
Geometric Objects

• Scalars: 1-d poin

• Point: location in d-dimensional space. d-tuple of
scalars. P=(x1,x2,x3...,xd)

- arrays: double p[d];

- structures: struct { double x, y, z; }

- good compromise:

• Vectors: direction and magnitude (length) in that
direction.

struct Point {
 const int DIM = 3;
 double coord[DIM];
};

Lines, Segments, Rays

• Line: infinite in both directions

- y = mx + b [slope m, intercept b]

- ax + by = c

- In higher dimensions, any two points define a line.

• Ray: infinite in one direction

• Segment: finite in both directions

• Polygons: cycle of joined line segments

- simple if they don’t corss

- convex if any line segment connecting two points on its
surface lies entirely within the shape.

- convex hull of a set of points P: smallest convex set that
contains P

What’s a good
representation
for a polygon?

circularly
linked list
of points

Types of Queries

• Is the object in the set?

• What is the closest object to a given point?

• What objects does a query object intersect with?

• What is the first object hit by the given ray? [Ray
shooting]

• What objects contain P?

• What objects are in a given range? [range queries]

Applications of Geometric / Spatial Data Structs.

• Computer graphics, games, movies

• computer vision, CAD, street maps (google maps /
google Earth)

• Human-computer interface design (windowing
systems)

• Virtual reality

• Visualization (graphing complex functions)

Why are geometric (spatial) data different?

• In 1-d:

- we usually had a natural ordering on the keys (integers,
alphabetical order, ...)

- But how do you order a set of points?

• Take a step back:

- In the 1-d case, how did we use this ordering?

- Mostly, it gave us an implicit was to partition the data.

• So:

- Instead of explicitly ordering and implicitly partitioning,
we usually: explicitly partition.

- Partitioning is very natural in geometric spaces.

No natural ordering...

Why are geometric (spatial) data different?

• In 1-d:

- usually the static case (all data known at start) is not very
interesting

- can be solved by sorting the data
(heaps => sorted lists, balanced trees => binary search)

• With geometric data,

- it’s sometimes hard to answer queries even if all data are
known (what’s the analog of binary search for a set of
points?)

- Therefore, emphasize updates less (though we’ll still
consider them)

- Model: preprocess the data (may be “slow” like
O(n log n)) and then have efficient answers to queries.

Static case also interesting...

Point Data Sets – Today

• Data we want to store is a collection of d-
dimensional points.

- We’ll focus on 2-d for now (hard to draw anything else)

• Simplest query: “Is point P in the collection?”

PR Quadtrees

PR Quadtrees (Point-Region)

• Recursively subdivide cells into 4 equal-sized
subcells until a cell has only one point in it.

• Each division results in a single node with 4 child
pointers.

• When cell contains no points, add special “no-point”
node.

• When cell contains 1 point, add node containing
point + data associated with that point (perhaps a
pointer out to a bigger data record).

PR Quadtrees Internal Nodes

NE
SE

SW
NW

NENW

SESW

PR Quadtrees

NE
SE

SW
NW

L

M
N

P
Q

R

L

M

N P

Q

R

Find in PR Quadtrees

L

M
N

P
Q

R

L

M

N P

Q

R

Insert in PR Quadtrees

• insert(P):

- find(P)

- if cell where P would go is empty, then add P to it
(change from to)

- If cell where P would go has a point Q in it, repeatedly
split until P is separated from Q. Then add P to correct
(empty) cell.

• How many times might you have to split?
unbounded in n

Delete in PR Quadtrees

• delete(P):

- find(P)

- If cell that would contain P is empty, return not found!

- Else, remove P (change to).

- If at most 1 siblings of the cell has a point, merge siblings
into a single cell. Repeat until at least two siblings
contain a point.

• A cell “has a point” if it is or .

Features of PR Quadtrees

• Locations of splits don’t depend on exact point
values (it is a partitioning of space, not of the set of
keys)

• Leaves should be treated differently that internal
nodes because:

- Empty leaf nodes are common,

- Only leaves contain data

• Bounding boxes constructed on the fly and passed
into the recursive calls.

• Extension: allow a constant b > 1 points in a cell
(bucket quadtrees)

Height Lemma

• if

- c is the smallest distance between any two points

- s is the side length of the initial square containing all the
points

• Then

- the depth of a quadtree is ≤ log(s/c) + 3/2

internal node
of depth i

side length =
s/2i

diagonal
length =
s√2/2i

Therefore, s√2/2i ≥ c

c Hence,
i ≤ log s√2/c = log(s/c) + 1/2

Height of tree is max depth of
internal node + 1, so height ≤
log(s/c) + 3/2

An Advantage of PR quadtrees

• Since partition locations don’t depend on the data
points, two different sets of data can be stored in two
separate PR quadtrees

- The partition locations will be “the same”

- E.g. a quadrant Q1 in T1 is either the same as, a superset
of, or a subset of any quadrant Q2 in T2

- You cannot get partially overlapping quadrants

- Recursive algorithms cleaner, e.g.

Issues with PR Quadtrees

• Can be inefficient:

- two closely spaced points may require a lot of levels in
the tree to split them

- Have to divide up space finely enough so that they end
up in different cells

• Generalizing to large dimensions uses a lot of space.

- octtree = Quadtree in 3-D (each node has 8 pointers)

In d
dimensions,

each node
has 2d

pointers!

d = 20 =>
nodes will ~
1 million
children

Split & Merge Decomposition

Subdivide into
uniform blocks

Split & Merge Decomposition

Subdivide into
uniform blocks

Merge similar
brothers

Split & Merge Decomposition

Subdivide into
uniform blocks

Merge similar
brothers

Subdivide non-
homogenous cells

Split & Merge Decomposition

Subdivide into
uniform blocks

Merge similar
brothers

Subdivide non-
homogenous cells

Group identical
blocks to get regions

MX Quadtrees

• Good for image data

- smallest element is known, e.g. a pixel

- Space is recursively subdivided until smallest unit is
reached:

- Always subdivide to smallest unit:

MX (MatriX) Quadtrees

• Points are always at leaves

• All leaves with points are the same depth:

Shape of final tree
independent of
insertion order

MX Quadtree Notes & Applications

• Shape of final tree independent of insertion order

• Can be used to represent a matrix (especially 0/1 matrix)

- recursive decomposition of matrix (given by the MX tree) can be
used for faster matrix transposition and multiplication

• Compression and transmission of images

- Hierarchy => progressive transmission:

- transmitting high levels of the tree gives you a rough image

- lower levels gives you more detail

• Requires points come from a finite & discrete domain

Point Quadtrees

• Similar to PR Quadtrees, except we split on points in
the data set, rather than evenly dividing space.

• Handling infinite space:

- Special infinity value => allow rectangles to extend to
infinity in some directions

- Assume global bounding box

Point Quadtrees

Insertion into Point Quadtrees

• Insert(P):

- Find the region that would contain the point P.

- If P is encountered during the search, report Duplicate!

- Add point where you fall off the tree.

(35,40)
NW NE

SW SENW NE SW SE

35,40

Deletion from Point Quadtrees

• Reinsert all the points in the subtree rooted at the
deleted node P.

• Can be expensive.

• There are some more clever ways to delete that
work well under some assumptions about the data.

Some performance facts (random data):

• Cost of building a point quadtree empirically shown
to be O(n log4 n) [Finkel,Bentley] with random
insertions

• Expected height is O(log n).

• Expected cost of inserting the ith node into a d-
dimensional quad tree is (2/d)ln i + O(1).

More balanced Point Quadtrees

• Optimized Point Quadtree: want no subtree rooted at node A to
contain more than half the nodes (points) under A.

• Assume you know all the data at the start:
x1 y1
x2 y2
x3 y3
...

• Sort the points lexicographically: primary key is x-coordinate,
secondary key is y-coordinate.

• Make root = the median of this list (middle element)
=> half the elements will be to the left of the root, half to the
right.

• Recursively apply to top and bottom halves of the list.

Pseudo Point Quadtrees

• Like PR quadtrees: splits don’t occur at data points.

• Like Point Quadtrees: actual key values determine
splits

• Determine a point that splits up the dataset in the
most balanced way.

- Overmars & van Leeuwen: for any N points, there is a
partitioning point so that each quadrant contains ≤
ceil(N/(d+1)) points.

Comparison of Point-based & Trie-based
Quadtrees

• “Trie-based” = MX and PR quadtrees

- rely on regular space decomposion

- data points associated only with leaf nodes

- simple deletion

- shape independent of insertion order

• Point-based quadtrees

- data points in internal nodes

- often have fewer nodes

- harder deletion

- shape depends on insertion order

Problems with Point Quadtrees

• May not be balanced...

- But expected to be if points are randomly inserted.

• Size is bounded in n.

- Partitioning key space rather than geometric space.

- Because each node contains a point, you have at most n
nodes.

• But may have lots of unused pointers if d is large!

• Solution is kd-trees.

