
The LCA Problem Revisited

Michael A.Bender & Martin Farach-Colton

Presented by: Dvir Halevi
Adapted Version

2

Agenda

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

3

Definitions – Least Common Ancestor

� LCA
T
(u,v) – given nodes u,v in T, returns the node

furthest from the root that is an ancestor of both u
and v.

u

v

4

Definitions – Range Minimum Query

� Given array A of length n.

� RMQ
A
(i,j) – returns the index of the smallest element in

the subarray A[i..j].

0 1634 137 19 10 121 2

RMQ(3,7) = 4

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

5

Definitions – Complexity Notation

� Suppose an algorithm has:

� Preprocessing time –

� Query time –

� Notation for the overall complexity of an algorithm:

()f n

(), ()f n g n< >

()g n

6

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

7

Reduction from LCA to RMQ

� In order to solve LCA queries, we will reduce the problem
to RMQ.

� Lemma:

If there is an solution for RMQ, then

there is an

Solution for LCA.

(), ()f n g n< >

(2 1) (), (2 1) (1)f n O n g n O< − + − + >

8

Reduction - proof

� Observation:

The LCA of nodes u and v is the shallowest node
encountered between the visits to u and to v during a
depth first search traversal of T.

3

4

5
1

672

Euler tour:

4 1 7 1 3 5 6 5 33 1231

2

3

4

6

9

10

8

5
7

11

12

0

LCA
T
(1,5) = 3

Shallowest node

9

Reduction (cont.)

� Remarks:
� Euler tour size: 2n-1
� We will use the first occurrence of i,j for the sake of

concreteness (any occurrence will suffice).
� Shallowest node must be the LCA, otherwise

contradiction to a DFS run.

3

4

5
1

672

Euler tour:

4 1 7 1 3 5 6 5 33 1231

2

3

4

6

9

10

8

5
7

11

12

0

LCA(1,5) = 3

Shallowest node

10

Reduction (cont.)

� On an input tree T, we build 3 arrays.

� Euler[1,..,2n-1] – The nodes visited in an Euler tour of T.
Euler[i] is the label of the i-th node visited in the tour.

� Level[1,..2n-1] – The level of the nodes we got in the tour.
Level[i] is the level of node Euler[i].

(level is defined to be the distance from the root)

� Representative[1,..n] – Representative[i] will hold the index of
the first occurrence of node i in Euler[].

Representative[v] = arg min { [] }
i
Euler i v=

Mark: Euler – E, Representative – R, Level – L

11

Reduction (cont.)

� Example:

7

1

6

3 5
10 8

92

4

E: 1 6 3 6 5 6 1 2 1 9 10 9 4 7 4 9 8 9 1

L: 0 1 2 1 2 1 0 1 0 1 2 1 2 3 2 1 2 1 0

R: 1 8 3 13 5 2 14 17 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

12

Reduction (cont.)

� To compute LCA
T
(x,y):

� All nodes in the Euler tour between the first visits to x
and y are E[R[x],..,R[y]] (assume R[x] < R[y])

� The shallowest node in this subtour is at index
RMQ

L
(R[x],R[y]), since L[i] stores the level of the node

at E[i].

� RMQ will return the index, thus we output the node at
E[RMQ

L
(R[x],R[y])] as LCA

T
(x,y).

13

Reduction (cont.)

� Example:

7

1

6

3 5
10 8

92

4
LCA

T
(10,7)

R[10]R[7]

E[11,…,14]

RMQ
L
(10,7) = 12

LCA
T
(10,7) = E[12]=9

E: 1 6 3 6 5 6 1 2 1 9 10 9 4 7 4 9 8 9 1

L: 0 1 2 1 2 1 0 1 0 1 2 1 2 3 2 1 2 1 0

R: 1 8 3 13 5 2 14 17 10 11

14

Reduction (cont.)

� Preprocessing Complexity:

� L,R,E – Each is built in time, during the DFS run.

� Preprocessing L for RMQ -

� Query Complexity:

� RMQ query on L –

� Array references –

� Overall:

� Reduction proof is complete.

� We will only deal with RMQ solutions from this point on.

(2 1) (), (2 1) (1)f n O n g n O< − + − + >

(2 1)f n −

(2 1)g n −

(1)O

()O n

15

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

16

RMQ

� Solution 1:

Given an array A of size n, compute the RMQ for every pair
of indices and store in a table - 3(), (1)O n O< >

2(), (1)O n O< >

� Solution 2:

To calculate RMQ(i,j) use the already known value of
RMQ(i,j-1) .

Complexity reduced to -

17

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

18

Buckets RMQ

� An <O(N), O(sqrt(N))> solution

� An interesting idea is to split the vector in sqrt(N) pieces.
We will keep in a vector M[0, sqrt(N)-1] the position for
the minimum value for each section. M can be easily

preprocessed in O(N).

19

Buckets RMQ

� How can we compute RMQ(i, j)?

� The idea is to get the overall minimum from the sqrt(N)
sections that lie inside the interval, and from the end and
the beginning of the first and the last sections that
intersect the bounds of the interval.

� To get RMQ(2,7) in the above example we should
compare A[2], A[M[1]], A[6] and A[7] and get the
position of the minimum value. It’s easy to see that this
algorithm doesn’t make more than 3 * sqrt(N)

operations per query.

20

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

21

ST RMQ

� Preprocess sub arrays of length

� M(i,j) = index of min value in the sub array starting at index

i having length

10 167 2634 2 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

M(3,0)=3

M(3,1)=3

M(3,2)=5

2
k

2
j

22

ST RMQ

� Idea: precompute each query whose length is a power of n.

For every i between 1 and n and every j between 1 and

find the minimum element in the block starting at i and
having length .

� More precisely we build table M.

� Table M therefore has size O(n log n).

log n  

2
j

.. 2 1
[,] argmin { []}j

k i i
M i j Array k

= + −

=

23

ST RMQ

� Building M – using dynamic programming we can build M in
O(n log n) time.

j-1

j-1

 A[M[i,j-1]] A[M[i 2 1, 1]] M[i,j-1]

[,]

Otherwise M[i 2 1, 1]

j

M i j

j

 ≤ + − −


= 
 + − −

10 167 2634 9 2 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

M(3,1)=3 M(5,1)=6

M(3,2)=6

24

ST RMQ

� Using these blocks to compute arbitrary M[i,j]

� Select two blocks that entirely cover the subrange [i..j]

� Let (is the largest block that fits [i..j])

� Compute RMQ(i,j):

log()k j i= −   2
k

[][] [][] []

[]







+−

+−≤

=

k,12jM Otherwise

ki,M k,12jMAk,iMA

)j,i(RMQ

k

k

a
1

... ...

i j

2k
elements

2k
elements

25

ST RMQ

� Query time is O(1).

� This algorithm is known as Sparse Table(ST)
algorithm for RMQ, with complexity:

� Our target: get rid of the log(n) factor from the
preprocessing.

(log), (1)O n n O< >

26

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

27

Faster RMQ

� Use a table-lookup technique to precompute answers on
small subarrays, thus removing the log factor from the
preprocessing.

� Partition A into blocks of size .
log

2

n2

log

n

n

A

...blocks
n log

2n

l o g

2

n l o g

2

n l o g

2

n

28

Faster RMQ

� A’[1,..,] – A’[i] is the minimum element in the i-th block of A.

A

...blocks
n log

2n

l o g

2

n

A’[0] A’[2n/logn]A’[i]

… ...
B[0] B[2n/logn]B[i]

� B[1,..,] – B’[i] is the position (index) in which value A’[i] occurs.
2

log

n

n

2

log

n

n

29

� Example:

10 337 2634 9 2 1225 22

0 21 93 4 5 6 7 8 10 11 12 13 14 15

24 43 5 11 19 27

n=16

A[] :

10 25 22 7 34 9 …
blocks

n log

2n
= 8

10 7 9

0 21A’[] :

… 0 3 5

0 21B[] :

…

30

Faster RMQ

� Recall RMQ queries return the position of the
minimum.

� LCA to RMQ reduction uses the position of the
minimum, rather than the minimum itself.

� Use array B to keep track of where minimas in A’
came from.

31

Faster RMQ

� Preprocess A’ for RMQ using ST algorithm.

� ST’s preprocessing time – O(n log n).

� A’s size –

� ST’s preprocessing on A’:

� ST(A’) =

2

log

n

n

2 2
log() ()

log log

n n
O n

n n
=

(), (1)O n O

32

Faster RMQ

� Having preprocessed A’ for RMQ, how to answer RMQ(i,j)
queries on A?

� i and j might be in the same block -> preprocess every block.

� i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.

3. Compute minima from the beginning of j’s block to j.

� Return the index of the minimum of these 3 values.

33

Faster RMQ

� i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.

3. Compute minima from the beginning of j’s block to j.

� 2 – Takes O(1) time by RMQ on A’.

� 1 & 3 – Have to answer in-block RMQ queries

� We need in-block queries whether i and j are in the same block
or not.

34

Faster RMQ

� First Attempt: preprocess every block.

Per block :

All blocks –

� Second attempt: recall the LCA to RMQ reduction

� RMQ was performed on array L.

� What can we use to our advantage?

log log
log (log log log)

2 2

n n
O n n

 
= 

 

2

log

n

n
(log log)O n n

1± restriction

35

Faster RMQ

� Observation:

Let two arrays X & Y such that

Then

� There are normalized blocks.

 X[i] Y[i] C i∀ = +

, (,) (,)
X Y

i j RMQ i j RMQ i j∀ =

3 46 55 4 5 64 5

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0 13 22 1 2 31 2

B[0] B[2]B[1] B[9]B[3] B[4] B[5] B[6] B[7] B[8]

+1 -1 -1-1 +1 +1 -1+1 +1

()O n

log
1

22 ()

n

O n

 
− 

 
=

36

Faster RMQ

� Preprocess:

� Create tables of size to answer all in block
queries. Overall .

� For each block in A compute which normalized block table it
should use –

� Preprocess A’ using ST -

� Query:

� Query on A’ –

� Query on in-blocks –

� Overall RMQ complexity -

()O n
2(log)O n

()2log ()O n n O n=

()O n

(1)O

(1)O

(), (1)O n O

()O n

37

� Definitions

� Reduction from LCA to RMQ

� Trivial algorithms for RMQ

� Buckets algorithm for RMQ

� ST algorithm for RMQ

� A faster algorithm for a private RMQ case

� General Solution for RMQ

38

General O(n) RMQ

� Reduction from RMQ to LCA

� General RMQ is solved by reducing RMQ to LCA, then
reducing LCA to RMQ.

� Lemma:

If there is a solution for LCA, then there is a

solution to RMQ.

� Proof: build a Cartesian tree of the array, activate LCA on it.

1±

(), (1)O n O

(), (1)O n O

39

General O(n) RMQ

� Cartesian tree of an array A:

� Root – minimum element of the array. Root node is
labeled with the position of the minimum.

� Root’s left & right children: the recursively constructed
Cartesian tress of the left & right subarrays, respectively.

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

40

General O(n) RMQ

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8

41

Build Cartesian tree in O(n)

� Move from left to right in the array

� Suppose C
i
is the Cartesian tree of A[1,..,i]

� Node i+1 (v) has to belong in the rightmost path of C
i

� Climb the rightmost path, find the first node (u) smaller than v

� Make v the right son of u, and previous right subtree of u left son

of v.

u
v

.

.

.

x

...

u

v

.

.

.

x

...

42

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

10

43

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

1

10

25

44

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

2

1

10

22

25

45

Build Cartesian tree in O(n)

3410 16267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

2

1 33

73434

10

22

25 34

46

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

10

22

25 34

7

47

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8

48

General O(n) RMQ

� How to answer RMQ queries on A?

� Build Cartesian tree C of array A.

� RMQA(i,j) = LCAC(i,j)

� Proof:

� let k = LCA
C
(i,j).

� In the recursive description of a Cartesian tree k is the first
element to split i and j.

� k is between i,j since it splits them and is minimal because it
is the first element to do so.

49

General O(n) RMQ

� Build Complexity:

� Every node enters the rightmost path once. Once it

leaves, will never return.

� O(n).

50

General O(n) RMQ

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8

RMQ(5,8) = 6

