Cycles

Pedro Ribeiro

DCC/FCUP

2024/2025

While loop
Start

Condition?,

False

Execute loop body|

While loop ends

(based and/or partially inspired by Pedro Vasconcelos's slides for Imperative Programming)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 1/24

@ A cycle is an instruction that executes other instructions several
times (the body of the cycle)

@ Cycles in C are controlled by an expression

@ The expression is evaluated at each iteration

» if its value is zero (false), the cycle ends
» if it is not zero (true), the cycle continues

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 2/24

Cycle instructions

o while
is used for cycles in which the expression is tested before executing
the body of the cycle

o do ... while
is used for cycles in which the expression is tested after executing the
body

o for
is a convenient form for cycles with a control variable

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 3/24

While statement

@ while (expression) statement
» The expression controls the termination of the cycle
» The statement is the body of the cycle

o Execution:
@ First evaluates the expression:
@ If it is zero (false), the loop ends immediately;
If non-zero (true), executes instruction and repeats 1.

While loop
Start
Test

Condition?

True

Execute loop body

While loop ends

(image source: geeksforgeeks)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 4/24

While statement - example

]\;Vh“é’(i < 10) // control expression
i = i ¥ 23 // body of the cycle
i=1;
i< 107 1 (true)
i=1i%*2=2
i< 107 1 (true)
i=1*2=4
i< 107 1 (true)
i=1*2=28
i< 107 1 (true)
i=1%*2=16
i< 10?7 0 (false)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 5/24

While statement

@ The body can be a block of instructions instead of just one:

i=1;

while (i < 10) {
printf("%d\n", 1i);
i=1%* 2;

@ We can use curly braces even with a single instruction:

i=1;
while (i < 10) {
i=1i* 2;

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 6/24

Termination

@ The while loop ends when the value of the expression is 0 (false)

> e.g., if the expression is i < 10 then the cycle ends when i > 10

@ The body may not execute (because the control expression is tested
first)

@ If the control expression is always non-zero, the loop doesn’t end
(unless we use special instructions to exit the loop - more on that later)

while (1) {
// infinite loop

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 7/24

Example cycle - table of squares

@ squares.c (source code) - a program to print a table of squares

#include <stdio.h>

int main(void) {
int i, n;

printf("Upper limit: ");

scanf ("%d", &n);

i 3 g

while (i <= n) {
printf("%d\t%d\n", i, i*i); // is a tab
i ++;

}

return 0;

Upper limit: 4
1

2
3
4

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 8/24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/squares.c

Example cycle - summing numbers

@ sum.c (source code) - a program to add up a sequence of numbers

@ The length of the sequence is not known in advance. ldea:
» read each value within a cycle
» accumulate the total in an auxiliary variable
» terminate when we read a special value (zero)

#include <stdio.h>

int main(void) {
int n, sum = 0;

printf("Enter values; 0 ends.\n");

scanf ("%d", &n); // first value

while (n !'= 0) { // while not finished
sum += n; // accumulate
scanf("%d", &n); // read next value

}

printf("The sum is: %d\n", sum);

return 0;

Pedro Ribeiro (DCC/FCUP) Cycles

2024/2025

9/24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/sum.c

do...while statement

@ do statement while (expression);

@ Execution
@ First executes the instruction
@ Then evaluates the expression
© If it is zero (false), the cycle ends;
If non-zero (true), repeat step 1.

Do while Loop Start

Execute Loop Body

Check/Test
Condition

True

Do while Loop End
(image source: geeksforgeeks)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 10/24

do...while example - summing numbers revisited

@ Let's rewrite the program to add numbers using a do...while loop.

sum2.c (source code)

#include <stdio.h>

int main(void) {
int n, sum = 0;
printf("Enter values; 0 ends.\n");

do {
scanf("%d", &n); // next value
sum += n; // accumulate
} while (n != 0); // while not finished
printf("The sum is: %d\n", sum);
return 0;
}
@ Remarks:

» As the condition is tested after execution, we don't need to read the

first value out of the loop
» Adding O doesn't change the result: we can always accumulate

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 11/24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/sum2.c

do...while example - number of digits

e digits.c (source code) - compute nr of digits in a positive integer
> Let’s use a cycle to do integer divisions by 10;
» We finish when it reaches zero
» The number of iterations performed gives us the digit count
» The do...while loop is more convenient than while because any
positive number has at least one digit
#include <stdio.h>

int main(void) {

int digits = 0, n;

printf("Enter a positive integer: ");

scanf ("%d", &n);

do {
n /= 10; // quotient of division by 10
digits++; // one more digit

} while (n > 0);

printf("%d digit(s)\n", digits);

return 0;

3

Enter a positive integer: 5633
4 digit(s)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 12/24

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/digits.c

for statement

@ for (exprl; expr2; expr3) statement
» exprl is the initialisation
> expr2 is the repeat condition

» expr3 is the update after each iteration
» statement is the body of the loop

@ Example:

for (i = 0; 1 < 5; i++)
printf("%d\n", 1i);

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 13/24

for statement

@ We could use while instead of for, but for is clearer/simpler.

The general form:
for (exprl; expr2; expr3) statement

is equivalent to:

exprl;

while (expr2) {
statement
expr3;

@ For example, the following two pieces of code are equivalent:

i=0;

while (i < 5) {
printf("%d\n", 1i);
i++;

}

for (i = 0; 1 < 5; i++)
printf("%d\n", i);

(this "translation” may help to understand some details)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 14 /24

Common usages of for

@ The for statement is convenient for cycles that need to count from a
start value to an end value

@ Examples of repeating n times:

// count up from 0O to n-1
for(i = 0; 1 < n; i++)

// count up from 1 to n
for(i = 1; i <= n; i++)

// count down from n-1 to 0
for(i = n-1; i >= 0; i--)

// count down from n to 1
for(i = n; 1 > 0; i--)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 15/24

Common errors when using for

@ Swapping the order of comparisons

» ascending counts should use < or <=
» descending counts should use > or >=

@ Use == instead of <, <=, >, >=

we can accidentally "skip” the termination

@ "Miss by one” the termination condition

» eg. use i < n instead of i <= n (or vice-versa)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 16 /24

Omitting expressions in for

@ We can omit one or more expressions in the for loop.

@ Omitting the initialisation:

int i = 5;
for (; i > 0; i--)
printf("%d\n", i)

@ Omitting the update:

int i;
for (i = 5; i > 0;)
printf("%d\n", i--)

@ Omitting both initialisation and update:

int i = 10;
for (; 1 > 03)
printf("%d\n", i--)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 17 /24

Omitting expressions in for

o If we omit the condition, the for loop only ends if we use exit
statements in the body (more on this later)

@ Some programmers prefer to use an unconditional for instead of a
while for these types of (infinite) cycles

// using a while loop
while (1) {

}

// using for loop
for (;) {

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 18/24

Declaring a variable in the initialization expression

@ Since C99, the for initialisation expression can be replaced by a
declaration.

@ This allows you to declare a variable for use within the loop:
for(int i = 0; i < n; i++)

@ The variable does not have to be declared first and is limited in
scope to the cycle

@ Declaring the control variable inside the loop is convenient and can
help make the program simpler

@ However, if we want to use the final value of the variable after the
end of the cycle, we need to declare it before the cycle

for(Cint 1 = 0; i < n; i++) {
printf("%d\n", i); // OK: i is valid

}

printf("%d\n", i); // ERROR: i out of scope

printf("%d\n", n); // OK: n is valid

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 19/24

Break statement

@ Usually a loop ends only when the condition is tested
> before a while or for iteration

» after a do...while iteration

@ We can also use the break statement to end a cycle at any time

@ Here is an example for finding the first proper divisor of a number n:
int i, n;
scanf("%d", &n);
for (i = 2; 1 < n; i++) {
if (n%i == 0) break;

}
if (i < n)

printf("Found a divisor: %d\n", i);
else

printf("No divisors\n")

@ This loop can end in one of two ways:

» if it has exhausted the possible divisors (i > n)
» if it has found a divisor (i < n)

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 20/24

Break statement

@ The break statement is useful for writing a loop with a termination
test in the middle

@ Example: reading a sequence of values and ending with a special value

for(;;) {
scanf ("%d", &n);
if (n == 0) // if zero
break; // end the cycle
// if not: process the value

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 21/24

continue statement

@ The continue statement transfers execution to the point just
before the end of the body

@ While break ends the cycle, continue continues in the cycle

@ Example: Read and sum 10 non-negative integers.

int i =0, n, sum = 0;
while (i < 10) {

scanf ("%d", &n);

if (n < 0)

continue;

sum += n;

1++;

// continue jumps to here

}

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 22/24

continue statement

@ Sometimes it is simpler to avoid the continue by putting
statements inside an if statement

@ The condition is inverted: n >= O instead of n < ®

int i =0, n, sum = 0;
while (1 < 10) {
scanf ("%d", &n);
if (n >=0) {
soma += n;
14+

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 23 /24

Empty statement

@ An instruction can be empty, i.e. just a semicolon with no other
symbols:

i=0; ; j=1; // second empty instruction

@ An empty instruction does nothing; it is only useful for writing a loop
whose body is empty.

o Consider the loop for finding divisors:

for (i = 2; 1 < n; i++) {
if (n%i == 0) break;

}

@ We could join the two conditions and remove the break; the body is
empty:

for (i = 2; i <n & n%i != 0; i++); // empty instruction

Pedro Ribeiro (DCC/FCUP) Cycles 2024/2025 24 /24

