Homework
 Due: May 16th, 2020

- The assignment should be delivered digitally by email. Your message should be sent to pribeiro@dcc.fc.up.pt with subject "[TAA HWK] - FirstName Last Name StudentNumber"
- Your delivery should be a zip file, containing a PDF report with the answers and all additional files that were used for producing those answers
- You may work in a (small) group, but you should do your own individual writeup. This means you can collaborate by talking about the exercises, but you should not copy answers or code.
- Please acknowledge any help you got and state any references you consulted (including internet pages) and any students with whom you talked about the exercises.
- Answers should be submitted until $23: 59$ of the due date. Up to 24 h of delay will get you a 25% penalty. 24 h to 48 h of delay will get you a 50% penalty. After 48 h your work will not be counted.

Multiple versions of the same question

Some questions (indicated by $\left(^{*}\right)$ have multiple versions $(v 1, v 2, \ldots)$. Refer to the attribution sheet (sent by email) to know which version you should answer on each question)

Balanced Binary Search Trees

Red-Black Trees

1. (*) Consider a complete red-black binary search tree of height 3 with the following 15 keys:

- (v1) $\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30\}$
- (v2) $\{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29\}$
(a) What are the possible black heights of this tree?
(b) Draw \mathcal{T}, the corresponding red-black tree with the minimum possible black-height.
(c) Give a set of operations that would result on the tree \mathcal{T} when starting in an empty tree.
(d) $\left(^{*}\right)$ Draw (and explain) the red-black tree that would result from starting with \mathcal{T} and applying the following operation (after the red-black tree properties are restored).
- (v1) insert(15)
- $(v 2)$ insert(16)
(e) Imagine that you need to implement the operation enumerate (a, b) on a red-black tree, that enumerates all keys x such that $a \leq x \leq b$. Describe an algorithm that could do this operation in $\mathcal{O}(m+\log n)$, where m is the number of keys that appear in the output and n is the number of nodes in the tree (you can augment the tree with new attributes, but you then need to explain how to keep those attributes valid when inserting or removing keys).

Self-Adjusting Data Structures

Splay Trees

2. Consider you are using splay trees to store a set of keys.
(a) What does it mean to say that each basic operation (ex: find, insert, remove) has an amortized complexity of $\mathcal{O}(\log n)$? Can any of these operations have a linear cost? Why?
(b) Explain in what situations would splay trees perform better than AVL or red-black trees, justifying your answer.
(c) $\left(^{*}\right)$ Suppose that the splay tree is augmented and each any node v also stores size (v), the number of nodes in the subtree rooted at v. Describe an algorithm splaySelect (k) that returns the k-th smallest/largest (depends on the version) item in $(O)(\log n)$ time

- (v1) k-th smallest
- (v2) k-th largest

Probabilistic Data Structures

Treaps

3. Prove that a treap is exactly the binary search tree that results from inserting the nodes one at a time into an initially empty tree, in order of increasing priority, using the standard insertion algorithm.

Skip Lists

4. Describe and analyze the expected running time of the best algorithm you can come up with to merge two skip lists. Merging is taking two lists and combining them into a single list (which should store all the elements in sorted order). You may assume all the elements in the skip lists are distinct.

Spatial Data Structures

Quadtrees

5. (*) Suppose you are using point-region quadtrees to store a set of n integer 2 D points in the range $(0,0)$ to (a, b) (a and b depends on the version). What is the maximum height of the quadtree? Justify you answer and show a set of points that would give origin to that height.

- (v1) $a=b=10^{6}$
- (v2) $a=b=10^{7}$

kd-trees

6. (*) Suppose you insert the following 203 D points on a kd-tree (depends on the version). What is the smallest height you could get? Show an order in which to insert the points to obtain that height and draw the corresponding kd-tree (it's ok to use auxiliary programs implemented by you to help).

- (v1) https://www.dcc.fc.up.pt/~pribeiro/aulas/taa1920/20points_v1.txt
- (v2) https://www.dcc.fc.up.pt/~pribeiro/aulas/taa1920/20points_v2.txt

7. Suppose you have a set of points stored on a kd-tree and that you want to find what are the k closest points from a given query point Q. Briefly describe how you could traverse the kd-tree with that goal in mind, indicating how you could make the search as efficient as possible.

LCA and RMQ

Sparse Tables

8. Implement a program in any programming language that reads as an input a tree T with n nodes and Q queries $\left(x_{i}, y_{i}\right)$ and outputs the LCA of nodes x and y for each query. The program should use a reduction to RMQ and sparse tables to solve the problem in $\mathcal{O}(n \log n)$ preprocessing and $\mathcal{O}(1)$ for each query (also output the euler tour of the tree).

Attach your code to the homework delivery email and provide brief comments on the code, including an example of how to run it (how can I give it input, and what is the format of the output).

1D Problems

Segment Trees

9. Imagine you are given a sequence $a[1], a[2], \ldots, a[n]$, and several queries like the following: $\operatorname{query}(x, y)=\max \{a[i]+a[i+1]+\ldots+a[j] ; x \leq i \leq j \leq y\}$
In informal terms, we are looking for the highest sum consecutive subarray in a given range.
Describe an algorithm for solving this problem using segment trees, answering each query in $\mathcal{O}(\log n)$.
You should also exemplify its functioning for computing the following sequence and queries (don't forget to show its corresponding segment tree).

- (v1) $a=\{-2,3,4,-15,5,3,-3,-1,2,1\}$, query $_{1}(1,4)$, query $y_{2}(0,9)$
- (v2) $a=\{4,2,-3,-4,3,6,-20,5,1,-2\}$, query $y_{1}(6,9)$, query $y_{2}(0,9)$

String Matching

Knuth-Morris-Pratt (KMP) Algorithm

10. In this question you will be asked to modify the standard KMP algorithm.
(a) Describe a modification of the Knuth-Morris-Pratt (KMP) algorithm in which you only want to report the first occurrence and the pattern can contain any number of wildcard symbols ${ }^{*}$, each of which matches an arbitrary substring. For instance, the pattern "al*thm*s" matches "ilovealgorithmsarelife": the first wildcard matches "gori" and the second wildcard matches an empty substring. The algorithm should run in $\mathcal{O}(n+m)$, where n is the size of the text and m the size of the pattern.
(b) Implement a program in any programming language that corresponds to the algorithm you described. It should have as an input a pattern P and Q query texts and computes all first occurrences of P in each of the queries. It should print the π function (or its equivalent).
Attach your code to the homework delivery email and provide brief comments, including an example of how to run it (how can I give it input, and what is the format of the output).

Suffix Trees

11. A palindrome is a word which reads the same backward as forward, such as "madam". Given a string S of size n, describe an algorithm using suffix trees that can compute $P(S)$, the size of the largest palindrome which is a substring of the word, and indicate its runtime and memory complexity (assume you can build a suffix tree or array in $\mathcal{O}(n)$).
For instance, $P("$ banana" $)=5$, because the largest substring which is also a palindrome is "anana". Besides describing the algorithm, you should exemplify its functioning for computing P ("adambcmada").

Suffix Arrays

12. (*) Suppose you already have available a suffix array $S A$ of a string s with length n, and its corresponding $L C P$ array (containing the longest common prefix of consecutive suffixes). Describe an algorithm (based on suffix arrays) that computes $L(s, k)$ the length of the largest substring that appears in s at least k times. Indicate its runtime complexity.

For instance, $L($ "banana", 2$)=3$ because "ana" appears 2 times and has length 3 (no other larger substring appears at least 2 times).
Besides describing the algorithm, you should exemplify its functioning for computing the following string (don't forget to show its corresponding suffix and LCP arrays).

- (v1) L("senselessness", 2)
- (v2) L("mississippis", 2)

