Functions

Pedro Ribeiro

DCC/FCUP

2024/2025

Working of Function in C

#include <stdio.h>

i - > Function Defination
int sum (int a, int b)

{

Function returna +b; Function
Returning } Calling
Value
int main()

{

int add =[sum (10, 30); |
printf ("Sum is : %d”, add);

return 0;

}

(based and/or partially inspired by Pedro Vasconcelos's slides for Imperative Programming)

iro (DCC/FCUP)

2024/2025 1/20

Functions

@ A function groups together a sequence of instructions with a name
@ Each function can receive arguments and return a value

@ Each function is a sub-program with its own statements and
instructions

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 2/20

Why use functions?

@ To divide the program into separate components

» each function has a clearly identified goal
» well-defined arguments and expected results

@ Can be developed and studied independently
@ Can be tested separately

@ Can be reused in different programs

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 3/20

Example function

@ Functions in C:
return_type function_name(argl, arg2, ...) code_block

@ Example: a function that calculates the arithmetic mean of 2 values:

float mean(float a, float b) {
float x = (a + b) / 2.0;
return Xx;

}

@ The function identifier is mean
o The float type before the identifier indicates the type of the result

@ The parameters a and b are the two float values that must be
supplied to execute the function
@ The body of the function is enclosed in curly braces:
» calculates the average value (using an auxiliary variable x)
» the return statement terminates the function and returns the result to
the context where the function was called
Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 420

Invoking the function

@ An expression: identifier(argl, arg2, ...)

int main(void) {

int z = mean(x, y);

}

@ Program execution starts with main
@ main can call another function and so on
@ Only functions called by main are executed (directly or indirectly)

@ The arguments passed to functions can be any expressions of a valid type:

‘z = mean(x*0.5, y+1); ‘

@ You can use the result immediately instead of storing it in a variable:

‘printf("%f\n", mean(x*0.5, y+1)); ‘

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 5/20

Example - complete code

@ mean.c (source code) - read 3 numbers and compute the averages 2 by 2.
#include <stdio.h>

float mean(float a, float b) {
float x = (a + b) / 2.0;
return Xx;

}

int main(void) {
float x, y, z;
printf("Enter 3 numbers: ");
scanf ("%f %f %f", &x, &y, &z);
printf("Means\n");
printf("%.2f and %.2f: %.2f\n", x, y, mean(x,y));
printf("%.2f and %.2f: %.2f\n", y, z, mean(y,z));
printf("%.2f and %.2f: %.2f\n", x, z, mean(x,z));
return 0;

Enter 3 numbers: 3.5 9.6
Means
3.50 and 9.60: 6.55

9.60 and 10.20: 9.90
3.50 and 10.20: 6.85

2024/2025 6/20

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/mean.c

Declarations and definitions

@ If we put the definition of the function before using it, we don't have
to declare anything else

@ However, if we use the function before the definition, we must put in
a prototype declaration: float average(float, float);

@ Example:

float mean(float, float); // prototype
int main(void) {

ﬁ;intf(..., X, y, mean(x,y)); // use
;ééurn 0;
}

float mean(float a, float b) { // definition

x = (a+ b)) / 2.0;
return x;

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 7/20

Functions with no return value

@ Sometimes we may want to define functions that don’t return a value

@ We only run them for their side effects
> e.g. printing messages on standard output

@ In this case, the result type is void
@ We don't need a return

@ We don't use the result

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 8/20

Functions with no return value - example

e tminus.c (source code) - show messages with time left

#include <stdio.h>

void print_time(int n) {
printf("T minus %d and counting\n", n);

}

int main(void) {
print_time(3);
print_time(2);
print_time(1l);

return 0;

minus 3 and counting
minus 2 and counting

minus 1 and counting

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 9/20

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/tminus.c

Return statement

A function with a type other than void must use the return
statement to specify the result

The general form is: return expression;

@ There is no need for parentheses around the expression

Sometimes the expression is a constant or variable, but it can be a
complex expression:

» return 0;

> return n;

» return (x +y) / 2.0;

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 10/20

Return statement

@ We can use return to end the execution of the function in the
middle of the body.

@ Example:

int max(int a, int b) {
if(a >= b)
return a; // ends immediately

// if execution reaches this point,
// then a < b; so the maximum is b
return b;

@ Using multiple returns can make it difficult to understand the flow of execution
Recommendation: only use to terminate a function in special cases (e.g. error)

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 11/20

Return statement

@ We can also use return in functions that don't return results (void)
@ In this case return only serves to end the execution of the function
@ We omit the expression

@ Example:

void print_time(int n) {
if (n < 0)
return; // terminate immediately
printf("T minus %d and counting\n", n);

}

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 12/20

Passing arguments

o C function arguments are passed by value
» each expression is evaluated and its value is copied to a parameter local
to the function

@ Function parameters therefore behave like temporary variables
» changes to the arguments are not visible after the function returns

o Example:

// maximum of 2 values (modifies the first argument)
int max(int a, int b) {
if (b > a)
a = b;
return a;

3

int main(void) {
int x =1, y = 2;
printf("%d\n", max(x,y)); // print 2
printf("%d %d\n", x, y); // print 1, 2
return 0;

3

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 13/20

Passing arguments

@ Another example:

// Try swapping the values of a, b
// (doesn’t work because a,b are temporary)
void swap(int a, int b) {

int t;
t = a;
a = b;
b = t;

}

int main(void) {
int x =1, y = 2;

swap(x, y);
printf("%d %d\n", x, y); // print 1, 2
return 0;

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 14/20

Functional decomposition

@ Functions allow problems to be broken down into simpler parts

@ Objective: combine the parts to solve the original problem
» analogy: lego pieces

@ This "divide and conquer” methodology makes it possible to build
programs that are both elegant and efficient

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 15/20

Example: printing numbers

@ Write a program that prints the digits of an integer number
(from the least significant to the most significant)

@ Examples of execution:

12
two
one

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 16 /20

Sub-problem

@ Given the value of a digit from 0-9, print the corresponding text in
english:

”ZerO”

one

" two
"three"
" four”

"five”

SIX

"seven’
"eight”
"nine"”

OR[N B|WIN|HRO

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 17/20

Auxiliary function

@ Let’s define an auxiliary function: void print_digit(int d);

» the argument is an integer (the value of the digit)
» the function prints the english text and does not return anything

@ The function definition is long but simple: a sequence of cascading if
conditions.

void print_digit(int d) {

if (d == 0) printf("zero");

else if (d == 1) printf("one");
else if (d == 2) printf("two");
else if (d == 3) printf("three");
else if (d == 4) printf("four");
else if (d == 5) printf("five");
else if (d == 6) printf("six");

else if (d == 7) printf("seven");
else if (d == 8) printf("eigth"),
else if (d == 9) printf("nine");

else printf("invalid digit!");

}

Note: on future lessons we will learn alternatives to the "cascade” of ifs
Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 18/20

Auxiliary function

@ Let's now define an auxiliary function: void digits(int n);

> the argument is the number to show the digits
» it should call print_digit(d) for each digit d of n

@ Idea: use a cycle to iterate through each digit

void digits(int n) {
do {
print_digit(n % 10);
n /= 10;
} while (n>0);
}

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 19/20

@ The main program is now quite simple: it just reads a number and
calls the corresponding function:

int main(void) {
int n;

scanf("%d", &n);
digits(n);

return 0;

@ Decomposition into functions has made it possible to:

> write a program in simpler parts
» consider part of the problem at a time
» combine the solutions to solve the original problem

Pedro Ribeiro (DCC/FCUP) Functions 2024/2025 20/20

