
Expressions

Pedro Ribeiro

DCC/FCUP

2024/2025

(based and/or partially inspired by Pedro Vasconcelos’s slides for Imperative Programming)

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 1 / 18



Expressions

Expressions are made up of variables, constants and operators

The C language includes operators for

I arithmetic (+, -, *, /)

I assignment

I pre- and post-increment and decrement

I comparisons

I logical operations

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 2 / 18



Arithmetic operators

Binary operators (on two values)

a + b adition

a - b subtraction

a * b multiplication

a / b division

a % b remainder of division:

Unary operators (on one value)

-a unary less

+a unary plus

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 3 / 18



Unary arithmetic operators

Need only one operand; examples:

i = +1;

j = -i;

The unary + operator has no effect:
it is mainly used to signal positive constants

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 4 / 18



Binary arithmetic operators

+ , - , * , and / allow you to mix integer and floating-point
operands.

When combining int and float operands, the result is a float .

I 2 + 0.5 gives 2.5

I 3.5 / 2 gives 1.75

When the operand are integers, the result of / is the quotient:

I 3 / 4 gives 0

I 10 / 3 gives 3

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 5 / 18



Binary arithmetic operators

i % j is the remainder of the integer division of i by j :

I 10 % 3 gives 1

I 12 % 4 gives 0

Be careful with the % operator

I Both operands of % must be integers

I If the right-hand side of / or % is 0, the result is undefined
(division by zero)

I If the right-hand side of % is negative, i\j has the same sign as i

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 6 / 18



Precedence of operators

How to interpret i + j * k ?

I ”add i with the result of multiplying j by k”

I ”add i to j and multiply the result by k”

We can use parentheses to make the meaning unambiguous:

I i + (j * k) or (i + j) * k

In the absence of parenthesis: precedence between operators
disambiguate meaning

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 7 / 18



Precedence of operators

Precedence determines the order in which operators are evaluated

I First, unary + and - are evaluated

I Then, * , / , %

I Finally, binary + and -

I Examples:
F i + j * k equivalent to i + (j*k)

F -i * -j equivalent to (-i) * (-j)

F + i + j/k equivalent to (+i) + (j/k)

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 8 / 18



Associativity of operators

Associativity defines how to interpret two or more operators with
equal precedence

I Binary operators associate on the left

I Unary operators associate on the right

I Examples:
F i - j - k equivalent to (i - j) - k

F i * j / k equivalent to (i * j) / k

F - + j equivalent to -(+j)

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 9 / 18



Simple assignment

The assignment var = expr calculates the value of expr and
copies it to the variable var

The right-hand side can be a constant, a variable or a complex
expression

i = 5; // value of i: 5

j = i; // value of j: 5

k = 10 * i + j; // value of k: 55

If the variable and expression are not of the same type, there is an
implicit type conversion

i n t i;
f l o a t f;

i = 72.99; // value of i: 72

f = 136; // value of f: 136.0

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 10 / 18



Assignments are expressions

In the C language, an assignment is also an expression

The result of var = expr is the value that was assigned

Example:

i n t i, j, k;
i = 1;

k = 1 + (j = i); // j: 1, k: 2

caution: using assignments in the middle of expressions can make programs

difficult to understand

We can assign the same value to several variables:

i = j = k = 0;

As the assignment associates to the right, this is equivalent to:

i = (j = (k = 0));

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 11 / 18



Left values (lvalues)

The left-hand side of an assignment corresponds to a memory
location (lvalue)

A variable is an lvalue, but constants or compound expressions are not

The compiler signs an assignment with an invalid left-hand side:
(”invalid lvalue in assigment”)

i = 12; // ok: i is an lvalue

12 = i; // error: 12 is not an lvalue

1+j = 12; // error: 1+j is not an lvalue

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 12 / 18



Compound assignment

A variable is often assigned a new value that depends on its current
value. For example:

i = i + 2;

In these cases we can use a compound assignment:

i += 2;

The compound assignment operators are:
I v += e; add e from v , saving the result in v

I v -= e; subtract e from v , saving the result in v

I v *= e; multiply e by v , saving the result in v

I v /= e; divide v by e, saving the result in v

I v %= e; calculate the remainder of the division of v by e,
saving the result in v

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 13 / 18



Increment and decrement

You can often add or subtract an integer variable by one:

i = i + 1;

j = j - 1;

Here too we can use a compound assignment:

i += 1;

j -= 1;

Alternatively, we can use the increment or decrement operators
They can be used prefixed ( ++i or --i ) or postfixed ( i++ or
i-- )

++i; // equivalent to i = i + 1

--j; // equivalent to j = j - 1

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 14 / 18



Increment and decrement

++i first modifies variable i (increments it by one) and then gives
the resulting value.

i = 1;

printf("%d\n", ++i); // prints 2

printf("%d\n", i); // print 2

i++ first gives the current value of i and then modifies the variable
i (increments by 1 unit).

i = 1;

printf("%d\n", i++); // print 1

printf("%d\n", i); // print 2

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 15 / 18



Increment and decrement

The decrement operator behaves in a similar way to the increment
operator:

i = 1;

printf("%d\n", --i); // print 0

printf("%d\n", i); // print 0

i = 1;

printf("%d\n", i--); // print 1

printf("%d\n", i); // print 0

It can be difficult to follow the effect of multiple ++ or – on several
variables in the same expression:

i = 1;

j = 2;

k = ++i + j++; // i: 2, j: 3, k: 4

i = 1;

j = 2;

k = i++ + j++; // i: 2, j: 3, k: 3

recommendation: avoid expressions with multiple increments
Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 16 / 18



Order of evaluation

a = 5; c = (b = a + 2) - (a = 1);

What is the final value of c?
I If we first evaluate b = a + 2 the result is 6
I If we first evaluate a = 1 the result is 2

The behaviour of this program depends on the order in which the
subexpressions are evaluated...

The C language standard does not guarantee an order for
evaluating subexpressions

I e.g.: when calculating (a + b) * (c - d) we don’t know if

(a + b) or (c - d) will be calculated first.

For most expressions, the order of evaluation does not affect the
result. However, it can affect the result if the sub-expressions modify
variables, like in the expression on the top of this slide...

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 17 / 18



Undefined behavior

Expressions such as c = ( b = a + 2) - (a = 1) or

j = i * i++ have undefined behaviour:
I may give different results with different compilers (or versions)
I may not execute, terminate abruptly or give wrong results

We should always avoid expressions with undefined behaviour

The compiler helps detect some undefined behaviour with the -Wall
compilation option (all warnings):

gcc -Wall -o program program.c

We can always rewrite the expression to avoid undefined behaviour.

Instead of:
a = 5; c = (b = a + 2) - (a = 1);

We could write:
a = 5; b = a + 2; a = 1; c = b - a;

This way the final result of c is always 6.

Pedro Ribeiro (DCC/FCUP) Expressions 2024/2025 18 / 18


