Geometric Objects

- Scalars: 1-d poin
- Point: location in d-dimensional space. d-tuple of scalars. $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots, \mathrm{x}_{\mathrm{d}}\right)$
- arrays: double p[d];
- structures: struct \{ double x, y, z; \}
- good compromise:

```
struct Point {
    const int DIM = 3;
    double coord[DIM];
};
```

- Vectors: direction and magnitude (length) in that direction.

Lines, Segments, Rays

- Line: infinite in both directions
- $\quad y=m x+b \quad$ [slope m, intercept b]
- $\quad a x+b y=c$
- In higher dimensions, any two points define a line.
- Ray: infinite in one direction
- Segment: finite in both directions
- Polygons: cycle of joined line segments
- simple if they don't corss

What's a good representation for a polygon?

- convex if any line segment connecting two points on its surface lies entirely within the shape.
- convex hull of a set of points P: smallest convex set that circularly linked list contains P

Types of Queries

- Is the object in the set?
- What is the closest object to a given point?
- What objects does a query object intersect with?
- What is the first object hit by the given ray? [Ray shooting]
- What objects contain P?
- What objects are in a given range? [range queries]

Applications of Geometric / Spatial Data Structs.

- Computer graphics, games, movies
- computer vision, CAD, street maps (google maps / google Earth)
- Human-computer interface design (windowing systems)
- Virtual reality
- Visualization (graphing complex functions)

Why are geometric (spatial) data different?

No natural ordering...

- In 1-d:
- we usually had a natural ordering on the keys (integers, alphabetical order, ...)
- But how do you order a set of points?
- Take a step back:
- In the 1-d case, how did we use this ordering?
- Mostly, it gave us an implicit was to partition the data.
- So:
- Instead of explicitly ordering and implicitly partitioning, we usually: explicitly partition.
- Partitioning is very natural in geometric spaces.

Why are geometric (spatial) data different?

Static case also interesting...

- In 1-d:
- usually the static case (all data known at start) is not very interesting
- can be solved by sorting the data (heaps => sorted lists, balanced trees => binary search)
- With geometric data,
- it's sometimes hard to answer queries even if all data are known (what's the analog of binary search for a set of points?)
- Therefore, emphasize updates less (though we'll still consider them)
- Model: preprocess the data (may be "slow" like $O(n \log n))$ and then have efficient answers to queries.

Point Data Sets - Today

- Data we want to store is a collection of d dimensional points.
- We'll focus on 2-d for now (hard to draw anything else)
- Simplest query: "Is point P in the collection?"

PR Quadtrees

PR Quadtrees (Point-Region)

- Recursively subdivide cells into 4 equal-sized subcells until a cell has only one point in it.
- Each division results in a single node with 4 child pointers.
- When cell contains no points, add special "no-point" node.
- When cell contains 1 point, add node containing point + data associated with that point (perhaps a pointer out to a bigger data record).

PR Quadtrees Internal Nodes

PR Quadtrees

Find in PR Quadtrees

Insert in PR Quadtrees

- insert(P):
- find(P)
- if cell where P would go is empty, then add P to it (change from \square to \square)
- If cell where P would go has a point Q in it, repeatedly split until P is separated from Q. Then add P to correct (empty) cell.
- How many times might you have to split?
unbounded in n

Delete in PR Quadtrees

- delete(P):
- find(P)
- If cell that would contain P is empty, return not found!
- Else, remove P (change \square to \square).
- If at most 1 siblings of the cell has a point, merge siblings into a single cell. Repeat until at least two siblings contain a point.
- A cell "has a point" if it is \square or \square.

Features of PR Quadtrees

- Locations of splits don't depend on exact point values (it is a partitioning of space, not of the set of keys)
- Leaves should be treated differently that internal nodes because:
- Empty leaf nodes are common,
- Only leaves contain data
- Bounding boxes constructed on the fly and passed into the recursive calls.
- Extension: allow a constant $b>1$ points in a cell (bucket quadtrees)

Height Lemma

- if
- $\quad c$ is the smallest distance between any two points
- $\quad s$ is the side length of the initial square containing all the points
- Then
- the depth of a quadtree is $\leq \log (\mathrm{s} / \mathrm{c})+3 / 2$

Therefore, $\mathrm{s} \sqrt{2} / 2^{i} \geq c$
Hence,

$$
\mathrm{i} \leq \log \mathrm{s} \sqrt{2} / \mathrm{c}=\log (\mathrm{s} / \mathrm{c})+1 / 2
$$

Height of tree is max depth of internal node +1 , so height \leq $\log (s / c)+3 / 2$

An Advantage of PR quadtrees

- Since partition locations don't depend on the data points, two different sets of data can be stored in two separate PR quadtrees
- The partition locations will be "the same"
- E.g. a quadrant Q_{1} in T_{1} is either the same as, a superset of, or a subset of any quadrant Q_{2} in T_{2}
- You cannot get partially overlapping quadrants
- Recursive algorithms cleaner, e.g.

Issues with PR Quadtrees

- Can be inefficient:
- two closely spaced points may require a lot of levels in the tree to split them
- Have to divide up space finely enough so that they end up in different cells
- Generalizing to large dimensions uses a lot of space.
- \quad octtree $=$ Quadtree in 3-D (each node has 8 pointers)

$\mathrm{d}=20=>$
nodes will ~
1 million children

Split \& Merge Decomposition

Subdivide into uniform blocks

Split \& Merge Decomposition

Subdivide into uniform blocks

Merge similar brothers

Split \& Merge Decomposition

Subdivide into uniform blocks

Merge similar brothers

Subdivide nonhomogenous cells

Split \& Merge Decomposition

Subdivide into uniform blocks

Merge similar brothers

Subdivide nonhomogenous cells

Group identical blocks to get regions

MX Quadtrees

- Good for image data
- smallest element is known, e.g. a pixel
- Space is recursively subdivided until smallest unit is reached:
- Always subdivide to smallest unit:

MX (MatriX) Quadtrees

- Points are always at leaves
- All leaves with points are the same depth:

MX Quadtree Notes \& Applications

- Shape of final tree independent of insertion order
- Can be used to represent a matrix (especially $0 / 1$ matrix)
- recursive decomposition of matrix (given by the MX tree) can be used for faster matrix transposition and multiplication
- Compression and transmission of images
- Hierarchy => progressive transmission:
- transmitting high levels of the tree gives you a rough image
- lower levels gives you more detail
- Requires points come from a finite \& discrete domain

Point Quadtrees

- Similar to PR Quadtrees, except we split on points in the data set, rather than evenly dividing space.
- Handling infinite space:
- \quad Special infinity value $=>$ allow rectangles to extend to infinity in some directions
- Assume global bounding box

Point Quadtrees

Insertion into Point Quadtrees

- Insert(P):
- Find the region that would contain the point P .
- If P is encountered during the search, report Duplicate!
- Add point where you fall off the tree.

Deletion from Point Quadtrees

- Reinsert all the points in the subtree rooted at the deleted node P.
- Can be expensive.
- There are some more clever ways to delete that work well under some assumptions about the data.

Some performance facts (random data):

- Cost of building a point quadtree empirically shown to be $\mathrm{O}(\mathrm{n} \log 4 \mathrm{n})$ [Finkel,Bentley] with random insertions
- Expected height is $\mathrm{O}(\log \mathrm{n})$.
- Expected cost of inserting the ith node into a d dimensional quad tree is $(2 / d) \ln i+\mathrm{O}(1)$.

More balanced Point Quadtrees

- Optimized Point Quadtree: want no subtree rooted at node A to contain more than half the nodes (points) under A.
- Assume you know all the data at the start:
x1 y1
x2 y2
x3 y3
- Sort the points lexicographically: primary key is x-coordinate, secondary key is y-coordinate.
- \quad Make root $=$ the median of this list (middle element) $=>$ half the elements will be to the left of the root, half to the right.
- Recursively apply to top and bottom halves of the list.

Pseudo Point Quadtrees

- Like PR quadtrees: splits don't occur at data points.
- Like Point Quadtrees: actual key values determine splits
- Determine a point that splits up the dataset in the most balanced way.
- Overmars \& van Leeuwen: for any N points, there is a partitioning point so that each quadrant contains \leq ceil(N/(d+1)) points.

Comparison of Point-based \& Trie-based Quadtrees

- "Trie-based" = MX and PR quadtrees
- rely on regular space decomposion
- data points associated only with leaf nodes
- simple deletion
- shape independent of insertion order
- Point-based quadtrees
- data points in internal nodes
- often have fewer nodes
- harder deletion
- shape depends on insertion order

Problems with Point Quadtrees

- May not be balanced...
- But expected to be if points are randomly inserted.
- Size is bounded in n.
- Partitioning key space rather than geometric space.
- Because each node contains a point, you have at $\operatorname{most} n$ nodes.
- But may have lots of unused pointers if d is large!
- Solution is $k d$-trees.

