
Algorithms Lecture 3: Treaps and Skip Lists [Sp’17]

I thought the following four [rules] would be enough, provided that I made a firm and constant
resolution not to fail even once in the observance of them. The first was never to accept
anything as true if I had not evident knowledge of its being so. . . . The second, to divide
each problem I examined into as many parts as was feasible, and as was requisite for its
better solution. The third, to direct my thoughts in an orderly way. . . establishing an order in
thought even when the objects had no natural priority one to another. And the last, to make
throughout such complete enumerations and such general surveys that I might be sure of
leaving nothing out.

— René Descartes, Discours de la Méthode (1637)

There are those who think that life has nothing left to chance
A host of holy horrors to direct our aimless dance

— Rush, “Freewill”, Permanent Waves (1980), lyrics by Neal Peart

What is luck?
Luck is probability taken personally.
It is the excitement of bad math.

— Penn Jillette (2001), quoting Chip Denman (1998)

3 Randomized Binary Search Trees

In this lecture, we consider two randomized alternatives to balanced binary search tree structures
such as AVL trees, red-black trees, B-trees, or splay trees, which are arguably simpler than any of
these deterministic structures.

3.1 Treaps

3.1.1 Definitions

A treap is a binary tree in which every node has both a search key and a priority, where the
inorder sequence of search keys is sorted and each node’s priority is smaller than the priorities of
its children.1 In other words, a treap is simultaneously a binary search tree for the search keys
and a (min-)heap for the priorities. In our examples, we will use letters for the search keys and
numbers for the priorities.
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A treap. Letters are search keys; numbers are priorities.

I’ll assume from now on that all the keys and priorities are distinct. Under this assumption,
we can easily prove by induction that the structure of a treap is completely determined by the

1Sometimes I hate English. Normally, ‘higher priority’ means ‘more important’, but ‘first priority’ is also more
important than ‘second priority’. Maybe ‘posteriority’ would be better; one student suggested ‘unimportance’.
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search keys and priorities of its nodes. Since it’s a heap, the node v with highest priority must be
the root. Since it’s also a binary search tree, any node u with key(u)< key(v) must be in the left
subtree, and any node w with key(w) > key(v) must be in the right subtree. Finally, since the
subtrees are treaps, by induction, their structures are completely determined. The base case is
the trivial empty treap.

Another way to describe the structure is that a treap is exactly the binary search tree that
results by inserting the nodes one at a time into an initially empty tree, in order of increasing
priority, using the standard textbook insertion algorithm. This characterization is also easy to
prove by induction.

A third description interprets the keys and priorities as the coordinates of a set of points in
the plane. The root corresponds to a T whose joint lies on the topmost point. The T splits the
plane into three parts. The top part is (by definition) empty; the left and right parts are split
recursively. This interpretation has some interesting applications in computational geometry,
which (unfortunately) we won’t have time to talk about.
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A geometric interpretation of the same treap.

Treaps were first discovered by Jean Vuillemin in 1980, but he called them Cartesian trees.2
The word ‘treap’ was first used by Edward McCreight around 1980 to describe a slightly different
data structure, but he later switched to the more prosaic name priority search trees.3 Treaps were
rediscovered and used to build randomized search trees by Cecilia Aragon and Raimund Seidel in
1989.⁴ A different kind of randomized binary search tree, which uses random rebalancing instead
of random priorities, was later discovered and analyzed by Conrado Martínez and Salvador Roura
in 1996.⁵

3.1.2 Treap Operations

The search algorithm is the usual one for binary search trees. The time for a successful search is
proportional to the depth of the node. The time for an unsuccessful search is proportional to the
depth of either its successor or its predecessor.

To insert a new node z, we start by using the standard binary search tree insertion algorithm
to insert it at the bottom of the tree. At the point, the search keys still form a search tree, but the

2J. Vuillemin, A unifying look at data structures. Commun. ACM 23:229–239, 1980.
3E. M. McCreight. Priority search trees. SIAM J. Comput. 14(2):257–276, 1985.
⁴R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica 16:464–497, 1996.
⁵C. Martínez and S. Roura. Randomized binary search trees. J. ACM 45(2):288-323, 1998. The results in this paper

are virtually identical (including the constant factors!) to the corresponding results for treaps, although the analysis
techniques are quite different.
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priorities may no longer form a heap. To fix the heap property, as long as z has smaller priority
than its parent, perform a rotation at z, a local operation that decreases the depth of z by one
and increases its parent’s depth by one, while maintaining the search tree property. Rotations
can be performed in constant time, since they only involve simple pointer manipulation.
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A right rotation at x and a left rotation at y are inverses.

The overall time to insert z is proportional to the depth of z before the rotations—we have to
walk down the treap to insert z, and then walk back up the treap doing rotations. Another way
to say this is that the time to insert z is roughly twice the time to perform an unsuccessful search
for key(z).
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Left to right: After inserting S with priority −1, rotate it up to fix the heap property.
Right to left: Before deleting S, rotate it down to make it a leaf.

To delete a node, we just run the insertion algorithm backward in time. Suppose we want to
delete node z. As long as z is not a leaf, perform a rotation at the child of z with smaller priority.
This moves z down a level and its smaller-priority child up a level. The choice of which child to
rotate preserves the heap property everywhere except at z. When z becomes a leaf, chop it off.

We sometimes also want to split a treap T into two treaps T< and T> along some pivot key π,
so that all the nodes in T< have keys less than π and all the nodes in T> have keys bigger then
π. A simple way to do this is to insert a new node z with key(z) = π and priority(z) = −∞.
After the insertion, the new node is the root of the treap. If we delete the root, the left and right
sub-treaps are exactly the trees we want. The time to split at π is roughly twice the time to
(unsuccessfully) search for π.

Similarly, we may want to join two treaps T< and T>, where every node in T< has a smaller
search key than any node in T>, into one super-treap. Merging is just splitting in reverse—create
a dummy root whose left sub-treap is T< and whose right sub-treap is T>, rotate the dummy
node down to a leaf, and then cut it off.

The cost of each of these operations is proportional to the depth of some node v in the treap.

• Search: A successful search for key k takes O(depth(v)) time, where v is the node with
key(v) = k. For an unsuccessful search, let v− be the inorder predecessor of k (the node
whose key is just barely smaller than k), and let v+ be the inorder successor of k (the
node whose key is just barely larger than k). Since the last node examined by the binary
search is either v− or v+, the time for an unsuccessful search is either O(depth(v+)) or
O(depth(v−)).
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• Insert/Delete: Inserting a new node with key k takes either O(depth(v+)) time or
O(depth(v−)) time, where v+ and v− are the predecessor and successor of the new node.
Deletion is just insertion in reverse.

• Split/Join: Splitting a treap at pivot value k takes either O(depth(v+)) time or O(depth(v−))
time, since it costs the same as inserting a new dummy root with search key k and priority
−∞. Merging is just splitting in reverse.

In the worst case, the depth of an n-node treap is Θ(n), so each of these operations has a
worst-case running time of Θ(n).

3.1.3 Random Priorities

A randomized treap is a treap in which the priorities are independently and uniformly distributed
continuous random variables. Whenever we insert a new search key into the treap, we generate a
random real number between (say) 0 and 1 and use that number as the priority of the new node.
The only reason we’re using real numbers is so that the probability of two nodes having the
same priority is zero, since equal priorities make the analysis slightly messier. (In practice, we
could just choose random integers from a large range like 0 to 231 − 1 and break ties arbitrarily;
occasional ties have almost no practical effect on the performance of the data structure.) Also,
since the priorities are independent, each node is equally likely to have the smallest priority.

The cost of all the operations we discussed—search, insert, delete, split, join—is proportional
to the depth of some node in the tree. Here we’ll see that the expected depth of any node
is O(log n), which implies that the expected running time for any of those operations is also
O(log n).

Let xk denote the node with the kth smallest search key. To simplify notation, let us write
i ↑ k (read “i above k”) to mean that x i is a proper ancestor of xk. Since the depth of v is just
the number of proper ancestors of v, we have the following identity:

depth(xk) =
n
∑

i=1

[i ↑ k].

(Again, we’re using Iverson bracket notation.) Now we can express the expected depth of a node
in terms of these indicator variables as follows.

E[depth(xk)] =
n
∑

i=1

E
�

[i ↑ k]
�

=
n
∑

i=1

Pr[i ↑ k]

(Just as in our analysis of matching nuts and bolts, we’re using linearity of expectation and the
fact that E[X ] = Pr[X = 1] for any zero-one variable X ; in this case, X = [i ↑ k].) So to compute
the expected depth of a node, we just have to compute the probability that some node is a proper
ancestor of some other node.

Fortunately, we can do this easily once we prove a simple structural lemma. Let X (i, k) denote
either the subset of treap nodes {x i , x i+1, . . . , xk} or the subset {xk, xk+1, . . . , x i}, depending on
whether i < k or i > k. The order of the arguments is unimportant; the subsets X (i, k) and
X (k, i) are identical. The subset X (1, n) = X (n, 1) contains all n nodes in the treap.

Lemma 1. For all i 6= k, we have i ↑ k if and only if x i has the smallest priority among all nodes
in X (i, k).
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Proof: There are four cases to consider.
If x i is the root, then i ↑ k, and by definition, it has the smallest priority of any node in the

treap, so it must have the smallest priority in X (i, k).
On the other hand, if xk is the root, then k ↑ i, so i 6 ↑ k. Moreover, x i does not have the

smallest priority in X (i, k)— xk does.
On the gripping hand⁶, suppose some other node x j is the root. If x i and xk are in different

subtrees, then either i < j < k or i > j > k, so x j ∈ X (i, k). In this case, we have both i 6 ↑ k and
k 6 ↑ i, and x i does not have the smallest priority in X (i, k)— x j does.

Finally, if x i and xk are in the same subtree, the lemma follows from the inductive hypothesis
(or, if you prefer, the Recursion Fairy), because the subtree is a smaller treap. The empty treap is
the trivial base case. �

Since each node in X (i, k) is equally likely to have smallest priority, we immediately have the
probability we wanted:

Pr[i ↑ k] =
[i 6= k]
|k− i|+ 1

=























1
k− i + 1

if i < k

0 if i = k

1
i − k+ 1

if i > k

To compute the expected depth of a node xk, we just plug this probability into our formula and
grind through the algebra.

E[depth(xk)] =
n
∑

i=1

Pr[i ↑ k] =
k−1
∑

i=1

1
k− i + 1

+
n
∑

i=k+1

1
i − k+ 1

=
k
∑

j=2

1
j
+

n−k+1
∑

i=2

1
j

= Hk − 1+Hn−k+1 − 1

< ln k+ ln(n− k+ 1)− 2

< 2 ln n− 2.

In conclusion, every search, insertion, deletion, split, and join operation in an n-node randomized
binary search tree takes O(log n) expected time.

Since a treap is exactly the binary tree that results when you insert the keys in order of
increasing priority, a randomized treap is the result of inserting the keys in random order. So
our analysis also automatically gives us the expected depth of any node in a binary tree built by
random insertions (without using priorities).

3.1.4 Randomized Quicksort (Again!)

We’ve already seen two completely different ways of describing randomized quicksort. The first
is the familiar recursive one: choose a random pivot, partition, and recurse. The second is a
less familiar iterative version: repeatedly choose a new random pivot, partition whatever subset
contains it, and continue. But there’s a third way to describe randomized quicksort, this time in
terms of binary search trees.

⁶See Larry Niven and Jerry Pournelle, The Gripping Hand, Pocket Books, 1994.
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RandomizedQuicksort:
T ← an empty binary search tree
insert the keys into T in random order
output the inorder sequence of keys in T

Our treap analysis tells us is that this algorithm will run in O(n log n) expected time, since each
key is inserted in O(log n) expected time.

Why is this quicksort? Just like last time, all we’ve done is rearrange the order of the
comparisons. Intuitively, the binary tree is just the recursion tree created by the normal version of
quicksort. In the recursive formulation, we compare the initial pivot against everything else and
then recurse. In the binary tree formulation, the first “pivot” becomes the root of the tree without
any comparisons, but then later as each other key is inserted into the tree, it is compared against
the root. Either way, the first pivot chosen is compared with everything else. The partition splits
the remaining items into a left subarray and a right subarray; in the binary tree version, these
are exactly the items that go into the left subtree and the right subtree. Since both algorithms
define the same two subproblems, by induction, both algorithms perform the same comparisons.

We even saw the probability 1/(|k− i|+ 1) before, when we were talking about sorting nuts
and bolts with a variant of randomized quicksort. In the more familiar setting of sorting an array
of numbers, the probability that randomized quicksort compares the ith largest and kth largest
elements is exactly 2/(|k− i|+ 1). The binary tree version of quicksort compares x i and xk if
and only if i ↑ k or k ↑ i, so the probabilities are exactly the same.

3.2 Skip Lists

Skip lists, first discovered by Bill Pugh in the late 1980’s,⁷ have many of the usual desirable
properties of balanced binary search trees, but their superficial structure is very different.

At a high level, a skip list is just a sorted linked list with some random shortcuts. To do a
search in a normal singly-linked list of length n, we obviously need to look at n items in the worst
case. To speed up this process, we can make a second-level list that contains roughly half the
items from the original list. Specifically, for each item in the original list, we duplicate it with
probability 1/2. We then string together all the duplicates into a second sorted linked list, and
add a pointer from each duplicate back to its original. Just to be safe, we also add sentinel nodes
at the beginning and end of both lists.

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

A linked list with some randomly-chosen shortcuts.

Now we can find a value x in this augmented structure using a two-stage algorithm. First,
we scan for x in the shortcut list, starting at the −∞ sentinel node. If we find x , we’re done.
Otherwise, we reach some value bigger than x and we know that x is not in the shortcut list. Let
w be the largest item less than x in the shortcut list. In the second phase, we scan for x in the
original list, starting from w. Again, if we reach a value bigger than x , we know that x is not in
the data structure.

Since each node appears in the shortcut list with probability 1/2, the expected number of
nodes examined in the first phase is at most n/2. Only one of the nodes examined in the second

⁷William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM 33(6):668–676, 1990.
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0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

Searching for 5 in a list with shortcuts.

phase has a duplicate. The probability that any node is followed by k nodes without duplicates is
2−k, so the expected number of nodes examined in the second phase is at most 1+

∑

k≥0 2−k = 2.
Thus, by adding these random shortcuts, we’ve reduced the cost of a search from n to n/2+ 2,
roughly a factor of two in savings.

3.2.1 Recursive Random Shortcuts

Now there’s an obvious improvement—add shortcuts to the shortcuts, and repeat recursively.
That’s exactly how skip lists are constructed. For each node in the original list, we repeatedly
flip a coin until we get tails. Each time we get heads, we make a new copy of the node. The
duplicates are stacked up in levels, and the nodes on each level are strung together into sorted
linked lists. Each node v stores a search key key(v), a pointer down(v) to its next lower copy,
and a pointer right(v) to the next node in its level.

0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

A skip list is a linked list with recursive random shortcuts.

The search algorithm for skip lists is very simple. Starting at the leftmost node L in the
highest level, we scan through each level as far as we can without passing the target value x , and
then proceed down to the next level. The search ends when we either reach a node with search
key x or fail to find x on the lowest level.

SkipListFind(x , L):
v← L
while (v 6= Null and key(v) 6= x)

if key(right(v))> x
v← down(v)

else
v← right(v)

return v

Intuitively, since each level of the skip lists has about half the number of nodes as the previous
level, the total number of levels should be about O(log n). Similarly, each time we add another
level of random shortcuts to the skip list, we cut the search time roughly in half, except for a
constant overhead, so O(log n) levels should give us an overall expected search time of O(log n).
Let’s formalize each of these two intuitive observations.
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0 1 2 3 4 5 6 7 8 9 ∞–∞

0 1 3 6 7 9 ∞–∞

1 6 7 ∞–∞

1 7 ∞–∞

7 ∞–∞

∞–∞

Searching for 5 in a skip list.

3.2.2 Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume the keys
are the integers 1 through n. Let L(x) be the number of levels of the skip list that contain some
search key x , not counting the bottom level. Each new copy of x is created with probability 1/2
from the previous level, essentially by flipping a coin. We can compute the expected value of
L(x) recursively—with probability 1/2, we flip tails and L(x) = 0; and with probability 1/2, we
flip heads, increase L(x) by one, and recurse:

E[L(x)] =
1
2
· 0+

1
2

�

1+ E[L(x)]
�

Solving this equation gives us E[L(x )] = 1.
In order to analyze the expected worst-case cost of a search, however, we need a bound on

the number of levels L =maxx L(x). Unfortunately, we can’t compute the average of a maximum
the way we would compute the average of a sum. Instead, we derive a stronger result: The
depth of a skip list storing n keys is O(logn) with high probability. “High probability” is a
technical term that means the probability is at least 1−1/nc for some constant c ≥ 1; the hidden
constant in the O(log n) bound could depend on c.

In order for a search key x to appear on level `, it must have flipped ` heads in a row when it
was inserted, so Pr[L(x ) ≥ `] = 2−`. The skip list has at least ` levels if and only if L(x)≥ ` for
at least one of the n search keys.

Pr[L ≥ `] = Pr
�

(L(1)≥ `) ∨ (L(2)≥ `) ∨ · · · ∨ (L(n)≥ `)
�

Using the union bound — Pr[A∨ B]≤ Pr[A] + Pr[B] for any random events A and B — we can
simplify this as follows:

Pr[L ≥ `] ≤
n
∑

x=1

Pr[L(x)≥ `] = n · Pr[L(x)≥ `] =
n
2`

.

When ` ≤ lg n, this bound is trivial. However, for any constant c > 1, we have a strong upper
bound

Pr[L ≥ c lg n]≤
1

nc−1
.

We conclude that with high probability, a skip list has O(logn) levels.
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This high-probability bound indirectly implies a bound on the expected number of levels.
Some simple algebra gives us the following alternate definition for expectation:

E[L] =
∑

`≥0

` · Pr[L = `] =
∑

`≥1

Pr[L ≥ `]

Clearly, if ` < `′, then Pr[L(x) ≥ `] > Pr[L(x) ≥ `′]. So we can derive an upper bound on the
expected number of levels as follows:

E[L(x)] =
∑

`≥1

Pr[L ≥ `] =
lg n
∑

`=1

Pr[L ≥ `] +
∑

`≥lg n+1

Pr[L ≥ `]

≤
lg n
∑

`=1

1 +
∑

`≥lg n+1

n
2`

= lg n+
∑

i≥1

1
2i

[i = `− lg n]

= lgn + 2

So in expectation, a skip list has at most two more levels than an ideal version where each level
contains exactly half the nodes of the next level below. Notice that this is an additive penalty
over a perfectly balanced structure, as opposed to treaps, where the expected depth is a constant
multiple of the ideal lg n.

3.2.3 Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the algorithm backwards.
SkipListFind takes the output from SkipListFind as input and traces back through the data

structure to the upper left corner. Skip lists don’t really have up and left pointers, but we’ll
pretend that they do so we don’t have to write ‘ v←down(v) ’ or ‘ v←right(v) ’.⁸

SkipListFind (v):
while (level(v) 6= L)

if up(v) exists
v← up(v)

else
v← left(v)

Now for every node v in the skip list, up(v) exists with probability 1/2. So for purposes of
analysis, SkipListFind is equivalent to the following algorithm:

FlipWalk(v):
while (v 6= L)

if CoinFlip= Heads
v← up(v)

else
v← left(v)

⁸ LeonardodaVinciwroteallhisnotesusingmirror-writing,butnotbecausehewantedtokeephisdiscoveries
secret.Hejusthadreallybadarthritisinhisrighthand!
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Obviously, the expected number of heads is exactly the same as the expected number of Tails.
Thus, the expected running time of this algorithm is twice the expected number of upward
jumps. But we already know that the number of upward jumps is O(log n) with high probability.
It follows the running time of FlipWalk is O(log n) with high probability (and therefore in
expectation).

Exercises

1. Prove that a treap is exactly the binary search tree that results from inserting the nodes
one at a time into an initially empty tree, in order of increasing priority, using the standard
textbook insertion algorithm.

2. Consider a treap T with n vertices. As in the notes above, identify nodes in T by the ranks
of their search keys; thus, ‘node 5’ means the node with the 5th smallest search key. Let
i, j, and k be integers such that 1≤ i ≤ j ≤ k ≤ n.

(a) Prove that the expected number of proper descendants of any node in a treap is
exactly equal to the expected depth of that node.

(b) The left spine of a binary tree is a path starting at the root and following only left-child
pointers. What is the expected number of nodes in the left spine of T?

(c) What is the expected number of leaves in T? [Hint: What is the probability that
node k is a leaf?]

(d) What is the expected number of nodes in T with two children?

(e) What is the expected number of nodes in T with exactly one child?
?(f) What is the expected number of nodes in T with exactly one grandchild?
(g) Define the priority rank of a node in T to be one more than the number of nodes with

smaller priority. For example, the root of T always has priority rank 1, and one of the
children of the root has priority rank 2. What is the expected priority rank of node i?

(h) What is the expected priority rank of the left child of the root (given that such a node
exists)?

?(i) What is the expected priority rank of the leftmost grandchild of the root (given that
such a node exists)?

?(j) What is the expected priority rank of a node with depth d?

(k) What is the exact probability that node j is a common ancestor of node i and node k?

(l) What is the exact expected length of the unique path in T from node i to node k?

(m) What is the expected (key) rank of the leftmost leaf in T?

(n) What is the expected (key) rank of the leftmost node in T with two children (given
that such a node exists)?

(o) What is the probability that T has no nodes with two children?

3. Recall that a priority search tree is a binary tree in which every node has both a search key
and a priority, arranged so that the tree is simultaneously a binary search tree for the keys
and a min-heap for the priorities. A heater is a priority search tree in which the priorities

10
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Casus ubique valet; semper tibi pendeat hamus:
Quo minime credas gurgite, piscis erit.

[Luck affects everything. Let your hook always be cast.
Where you least expect it, there will be a fish.]

— Publius Ovidius Naso [Ovid], Ars Amatoria, Book III (2 AD)

There is no sense being precise
when you don’t even know what you’re talking about.

— Attributed to John von Neumann

6 Filtering and Streaming

The randomized algorithms and data structures we have seen so far always produce the correct
answer but have a small probability of being slow. In this lecture, we will consider randomized
algorithms that are always fast, but return the wrong answer with some small probability.1 More
generally, we are interested in tradeoffs between the (likely) efficiency of the algorithm and the
(likely) quality of its output.

Specifically, we introduce an error rate δ and analyze the running time required to guarantee
the output is correct with probability 1−δ. For “high probability” correctness, we need δ < 1/nc

for some constant c. In practice, it may be sufficient (or even necessary) to set δ to a small
constant; for example, setting δ = 1/1000 means the algorithm produces correct results at least
99.9% of the time.

6.1 Bloom Filters

Bloom filters are a natural variant of hashing proposed by Burton Bloom in 1970 as a mechanism
for supporting membership queries in sets. In strict accordance with Stigler’s Law of Autonomy,
Bloom filters are identical to Zatocoding, a coding system for library cards developed by Calvin
Mooers in 1947. (Mooers was the person who coined the phrase “information retrieval”.)
A probabilistic analysis of Zatocoding appears in the personal notes of cybernetics pioneer W. Ross
Ashby from 1960.

A Bloom filter (or Zatocode) for a set X of n items from some universe U allows one to test
whether a given item x ∈ U is an element of X . Of course we can already do this with hash tables
in O(1) expected time, using O(n) space. Bloom (and Mooers) observed that by allowing false
positives—occasionally reporting x ∈ X when in fact x 6∈ X—we can still answer queries in O(1)
expected time using considerably less space. False positives make Bloom filters unsuitable as an
exact membership data structure, but because of their speed and low false positive rate, they are
commonly used as filters or sanity checks for more complex data structures.

A Bloom filter consists of an array B[0 .. m − 1] of bits, together with k hash functions
h1, h2, . . . , hk : U→ {0, 1, . . . , m− 1}. For purposes of theoretical analysis, we assume the hash
functions hi are mutually independent, ideal random functions. This assumption is of course
unsupportable in practice, but may be necessary to guarantee theoretical performance. Unlike
many other types of hashing, nobody knows whether the same theoretical guarantees can be
achieved using practical hash functions with more limited independence.2 Fortunately, the actual

1Some textbooks (and Wikipedia) use the terms “Las Vegas” and “Monte Carlo” algorithms to respectively describe
these two types of randomized algorithms. Most algorithms researchers don’t.

2PhD thesis, anyone?
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real-world behavior of Bloom filters appears to be consistent with this unrealistic theoretical
analysis.

A Bloom filter for a set X = {x1, x2, . . . , xn} is initialized by setting the bit B[h j(x i)] to 1 for
all indices i and j. Because of collisions, some bits may be set more than once, but that’s fine.

MakeBloomFilter(X ):
for h← 0 to m− 1

B[h]← 0
for i← 1 to n

for j← 1 to k
B[h j(x i)]← 1

return B

Given a new item y , the Bloom filter determines whether y ∈ X by checking each bit B[h j(y)].
If any of those bits is 0, the Bloom filter correctly reports that y 6∈ X However, if all bits are 1, the
Bloom filter reports that y ∈ X , although this is not necessarily correct.

BloomMembership(B, y):
for j← 1 to k

if B[h j(y)] = 0
return False

return Maybe

One nice feature of Bloom filters is that the various hash functions hi can be evaluated in
parallel on a multicore machine.

6.2 False Positive Rate

Let’s estimate the probability of a false positive, as a function of the various parameters n, m,
and k. For all indices h, i, and j, we have Pr[h j(x i) = h] = 1/m, so ideal randomness gives us

Pr[B[h] = 0] =
�

1−
1
m

�kn

≈ e−kn/m

for every index h. Using this exact probability is rather unwieldy; to keep things sane, we will
use the close approximation p := e−kn/m instead.

The expected number of 0-bits in the Bloom filter is approximately mp; moreover, Chernoff
bounds imply that the number of 0-bits is close to mp with very high probability. Thus, the
probabililty of a false positive is very close3 to

(1− p)k = (1− e−kn/m)k.

If all other parameters are held constant, then the false positive rate increases with n (the number
of items) and decreases with m (the number of bits). The dependence on k (the number of hash
functions) is a bit more complicated, but we can derive the best value of k for given n and m as
follows. Consider the logarithm of the false-positive rate:

ln
�

(1− p)k
�

= k ln(1− p) = −
m
n

ln p ln(1− p).

By symmetry, this expression is minimized when p = 1/2. We conclude that, the optimal
number of hash functions is k = ln 2 · (m/n), which would give us the false positive rate

3This analysis, originally due to Bloom, assumes that certain events are independent even though they are not; as
a result, the estimate given here is slightly below the true false positive rate.
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(1/2)ln 2(m/n) ≈ (0.61850)m/n. Of course, in practice, k must be an integer, so we cannot achieve
precisely this rate, but we can get reasonably close (at least if m� n).

Finally, the previous analysis implies that we can achieve any desired false positive rate δ > 0
using a Bloom filter of size

m=
¡

lg(1/δ)
ln2

n
¤

= Θ(n log(1/δ))

that uses with k = dlg(1/δ)e hash functions. For example, we can achieve a 1% false-positive rate
using a Bloom filter of size 10n bits with 7 hash functions; in practice, this is considerably fewer
bits than we would need to store all the elements of S explicitly. With a 32n-bit table (equivalent
to one integer per item) and 22 hash functions, we get a false positive rate of just over 2 · 10−7.

ÆÆÆ Deletions via counting filters? Key-value pairs via Bloomier filters? Other extensions?

6.3 Streaming Algorithms

A data stream is an extremely long sequence S of items from some universe U that can be read
only once, in order. Good examples of data streams include the sequence of packets that pass
through a network router, the sequence of searches at google.com, the sequence of all bids on the
New York Stock Exchange, and the sequence of humans passing through the Shinjuku Railway
Station in Tokyo. Standard algorithms are not appropriate for data streams; there is simply too
much data to store, and it arrives too quickly for any complex computations.

A streaming algorithm processes each item in a data stream stream as it arrives, maintaining
some summary information in a local data structure. The basic structure of every streaming
algorithm is the following:

DoSomething(S):
〈〈initialize〉〉
while S is not done

x ← next item in S
〈〈do something fast with x〉〉

return 〈〈something〉〉

Ideally, neither the running time per item nor the space used by the data structure depends
on the overall length of the stream; viewed as algorithms in the traditional sense, all streaming
algorithms run in constant time! Somewhat surprisingly, even within this very restricted model,
it is possible to compute interesting properties of the stream using randomization, provided we
are willing to tolerate some errors in the output.

6.4 The Count-Min Sketch

As an example, consider the following problem: At any point during the stream, we want to
estimate the number of times that an arbitrary item x ∈ U has appeared in the stream so far.
This problem can be solved with a variant of Bloom filters called the count-min sketch, first
published by Graham Cormode and S. Muthu Muthukrishnan in 2005.

The count-min sketch consists of a w× d array of counters (all initially zero) and d hash
functions h1, h2, . . . , hd : U → [m], drawn independently and uniformly at random from a
2-uniform family of hash functions. Each time an item x arrives in the stream, we call
CMIncrement(x). Whenever we want to estimate the number of occurrences of an item x so
far, we call CMEstimate(x).

3
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CMIncrement(x):
for i← 1 to d

j← hi(x)
Count[i, j]← Count[i, j] + 1

CMEstimate(x):
est←∞
for i← 1 to d

j← hi(x)
est←min

�

est,Count[i, j]
	

return est

If we set w := de/εe and d := dln(1/δ)e, then the data structure uses O(1
ε log 1

δ ) space and
processes updates and queries in O(log 1

δ ) time.
Let fx be the true frequency (number of occurrences) of x , and let f̂x be the value returned

by CMEstimate. It is easy to see that fx ≤ f̂x ; we can never return a value smaller than the
actual number of occurrences of x . We claim that Pr[ f̂x > fx + εN] < δ, where N is the total
length of the stream. In other words, our estimate is never too small, and with high probability,
it isn’t a significant overestimate either. (Notice that the error here is additive; the estimates or
truly infrequent items may be much larger than their true frequencies.)

For any items x 6= y and any index j, we define an indicator variable Xi,x ,y = [hi(x ) = hi(y)];
because the hash functions hi are universal, we have

E[X i,x ,y] = Pr[hi(x) = hi(y)] =
1
w

.

Let Xi,x :=
∑

y 6=x Xi,x ,y · fy denote the total number of collisions with x in row i of the table.
Then we immediately have

Count[i, hi(x)] = fx + X i,x ≥ fx .

On the other hand, linearity of expectation implies

E[X i,x] =
∑

y 6=x

E[X i,x ,y] · f y =
1
w

∑

y 6=x

f y ≤
N
w

.

Now Markov’s inequality implies

Pr[ f̂x > fx + εN] = Pr[X i,x > εN for all i] [definition]

= Pr[X1,x > εN]
d [independence of hi ’s]

≤
�

E[X1,x]

εN

�d

[Markov’s inequality]

≤
�

N/w
εN

�d

=
�

1
wε

�d

[derived earlier]

Now setting w = de/εe and d = dln(1/δ)e gives us Pr[âx > ax + εN] ≤ (1/e)ln(1/δ) = δ, as
claimed.

6.5 Estimating Distinct Items

ÆÆÆ Write this, possibly as a simpler replacement for the count-min sketch. AMS estimator:
2z+1/2 where z = max{zeros(x) | x ∈ S}? Or stick with the Flajolet-Martin/Bar-Yossef-et-al
estimator in the exercises? Median amplification.

Estimating larger moments?
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