
Cycles

Pedro Ribeiro

DCC/FCUP

2024/2025

(based and/or partially inspired by Pedro Vasconcelos’s slides for Imperative Programming)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 1 / 24

Cycles

A cycle is an instruction that executes other instructions several
times (the body of the cycle)

Cycles in C are controlled by an expression

The expression is evaluated at each iteration
I if its value is zero (false), the cycle ends
I if it is not zero (true), the cycle continues

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 2 / 24

Cycle instructions

while
is used for cycles in which the expression is tested before executing
the body of the cycle

do ... while
is used for cycles in which the expression is tested after executing the
body

for
is a convenient form for cycles with a control variable

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 3 / 24

While statement

while (expression) statement
I The expression controls the termination of the cycle
I The statement is the body of the cycle

Execution:
1 First evaluates the expression:
2 If it is zero (false), the loop ends immediately;

If non-zero (true), executes instruction and repeats 1.

(image source: geeksforgeeks)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 4 / 24

While statement - example

i = 1;

whi le (i < 10) // control expression

i = i * 2; // body of the cycle

i = 1;

i < 10? 1 (true)

i = i * 2 = 2

i < 10? 1 (true)

i = i * 2 = 4

i < 10? 1 (true)

i = i * 2 = 8

i < 10? 1 (true)

i = i * 2 = 16

i < 10? 0 (false)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 5 / 24

While statement

The body can be a block of instructions instead of just one:

i = 1;

whi le (i < 10) {
printf("%d\n", i);

i = i * 2;

}

We can use curly braces even with a single instruction:

i = 1;

whi le (i < 10) {
i = i * 2;

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 6 / 24

Termination

The while loop ends when the value of the expression is 0 (false)

I e.g., if the expression is i < 10 then the cycle ends when i ≥ 10

The body may not execute (because the control expression is tested
first)

If the control expression is always non-zero, the loop doesn’t end
(unless we use special instructions to exit the loop - more on that later)

whi le (1) {
... // infinite loop

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 7 / 24

Example cycle - table of squares

squares.c (source code) - a program to print a table of squares

#inc lude <stdio.h>

i n t main(void) {
i n t i, n;

printf("Upper limit: ");

scanf("%d", &n);

i = 1;

whi le (i <= n) {
printf("%d\t%d\n", i, i*i); // �is a tab
i ++;

}

return 0;
}

Upper limit: 4

1 1

2 4

3 9

4 16

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 8 / 24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/squares.c

Example cycle - summing numbers

sum.c (source code) - a program to add up a sequence of numbers

The length of the sequence is not known in advance. Idea:
I read each value within a cycle
I accumulate the total in an auxiliary variable
I terminate when we read a special value (zero)

#inc lude <stdio.h>

i n t main(void) {
i n t n, sum = 0;

printf("Enter values; 0 ends.\n");

scanf("%d", &n); // first value

whi le (n != 0) { // while not finished

sum += n; // accumulate

scanf("%d", &n); // read next value

}

printf("The sum is: %d\n", sum);

return 0;
}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 9 / 24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/sum.c

do...while statement

do statement while (expression);

Execution
1 First executes the instruction
2 Then evaluates the expression
3 If it is zero (false), the cycle ends;

If non-zero (true), repeat step 1.

(image source: geeksforgeeks)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 10 / 24

do...while example - summing numbers revisited

Let’s rewrite the program to add numbers using a do...while loop.

sum2.c (source code)

#inc lude <stdio.h>

i n t main(void) {
i n t n, sum = 0;
printf("Enter values; 0 ends.\n");

do {
scanf("%d", &n); // next value

sum += n; // accumulate

} whi le (n != 0); // while not finished

printf("The sum is: %d\n", sum);

return 0;
}

Remarks:
I As the condition is tested after execution, we don’t need to read the

first value out of the loop
I Adding 0 doesn’t change the result: we can always accumulate

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 11 / 24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/sum2.c

do...while example - number of digits

digits.c (source code) - compute nr of digits in a positive integer
I Let’s use a cycle to do integer divisions by 10;
I We finish when it reaches zero
I The number of iterations performed gives us the digit count
I The do...while loop is more convenient than while because any

positive number has at least one digit
#inc lude <stdio.h>

i n t main(void) {
i n t digits = 0, n;
printf("Enter a positive integer: ");

scanf("%d", &n);

do {
n /= 10; // quotient of division by 10

digits++; // one more digit

} whi le (n > 0);
printf("%d digit(s)\n", digits);

return 0;
}

Enter a positive integer: 5633

4 digit(s)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 12 / 24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/digits.c

for statement

for (expr1; expr2; expr3) statement

I expr1 is the initialisation

I expr2 is the repeat condition

I expr3 is the update after each iteration

I statement is the body of the loop

Example:

f o r (i = 0; i < 5; i++)
printf("%d\n", i);

0

1

2

3

4

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 13 / 24

for statement

We could use while instead of for , but for is clearer/simpler.

The general form:
for (expr1; expr2; expr3) statement

is equivalent to:

expr1;

whi le (expr2) {
statement

expr3;

}

For example, the following two pieces of code are equivalent:

f o r (i = 0; i < 5; i++)
printf("%d\n", i);

i = 0;

whi le (i < 5) {
printf("%d\n", i);

i++;

}

(this ”translation” may help to understand some details)
Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 14 / 24

Common usages of for

The for statement is convenient for cycles that need to count from a
start value to an end value

Examples of repeating n times:

// count up from 0 to n-1

f o r (i = 0; i < n; i++) ...

// count up from 1 to n

f o r (i = 1; i <= n; i++) ...

// count down from n-1 to 0

f o r (i = n-1; i >= 0; i--) ...

// count down from n to 1

f o r (i = n; i > 0; i--) ...

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 15 / 24

Common errors when using for

Swapping the order of comparisons
I ascending counts should use < or <=
I descending counts should use > or >=

Use == instead of < , <= , > , >=
I we can accidentally ”skip” the termination

”Miss by one” the termination condition
I e.g. use i < n instead of i <= n (or vice-versa)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 16 / 24

Omitting expressions in for

We can omit one or more expressions in the for loop.

Omitting the initialisation:

i n t i = 5;
f o r (; i > 0; i--)
printf("%d\n", i)

Omitting the update:

i n t i;
f o r (i = 5; i > 0;)
printf("%d\n", i--)

Omitting both initialisation and update:

i n t i = 10;
f o r (; i > 0;)
printf("%d\n", i--)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 17 / 24

Omitting expressions in for

If we omit the condition, the for loop only ends if we use exit
statements in the body (more on this later)

Some programmers prefer to use an unconditional for instead of a
while for these types of (infinite) cycles

// using a while loop

whi le (1) {
...

}

// using for loop

f o r (;;) {
...

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 18 / 24

Declaring a variable in the initialization expression

Since C99, the for initialisation expression can be replaced by a
declaration.

This allows you to declare a variable for use within the loop:
for(int i = 0; i < n; i++) ...

The variable does not have to be declared first and is limited in
scope to the cycle

Declaring the control variable inside the loop is convenient and can
help make the program simpler

However, if we want to use the final value of the variable after the
end of the cycle, we need to declare it before the cycle

f o r (i n t i = 0; i < n; i++) {
printf("%d\n", i); // OK: i is valid

}

printf("%d\n", i); // ERROR: i out of scope

printf("%d\n", n); // OK: n is valid

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 19 / 24

Break statement

Usually a loop ends only when the condition is tested
I before a while or for iteration
I after a do...while iteration

We can also use the break statement to end a cycle at any time

Here is an example for finding the first proper divisor of a number n:

i n t i, n;
scanf("%d", &n);

f o r (i = 2; i < n; i++) {
i f (n%i == 0) break;

}

i f (i < n)
printf("Found a divisor: %d\n", i);

e l s e
printf("No divisors\n")

This loop can end in one of two ways:
I if it has exhausted the possible divisors (i ≥ n)
I if it has found a divisor (i < n)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 20 / 24

Break statement

The break statement is useful for writing a loop with a termination
test in the middle

Example: reading a sequence of values and ending with a special value

f o r (;;) {
scanf("%d", &n);

i f (n == 0) // if zero
break; // end the cycle

... // if not: process the value

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 21 / 24

continue statement

The continue statement transfers execution to the point just
before the end of the body

While break ends the cycle, continue continues in the cycle

Example: Read and sum 10 non-negative integers.

i n t i = 0, n, sum = 0;
whi le (i < 10) {
scanf("%d", &n);

i f (n < 0)
continue;

sum += n;

i++;

// continue jumps to here

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 22 / 24

continue statement

Sometimes it is simpler to avoid the continue by putting
statements inside an if statement

The condition is inverted: n >= 0 instead of n < 0

i n t i = 0, n, sum = 0;
whi le (i < 10) {
scanf("%d", &n);

i f (n >= 0) {
soma += n;

i++;

}

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 23 / 24

Empty statement

An instruction can be empty, i.e. just a semicolon with no other
symbols:

i = 0; ; j = 1; // second empty instruction

An empty instruction does nothing; it is only useful for writing a loop
whose body is empty.

Consider the loop for finding divisors:

f o r (i = 2; i < n; i++) {
i f (n%i == 0) break;

}

We could join the two conditions and remove the break; the body is
empty:

f o r (i = 2; i < n && n%i != 0; i++); // empty instruction

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 24 / 24

