
About Algorithms

Pedro Ribeiro

DCC/FCUP

2024/2025

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 1 / 43

Algorithms as the core ideas

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 2 / 43

What is an algorithm?

A set of executable instructions to solve a problem

The problem is the motivation for the algorithm

The instructions need to be executable

There are generally several algorithms for the same problem
[How to choose?]

Representation: description of the instructions clear enough for its
”audience”

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 3 / 43

What is an algorithm?
Computer Science version

The algorithms are the ideas behind programs
They are independent from programming language, machine, ...

An algorithm solves a problem

The problem is characterized by the description of its input and
output

A classic example:

Sorting Problem

Input: a sequence 〈a1, a2, . . . , an〉 of n numbers
Output: a permutation of the numbers 〈a′

1, a
′
2, . . . , a

′
n〉 such that

a
′
1 ≤ a

′
2 ≤ . . . ≤ a

′
n

Example for the Sorting Problem

Input: 6 3 7 9 2 4
Output: 2 3 4 6 7 9

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 4 / 43

Properties we want on an algorithm

Correction

It should solve correctly all instances of the problem

Efficiency

(Time and Memory) performance has to be adequate

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 5 / 43

About correction

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 6 / 43

About efficiency

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 7 / 43

Correction of an algorithm

Instance: A concrete example of a valid input

A correct algorithm solves all possible instances
Examples for sorting: repeated numbers, already sorted sequences, ...

It is not always easy to prove the correction of an algorithm and even
less it is obvious if an algorithm is correct

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 8 / 43

Dijkstra

Edsger W. Dijkstra (Wikipedia entry) (Wikiquote)
[1972 Turing Award]

“Program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.”

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 9 / 43

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

An Example of (in)Correction

How to use the smallest possible number of coins to make a
certain amount?
(assuming we have an infinite supply of coins)

Greedy idea: use the largest possible coin still lower or equal,
repeat the process with the remaining amount

Example: 3.45¿ = 2¿ + 1¿ + 0.20¿ + 0.20¿ + 0.05¿ (5 coins)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 10 / 43

An Example of (in)Correction

Will this algorithm always produce the minimum number of coins?

For common coin systems (e.g. euro, dollar): yes!

For a general coin system... no!

Example: coins {1, 5, 6}
I Greedy algorithm would give: 10 = 6 + 1 + 1 + 1 + 1 (5 coins)
I Minimum would be: 10 = 5 + 5 (2 coins)

(this is an actual studied problem in algorithms)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 11 / 43

Another Example of (in)Correction

Real (Pascal) problem made by a student of R. Backhouse:
(here translated to python - we will talk about strings in C later)

def equal_strings(s1, s2):
is_same = (l en(s1) == l en(s2))

i f is_same:
f o r i i n range(0, l en(s1)):

is_same = (s1[i] == s2[i])

return is_same

>>> equal_strings("university", "university")

True

>>> equal_strings("course", "course")

True

>>> equal_strings("", "")

True

all valid instances of equal strings

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 12 / 43

https://en.wikipedia.org/wiki/Roland_Carl_Backhouse

Another Example of (in)Correction

def equal_strings(s1, s2):
is_same = (l en(s1) == l en(s2))

i f is_same:
f o r i i n range(0, l en(s1)):

is_same = (s1[i] == s2[i])

return is_same

>>> equal_strings("university", "course")

False

>>> equal_strings("tables", "course")

False

all valid instances of different strings

>>> equal_strings("pure", "true")

True

here is an incorrect instance!

(the function is just testing if the length and the last letter are the same)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 13 / 43

About the correction of algorithms

In a computer science degree you would study more formally about
algorithm correction on other courses (here we will mainly be relying on

intuition or very brief sketches of a proof)

Remember to always be careful about correction

Test your own program! (Mooshak does not exist ”on the real world”)

Using Mooshak does not guarantee correction! It simply says your
code ”passed” the tests someone (the professor) put there

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 14 / 43

Mooshak and Correction

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 15 / 43

Correction

Finding a program we thought was correct to be actually incorrect
can happen even to computer scientists in published scientific papers!

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 16 / 43

Algorithmic Efficiency

So your program is correct... but will it run on time?
(and within memory limits)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 17 / 43

Algorithmic Efficiency

In a computer science degree you would study more formally about
efficiency on other courses (asymptotical analysis and Big O notation)

At this course we will sometimes start to give you intuitions and make
you seek efficiency (yes, there will be some problems with lots of TLEs)

On this lecture I want to provide some simple examples to give you a
hands-on experience (building a program from scratch vs to seeing written

code)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 18 / 43

Algorithmic Efficiency

(the following slides about finding primes
describe thee live coding session I did in class)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 19 / 43

Algorithmic Efficiency - Finding Primes

On the class I did live coding for the following problem:

Finding Primes

Print the list of all prime numbers smaller or equal than N

The goal was to be able to find all primes smaller than 10 million in
less than 1 second.

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 20 / 43

Algorithmic Efficiency - Finding Primes

The solution I coded was to call a function is_prime(i) for all
possible primes i ; the function would simply traverse all integers
smaller than i and check if they divide i : primes_v1.c (source)

#inc lude <stdio.h>

i n t is_prime(i n t i) {
f o r (i n t j=2; j<i; j++)

i f (i % j == 0)
return 0;

return 1;

}

i n t main(void) {

i n t n;
scanf("%d", &n);

f o r (i n t i=2; i<=n; i++)
i f (is_prime(i) == 1)
printf("%d\n", i);

return 0;

}

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 21 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/primes_v1.c

Algorithmic Efficiency - Finding Primes

To compile this code we can use for instance:

gcc -Wall -o primes_v1 primes_v1.c

The code asks for an input integer. One way to make this is to create
a file with the desired input.

Imagine we have a file input.txt with the following contents:

10

To call the program with that input we can simply redirect the input:

./primes_v1 < input.txt

Which will produce the following output:

2

3

5

7

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 22 / 43

Algorithmic Efficiency - Finding Primes

We can also redirect the output:

./primes_v1 < input.txt > output.txt

This will put the output on file output.txt

In a Linux terminal we could check the number of lines on the output
with the command wc -l output.txt which we print 4 in this
case (primes less or equal than 10)

In Linux, to measure the time, we could use the command time :

time ./primes_v1 < input.txt > output.txt

Which could give as output something as:

real 0m0,001s

user 0m0,001s

sys 0m0,000s

We are interested in the user time which corresponds to the CPU
time used (real is the elapsed time and could be influenced by other
processes you are running on your computer).

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 23 / 43

Algorithmic Efficiency - Finding Primes

With this, we could start measuring the time spent as we increase N
(the upper limit of the primes to find):

I N = 100: 0.001s (essentially instantaneous)
I N = 1 000: 0.002s
I N = 10 000: 0.021s
I N = 100 000: 1.067s
I N = 1 000 000: 90.431s
I N = 10 000 000: ...

We can observe that the time grows really fast as we are increasing N

This is what we are interested on algorithmic (time) efficiency: how
does the runtime time grow as we increase the input size?

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 24 / 43

Algorithmic Efficiency - Finding Primes

We can make a simple optimization, by changing the is_prime(i)
function to firt check if i is even and then only check odd divisors:

primes_v2.c (source)

i n t is_prime(i n t i) {
i f (i==2) return 1;

i f (i%2 == 0) return 0;

f o r (i n t j=3; j<i; j+=2)
i f (i % j == 0)

return 0;

return 1;

}

This will allows to roughly spend 2x less time, but we are not
fundamentally changing the rate of growth of the execution time as
we increase N:

I N = 10 000: 0.009s
I N = 100 000: 0.511s
I N = 1 000 000: 37.876s

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 25 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/primes_v2.c

Algorithmic Efficiency - Finding Primes

Now we could make a really big improvement by noticing i only
needs to check the primes up to

√
i

Note: this is because if i = a× b then one of a or b will necessarily be ≤ sqrt(i)

(or else their product would be bigger than i) primes_v3.c (source)

i n t is_prime(i n t i) {
i f (i==2) return 1;

i f (i%2 == 0) return 0;

f o r (i n t j=3; j*j<=i; j+=2) // note the j*j<=i
i f (i % j == 0)

return 0;

return 1;

}

This makes a real impact on the time need (which decreases by orders
of magnitude) and on the growth ratio of this same time:

I N = 10 000: 0.001s
I N = 100 000: 0.009s
I N = 1 000 000: 0.107s
I N = 10 000 000: 2.110s (almost on what we want...)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 26 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/primes_v3.c

Algorithmic Efficiency - Finding Primes

This could already be acceptable, but there is still plenty of room for
improvement!

Eratosthenes (born on 276 BC) was an ancient greek mathematician
that among other discoveries, introduced an efficient method for
finding primes known as the sieve of Eratosthenes.

Instead of doing trial division to sequentially try all possible divisors,
we can iteratively mark as non-primes the multiples of primes

I We first mark all multiples of 2 as non-primes
I The next prime number is 3, we mark its multiples as non-primes
I The next prime number is 5, we mark its multiples as non-primes
I ...

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 27 / 43

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Algorithmic Efficiency - Finding Primes

#inc lude <stdio.h>

#def ine N 10000000

i n t is_prime[N+1]; // 0: non-prime; 1: prime

void sieve() {

f o r (i n t i=2; i<=N; i++) // initialize all numbers as prime
is_prime[i] = 1;

f o r (i n t i=2; i<=N; i++)
i f (is_prime[i])

f o r (i n t j=i+i; j<=N; j+=i)
is_prime[j] = 0;

}

i n t main(void) {
sieve();

f o r (i n t i=2; i<=N; i++)
i f (is_prime[i])
printf("%d\n", i);

return 0;

}

primes_v4.c (source)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 28 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/primes_v4.c

Algorithmic Efficiency - Finding Primes

With the (naive) sieve of Eratosthenes code would already reach our
initial goal:

I N = 10 000 000: 0.264s

Note how now this code needs more memory (to have an array of size
N + 1), and the maximum N would now be limited by the memory we
have on our computer
We are effectively trading memory for time
(this can happen in many problems)

We could continue improving our code, but this already exposed the
most important concepts I was trying to convey:

I There are several possible correct algorithms for the same task
I Different algorithms have different time and memory efficiency
I The time efficiency of an algorithm can me measured by looking at the

rate of growth of the execution time as the input size increases

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 29 / 43

Algorithmic Efficiency - Searching

Let’s now look at another problem:

The search problem

Input:
I an array v storing n elements
I a target element key to search for

Output:
I Index i of key where v[i]==key
I -1 (if key is not found)

Example:
v = 5 2 6 8 4 12 3 9

search(2, v, n) = 1
search(7, v, n) = -1
search(3, v, n) = 6
search(14,v, n) = -1

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 30 / 43

Algorithmic Efficiency - Searching

variants for the case of arrays with repeated values:
I indicate the position of the first occurrence
I indicate the position of the last occurrence
I indicate the position of any occurrence
I indicate all the occurrences

8 4 3 6 2 6 5 9

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 31 / 43

Sequential Search - Algorithm

Sequential Search Algorithm

Sequentially checks each element of the array, from the first to the lasta or
from the last to the firstb , until a match is found or the end of the array is
reached

aif you want to know the position of the first occurrence
bif you want to know the position of the last occurrence

suitable for small or unordered arrays

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 32 / 43

Sequential Search - An implementation

Search for an element key in a vector v of n elements. Returns the index
of the first occurrence of key, if found, or -1, otherwise (e.g. for integers).

sequential_search.c (source)

i n t sequential_search(i n t key, i n t v[], i n t n) {
f o r (i n t i=0; i<n; i++)

i f (v[i] == key)
return i; // found key

return -1; // not found

}

i n t n = 8;
i n t v[] = {8,4,3,6,2,6,5,9};

printf("%d\n", sequential_search(8, v, n));

printf("%d\n", sequential_search(7, v, n));

printf("%d\n", sequential_search(6, v, n));

0

-1

3

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 33 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/sequential_search.c

Sequential Search - Efficiency

When analyzing the (time or memory) efficiency of a program, we can
consider several cases:

I The best case (in the what types of inputs it the code faster?)
I The worst case (in the what types of inputs it the code faster?)
I The average case (this implies we know what the average input looks like)

In what concerns memory, sequential search does not use more
memory as we increase n (we only need an extra variable i for the cycle)

In what concerns time:
I Best case: the key is on the first position of the array
I Worst case: the key is not on the array
I Average case: depends on the input

Usually, when talking about algorithmic efficiency we are referring to
the worst case (if we know input distribution, we could consider the average)

I Example: on Mooshak I might have an input which is the worst possible
case for you code (and your code need to pass it to have Accepted)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 34 / 43

Sequential Search - Time Efficiency

So what happens when we increase N on the worst case?

The time needed grows linearly with N

I If N is 2× times bigger, the time is also 2× bigger
I If N is 10× times bigger, the time is also 10× bigger
I ...

Using test_sequential.c (source) to perform 100 000 queries on
an array of size N we get roughly the linear growth we expected:

I N = 1 000: 0.204s
I N = 10 000: 1.885s (≈9.40× bigger)
I N = 100 000: 18.782s (≈9.96× bigger)
I N = 1 000 000: 196.132s (≈10.44× bigger)
I ...

Can we do better for the search problem?

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 35 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/test_sequential.c

Searching in sorted arrays

Suppose the array is ordered
(arranged in increasing or non-decreasing order)

I Sequential search on a sorted array still takes linear time

I Can exploit sorted structure by performing binary search

I Strategy: inspect middle of the array so that half of it is discarded at
every step

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 36 / 43

Binary Search - Algorithm

Binary Search Algorithm

compares the element in the middle of the array with the target element:

is equal to the target element → found

is greater than the target element → continue searching (in the same
way) in the sub-array to the left of the inspected position

is less than the target element → continue searching (in the same
way) in the sub-array to the right of the inspected position

if the sub-array to be inspected reduces to an empty vector, we can
conclude that the target element does not exist

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 37 / 43

Binary Search - Implementation

binary_search.c (source)

i n t binary_search(i n t key, i n t v[], i n t n) {
i n t low = 0, high = n - 1;
whi le (low <= high) {

i n t middle = low + (high - low) / 2;
i f (key < v[middle]) high = middle - 1;

e l s e i f (key > v[middle]) low = middle + 1;

e l s e return middle; // found key

}

return -1; // not found

}

v = 2 5 6 8 9 12 binary search(8, v, n)

low = 0, high = 5,middle = 2
Since 8 > v [2]: low = 3, high = 5,middle = 4
Since 8 < v [4]: low = 3, high = 3,middle = 3
Since 8 == v [3]: return(3)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 38 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/binary_search.c

Bugs in binary search

(if low and high are really high, low+high might overflow)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 39 / 43

Binary Search - Time Efficiency

So what happens now when we increase N on the worst case?

I At the start we have N elements
I With only 1 comparison, we reduce to ≈ N/2 elements
I With only 2 comparisons, we reduce to ≈ N/4 elements
I With only 3 comparisons, we reduce to ≈ N/8 elements
I With only 4 comparisons, we reduce to ≈ N/16 elements
I ...
I With k comparisons, we reduce to ≈ N/2k elements

So how many comparisons do we need to reduce the search space to
only one element?

We only need ≈ log2 (N) comparisons!
(the logarithm is the ”inverse” of the exponential function)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 40 / 43

Binary Search - Time Efficiency

So what happens now when we increase N on the worst case?

The time needed now grows logarithmically with N

Note how the logarithm grows much slower than the linear function:

I If N is 2× bigger, we will only need one more comparison!

I With 10 comparisons we can go up to N = 210 = 1 024
I With 20 comparisons we can go up to N = 220 = 1 048 576
I With 30 comparisons we can go up to N = 230 = 1 073 741 824
I ...

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 41 / 43

Binary Search - Time Efficiency

So what happens now when we increase N on the worst case?

The time needed now grows logarithmically with N

Using test_binary.c (source) to perform 100 000 queries on an
array of size N we get roughly the linear growth we expected:

I N = 1 000: 0.014s (≈14× faster than sequential search)
I N = 10 000: 0.016s (≈118× faster than sequential search)
I N = 100 000: 0.020s (≈939× faster than sequential search)
I N = 1 000 000: 0.026s (≈7543× faster than sequential search)
I ...

It is orders of magnitude faster than sequential search and the
difference keeps growing as the input increases because fundamentally
the grows ratio of the time is much smaller.

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 42 / 43

https://www.dcc.fc.up.pt/~pribeiro/aulas/pii2425/code/test_binary.c

Searching for elements - is this all?

Is this everything that there is to know about searching?
No! (but it is more than enough for this particular half-semester course)

Here are some example follow up questions:

I How much time do we need to sort? (it must be worthwhile to sort
once so that afterwards we can use binary search)

I What if need to add/remove elements from the array? Do we need to
sort again? (e.g.: balanced binary search trees)

I Are there other efficient searching strategies that do not involve some
kind of ”sorting”? (e.g.: Hash Tables)

There are plenty of interesting algorithms and data structures
that you can learn if you choose to continue studying
programming and computer science
(e.g.: here we are really just ”scratching the surface)

Pedro Ribeiro (DCC/FCUP) About Algorithms 2024/2025 43 / 43

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Hash_table

	Algorithms as the core ideas

