocation/release explicitly

C code can be difficult to understand and modify

It is easy to introduce errors that are difficult to detect
I e.g. buffer overflows, memory leaks, use-after-free, ...
I currently one of the biggest sources of reliability and security

problems in software

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 12 / 48

C vs Python

Some of the (practical) differences between C and Python:

C Python

.c file extension .py file extension

Compiled language Interpreted language

Faster execution times Slower execution times

Limited number of built-ins Large collection of built-ins
and libraries and libraries

Variables must be declared No need to declare variables

Statically typed variables Dynamically typed variables

Blocks of code are separated by {} Uses indentation to separate blocks

Mandatory ; at the end of Instructions can be terminated by
each instruction end-of-line

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 13 / 48

Usages of C

Some examples of real life usage of C (and derivatives such as C++)

Operating Systems

Embedded Systems

Hardware Drivers

Scientific Computing

Game (engine) development

Libraries (even for other languages, such as Python)

...

Note that each language has it’s own ”niche” and some languages are
much better than other for specific tasks:

Python is much better for AI and Data Science
(rich collection of libraries, easy to create prototype)

JavaScript is much better for web development
(e.g. for client-side scripting)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 14 / 48

C Timeline

Programming languages are dynamic and change

The first C ”de facto” standard was K&R book

Year Informal Official
name standard

1972 first release -

1978 K&R C —

1989 ANSI C, C89 ANSI X3.159-1989
1990 ISO C, C90 ISO/IEC 9899:1990

1999 C99, C9X ISO/IEC 9899:1999

2011 C11, C1X ISO/IEC 9899:2011

2018 C17, C18 ISO/IEC 9899:2018

2024 C23, C2X ISO/IEC 9899:2024

At this course we will use C17 as our standard
Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 15 / 48

C Programs

C programs are text files

They are composed using a text editor (or IDE):
(Examples: Emacs, VIM, Atom, Sublime, Notepad++, VScode, CLion)

Convention: file name ends with .c extension (lower case)

hello.c (source code)

#inc lude <stdio.h>

i n t main(void) {

printf("To C or not to C, ");

printf("that is the question.\n");

return 0;

}

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 16 / 48

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/hello.c

Execution

To be executed, a C program must first be translated into machine
code.

The translation is done by a compiler program.

In this course we will use GCC (GNU Compiler Collection).

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 17 / 48

Translation phases

Pre-processing
the preprocessor interprets directives (lines beginning with #)

Compilation
the compiler translates the C code into machine code

Linking
the linker combines the generated machine code with the necessary
libraries

The preprocessor, compiler and linker are executed in sequence by the
gcc command

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 18 / 48

Compile, link and run

We invoke the compiler using the (Linux) command interpreter (shell):

$ gcc -o hello hello.c

It produces an hello file that we can run:

$./hello

To C or not to C, that is the question.

We can use other options, such as:

$ gcc -Wall -std=c17 -o hello hello.c

I -Wall (turn on all warnings)
I -std=c17 (use C17 standard)
I -o hello (name of the created executable should be hello)

(if no -o name is passed, then the executable created is a.out)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 19 / 48

Structure of simple programs

directives

i n t main(void) {

instructions

}

Directives

A directive is indicated by a line beginning with #; e.g.:

#inc lude <stdio.h>

The C language includes header files with library declarations

stdio.h contains the definitions associated with input/output

Example: printf is declared in this header

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 20 / 48

Functions

A function groups together a sequence of instructions with a name

An implementation of the C language provides several libraries with
predefined functions

The result of a function is specified with the return statement

Main Function

A complete program must define a main function that is executed
when the program starts.

The value returned from main represents the error code for the
operating system

Returning zero means that the program ended correctly

i n t main(void) {

...

return 0;

}

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 21 / 48

Instructions

The body of a function is a sequence of instructions

printf("To C or not to C, ");

printf("that is the question.\n");

return 0;

This example uses only two types of instructions: printf function

calls and return

The printf("...") call prints the text in quotes to the standard
output (terminal).

It prints the following message:

To C or not to C, that is the question.

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 22 / 48

Instructions

Each instruction ends with a semicolon (;)

An instruction can be divided into several lines:

printf(

"To C or not to C, "

);

You can also write several instructions on one line:

printf("To C or "); printf("not to C, ");

Directives usually only take up one line: they don’t need a semicolon.

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 23 / 48

Comments

A comment starts with /* and ends with */

Comments can occur on separate lines or in the middle of lines of code

They can extend over several lines

/* This is a comment */

/*

Author: Pedro Ribeiro

File: hello.c

Program: Prints an example message

*/

Warning: forgetting to close a comment may cause the compiler to
ignore part of the program.

printf("To be "); /* comment open

printf("or not to be; "); /* closed */

printf("that is the question.\n");

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 24 / 48

Comments

We can also write single-line comments:

// This is a comment

Starts with // and ends at the end of the line

More succinct for short comments

Avoids the risk of forgetting to close the comment

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 25 / 48

Variables and types

C programs perform computation by modifying values in memory

Places to store values are designated using variables

Variables in C have a type associated with them

Basic numeric types: int and float

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 26 / 48

Types - int and float

A variable of type int can store positive and negative integer values:

I e.g.: 0 1 -23 397

The minimum and maximum values of int depend on the
implementation; e.g.:

I GCC on Intel x86/x64 uses 32-bit (integers from 231 to 231 − 1)

A float variable stores single-precision floating-point values

It can represent fractional values:
I e.g.: 0.0253 -1.25 123.555

Also values of very large or small magnitudes (approximately between 10−38 to 1038)

Disadvantages:
I slower operations than with integers
I rounding errors

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 27 / 48

Declarations

Variables must be declared before use:

i n t height;

f l o a t radius;

You can declare multiple variables of the same type at once:

i n t height, width, depth;

f l o a t radius, mass;

Previously all declarations should occur before instructions.

i n t main(void) {

/* variable declarations */

i n t height, width;

f l o a t radius;

/* instructions follow */

...

}

Since C99 declarations and instructions can be mixed.
(as long as the declaration occurs before use)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 28 / 48

Assignment

We can define or modify the value of a variable using an assignment.

i n t height; // declaration

height = 8; // assignment

The assignment must occur after the declaration

In this case: we assign the constant 8 to the variable height

On the right-hand side of an assignment we can use expressions e.g.
constants, variables and operations.

i n t height, width, area;

height = 8;

width = 3;

area = height * width; // area is 24

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 29 / 48

Example - Volume of a Box

A program to calculate the volume V of a rectangular box.

Example:

V = 11cm × 5cm × 6cm = 330cm3

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 30 / 48

Example - Volume of a Box

volume.c (source code)

#inc lude <stdio.h>

i n t main(void) {

i n t l, w, h, v; // dimensions and volume

l = 11; // length

w = 5; // width

h = 6; // height

v = l * w * h; // volume calculation

printf("LxWxH: %d*%d*%d (cm)\n", l, w, h);

printf("Volume: %d (cmˆ3)\n", v);

return 0;

}

LxWxH: 11*5*6 (cm)

Volume: 330 (cmˆ3)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 31 / 48

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/volume.c

Printing values

We can use the printf library function to print variable values.
Example:

i n t alt;

alt = 6;

printf("Height: %d cm\n", alt);

Prints the text:

Height: 6 cm

%d is a field that is replaced by the value of an integer variable in
decimal base.

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 32 / 48

Printing values

For float values we use the %f specifier.

f l o a t cost;

cost = 123.45;

printf("Cost: EUR %f\n", cost);

Cost: EUR 123.449997

It is not possible to represent 123.45 exactly as a float!

%f displays the result rounded to 6 decimal places

To force formatting to n decimal places we use %. n f :

Example:

printf("Cost: EUR %.2f\n", cost);

Cost: EUR 123.45

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 33 / 48

Printing values

You can format several values in a single printf :

printf("Height: %d cm; Cost: EUR %.2f\n", alt, cost);

Warning:
I specify the same number of fields as arguments

I use the correct fields for each type (%d for int, %f for float)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 34 / 48

Reading values

The scanf library function is used to read values from standard
input (keyboard).

Like printf , the 1st argument is the data format

Example: read an integer value and store the result in the variable n

i n t n;

scanf("%d", &n);

The & sign must be placed before the name of the variable to be
read (we’ll see why later).

To read a float we don’t need to specify decimal places.

f l o a t x;

scanf("%f", &x);

Works with or without decimal places in the input; examples:

123

123.4

123.4567

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 35 / 48

Revised example

Let’s modify the previous example program to read the dimensions of the
box.

volume_v2.c (source code)

#inc lude <stdio.h>

i n t main(void) {

i n t l, w, h, v; // dimensions and volume

printf("L=? "); scanf("%d", &l);

printf("W=? "); scanf("%d", &w);

printf("H=? "); scanf("%d", &h);

v = l * w * h; // volume calculation

printf("LxWxH: %d*%d*%d (cm)\n", l, w, h);

printf("Volume: %d (cmˆ3)\n", v);

return 0;

}

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 36 / 48

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/volume_v2.c

Initialisation

Variables in C are not initialised automatically

A variable that is not assigned a value is said to be uninitialised:

i n t x, y;

y = x + 1; // uninitialised variable x

The result of using uninitialised variables is unpredictable:
I may have different values in each execution;
I may terminate execution with an error (crash)

The gcc compiler can detect uninitialised variables using the

-Wall option (all warnings)

warning: ’x’ is used uninitialized in this function

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 37 / 48

Initialisation

We can initialise variables directly in the declaration:

i n t alt = 8;

Also for multiple variables:

i n t alt = 8, width = 5, comp = 11;

Each variable needs its own initialiser:

i n t alt, larg, comp = 11; // only initialises one variable (comp)

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 38 / 48

Identifiers

The names of variables, functions and other entities are identifiers

They can contain letters, digits and underscores but must start with
letters or underscores

Only unaccented letters (i.e. ASCII)

Valid examples: times10 get_Next_Char _done

Invalid examples: 10times get-Next-Char máximo

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 39 / 48

Identifiers

Uppercase and lowercase are distinct; for example
I get_next_char

I get_next_Char

I get_Next_Char

are different identifiers (it would be confusing to use them in the
same program...)

There is no limit to the length of identifiers

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 40 / 48

Reserved words

We can’t use the following reserved words as identifiers (on C17):

auto enum restrict unsigned _Alignas

break extern return void _Alignof

case float short volatile _Atomic

char for signed while _Bool

const goto sizeof _Complex

continue if static _Generic

default inline struct _Imaginary

do int switch _Noreturn

double long typedef _Static_assert

else register union _Thread_local

See https://en.cppreference.com/w/c/keyword

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 41 / 48

https://en.cppreference.com/w/c/keyword

Defining constants

It is sometimes necessary to use constants or parameters

Constants scattered throughout the code can obfuscate the meaning

Instead: we can use #define directives to define macros

// conversion factor: inches per metre

#def ine INCHES_PER_METER 39.3701

Convention: names of constants in upper case

The preprocessor replaces macros textually.
Example:

inches = metres * INCHES_PER_METER;

after preprocessing you get

inches = meters * 39.3701;

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 42 / 48

Example

The area of a circle of radius r is A = πr2

(where π is the constant 3.14159...)

area.c (source code)

#inc lude <stdio.h>

#def ine PI 3.14159

i n t main(void) {

f l o a t radius, area;

printf("Radius of the circle? ");

scanf("%f", &radius);

area = PI * radius * radius;

printf("Area: %f\n", area);

return 0;

}

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 43 / 48

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/area.c

Program structure

A C program is a sequence of symbols (‘tokens’):

I identifiers

I reserved words

I operators

I punctuation

I constants

I literal strings

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 44 / 48

Program structure

Example: the statement

printf("Area: %f\n", area);

contains seven symbols:
symbol description

printf identifier

(punctuation

"Area: %f\n" character string

, punctuation

area identifier

) punctuation

; punctuation

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 45 / 48

Program layout

Spaces between symbols are usually not important

We can even omit spaces (except when two different symbols merge)

However, this makes code more difficult to read

#inc lude <stdio.h>

#def ine PI 3.14159

i n t main(void) { f l o a t radius,area;printf(

"Radius of the circle?");scanf("%f",&radius);

area=PI*radius*radius;printf("Area: %f\n",area);

return 0;}

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 46 / 48

Program layout

We should use spaces, tabs and line changes to increase the
readability of the code:

I insert spaces after commas or between operators;

I use tabs/spaces to align instructions;

I use blank lines to visually separate blocks of code;

I insert comments between lines (or even in the middle of a line).

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 47 / 48

Emphasising syntax

Text editors have special modes for programming languages

Among other things, they automatically highlight symbols with colors
and/or styles

They help with reading and writing code

vs

Pedro Ribeiro (DCC/FCUP) C Fundamentals 2024/2025 48 / 48

	What are we doing at this course?

