
Conditional Execution

Pedro Ribeiro

DCC/FCUP

2024/2025

(based and/or partially inspired by Pedro Vasconcelos’s slides for Imperative Programming)

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 1 / 20

Relational operators

Binary operators for comparisons between numerical expressions:

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal

!= different

The result of a comparison is an integer:
I 0 if the condition is false; 1 if the condition is true.

Example:

i n t i, j;
i = 2;

j = 4;

printf("%d\n", i > j); // print 0

printf("%d\n", i < j); // print 1

printf("%d\n", (i*i) == j); // print 1

printf("%d\n", (i*j) >= 10); // print 0

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 2 / 20

Precedence and associativity

Relational operators have lower precedence than arithmetic ones
I i + j < k - 1 is equivalent to (i+j) < (k-1)

Relational operators associate on the left

Note that the expression i < j < k is valid but does not test

whether j is between i and k (as it would happen in Python):

I < associates to the left, so the expression is the same as (i<j) < k

I i.e. it compares k with the result of the i<j comparison (0 or 1).

The correct expression uses the conjunction of two conditions:
I i < j && j < k

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 3 / 20

Equality comparisons

Two operators: == (equal) and != (different)

Result is 0 (false) or 1 (true)

i n t i, j;
i = 2;

j = 3;

printf("%d\n", i == j); // print 0

printf("%d\n", i+1 == j); // print 1

printf("%d\n", i != j); // print 1

Do not confuse assignments with comparisons:
I i = j modifies the left-hand side; the result is the assigned value

I i == j compares left and right sides; result is 0 or 1

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 4 / 20

If statement

The if statement conditionally executes a statement according to
the result of an expression

Simplest form:

if (expression) statement

Calculates the value of the expression; if the result is non-zero, then
executes the statement

In any case, it continues by executing the following instructions

i f (line_num == MAX) line_num = 0;
// program continues

...

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 5 / 20

If statement

If you want to conditionally execute more than one instruction, group
them together in a block:

{ instructions }

Curly braces force the compiler to treat a block of instructions as one

Each instruction within the block ends with a semicolon

We don’t add semicolons after closing curly braces

We can put it on a single line:

i f (line_num == MAX) { line_num = 0; page_num ++; }

But it’s clearer if we start with several lines:

i f (line_num == MAX) {
line_num = 0;

page_num ++;

}

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 6 / 20

If ... else

The if statement can include an else alternative:

if (expression) else statement

The statement following the else is executed if the expression has a
value of zero (i.e. is false)

Example:

i f (i > j) max = i;
e l s e max = j;

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 7 / 20

If ... else

You can include if statements inside other if s

In this case it is useful to use indentation and curly braces to make
the structure explicit and comprehensible:

i f (i > j) {
i f (i > k)
max = i;

e l s e
max = k;

} e l s e {
i f (j > k)
max = j;

e l s e
max = k;

}

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 8 / 20

If ... else

There are those who prefer to always use curly braces:

i f (i > j) {
i f (i > k) {
max = i;

} e l s e {
max = k;

}

} e l s e {
i f (j > k) {
max = j;

} e l s e {
max = k;

}

}

By always placing curly braces:
I it’s easier to add statements inside if or else (we avoid errors resulting

from forgetting the curly braces when adding more than one statement)

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 9 / 20

Cascading ifs

To test conditions in sequence we write multiple cascading if
statements.

For example:

i f (n < 0)
printf("n negative\n");

e l s e i f (n == 0)
printf("n zero\n");

e l s e
printf("n positive\n");

Note how we lined up all else statements, to provide better
comprehension

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 10 / 20

Example: calculating commissions

When a broker sells shares, he charges a commission, the amount of
which depends on the amount traded

Let’s write a program to calculate the commission according to the
following table:

Amount Commission

Up to ¿2500 ¿30 + 1.7%

¿2500 - ¿7500 ¿55 + 0.66%

¿7500 - ¿20K ¿80 + 0.34%

¿20K - ¿50K ¿110 + 0.22%

Above 50K ¿150 + 0.11%

The minimum commission to be charged should be ¿40

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 11 / 20

Example: calculating commissions

The broker.c (source code) program reads the value of the
transaction, calculates the commission and prints it out:

Enter amount: EUR 30000

Commission: EUR 176.00

The core of the program is a cascading sequence of if s to
determine what range the value is in

At the end we include an extra condition to ensure that we always
charge the minimum amount

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 12 / 20

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/broker.c

Example: calculating commissions#inc lude <stdio.h>

i n t main(void) {
f l o a t amount, commission;

printf("Enter value: EUR ");

scanf("%f", &value);

i f (value < 2500)
commission = 30.0 + 0.017 * value;

e l s e i f (value < 7500)
commission = 55.0 + 0.0066 * value;

e l s e i f (value < 20000)
commission = 80.0 + 0.0034 * value;

e l s e i f (value < 50000)
commission = 110.0 + 0.0022 * value;

e l s e
commission = 150.0 + 0.0011 * value;

i f (commission < 40.0)
commission = 40.0;

printf("Commission: EUR %.2f\n", commission);

return 0 ;
}

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 13 / 20

Logical operators

We can build complex conditions from simpler ones using logical
operators:

&& conjunction (∧)

|| disjunction (∨)

! negation (¬)

Examples:

i>=0 && i<10

i==j || i+j==0

!(i==0)

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 14 / 20

Logical operators

The ! operator is unary while && and || are binary

They operate on integers

Any value other than 0 is considered true; the value 0 is false

The result of a logical operator is 0 or 1

!expr result 1 if expr has a value of 0

expr1 && expr2 result 1 if expr1 and expr2 are both non-zero

expr1 || expr2 result 1 if expr1 is non-zero or expr2 is

non-zero (or both are non-zero)

In all other cases: the result is 0

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 15 / 20

Order of evaluation

The && and || operators evaluate the left-hand side first and only
then the right-hand side

If the result can be determined by the value of the left-hand side, the
right-hand side will not be calculated
(this is sometimes called short-circuit evaluation)

Example: (i != 0) && (j/i > 0)

I The condition i != 0 is evaluated first
I If i is not 0 , then j/i > 0 is evaluated

I If i is 0 then the conjunction is always false and we don’t evaluate

j/i > 0 (avoiding division by zero)

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 16 / 20

Precedence and associativity

&& and || have lower precedence than the comparison operators
and associate to the left

! has equal precedence to unary + and - and associates to the
right

Examples:

i < j && k < m is equivalent to (i < j) && (k < m)

i < j && j < k && k < l is equivalent to ((i < j) && (j < k)) && (k < l)

!i == 0 is not equivalent to i != 0

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 17 / 20

Care with if

A common mistake is to replace == (equality) with = (assignment)

if (i == 0) ... tests whether i is equal to 0

if (i = 0) ... assigns 0 to i and then tests whether the result is
different from 0 (which is always false)

Recommendation: gcc warns of possible errors of this type by

compiling with the -Wall option.

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 18 / 20

Care with else

When we put an if inside an else , we have to be careful to match
the else correctly:

i f (y != 0)
i f (x != 0)
result = x / y;

e l s e
printf("error: y equals 0\\n");

The indentation suggests that the else associates with the
outermost if

But the rule in C is that the else associates with the nearest if
(the inner one).

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 19 / 20

Care with else

A correctly indented version would look like this:

i f (y != 0)
i f (x != 0)
result = x / y;

e l s e
printf("error: y equals 0\n");

To associate the else with the outer if we have to delimit the inner if
using curly braces:

i f (y != 0) {
i f (x != 0)
result = x / y;

} e l s e
printf("error: y equals 0\n");

Recommendation: to avoid these problems always use curly braces
in an if that contains another if

Pedro Ribeiro (DCC/FCUP) Conditional Execution 2024/2025 20 / 20

