
kd-Trees

• Invented in 1970s by Jon Bentley

• Name originally meant “3d-trees, 4d-trees, etc”
where k was the # of dimensions

• Now, people say “kd-tree of dimension d”

• Idea: Each level of the tree compares against 1
dimension.

• Let’s us have only two children at each node
(instead of 2d)

kd-trees

• Each level has a “cutting
dimension”

• Cycle through the dimensions
as you walk down the tree.

• Each node contains a point
P = (x,y)

• To find (x’,y’) you only
compare coordinate from the
cutting dimension

- e.g. if cutting dimension is x,
then you ask: is x’ < x?

x

y

x

y

x

10,12

35,45

kd-tree example

x

y

x

y

5,25

50,30

70,70

30,40

(30,40)

(5,25)

(70,70)

(10,12)

(50,30)

(35,45)

insert: (30,40), (5,25), (10,12), (70,70), (50,30), (35,45)

kd-Trees vs. Quadtrees, another view

g

p1 p1

c3 c4c2c1

Consider a 3-d data set

Octtree
kd-tree

kd-tree splits the decision up over d levels
don’t have to represent levels (pointers) that you don’t
need

Quadtrees: one point determines all splits
kd-trees: flexibility in how splits are chosen

x

y

z

kd-tree Variants

• How do you pick the cutting dimension?

- kd-trees cycle through them, but may be better
to pick a different dimension

- e.g. Suppose your 3d-data points all have same
Z-coordinate in a give region:

• How do you pick the cutting value?

- kd-trees pick a key value to be the cutting value, based on the order
of insertion

- optimal kd-trees: pick the key-value as the median

- Don’t need to use key values => like PR Quadtrees => PR kd-trees

• What is the size of leaves?

- if you allow more than 1 key in a cell: bucket kd-trees

• kd-trees: discriminator = (hyper)plane;
quadtrees (and higher dim) discriminator complexity grows with d

FindMin in kd-trees

• FindMin(d): find the point with the smallest value in
the dth dimension.

• Recursively traverse the tree

• If cutdim(current_node) = d, then the minimum
can’t be in the right subtree, so recurse on just the
left subtree

- if no left subtree, then current node is the min for tree
rooted at this node.

• If cutdim(current_node) ≠ d, then minimum could
be in either subtree, so recurse on both subtrees.

- (unlike in 1-d structures, often have to explore several
paths down the tree)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)
(35,90)

FindMin(x-dimension):

(50,50)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)
(35,90)

FindMin(y-dimension):

1,10

55,1
(50,50)

FindMin

60,80

70,70

50,501,10

35,90

x

y

x

y

10,30

25,40

51,75

(51,75)

55,1(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)

(50,50)

(35,90)

FindMin(y-dimension): space searched

Delete in kd-trees

Q P

A

Want to delete node A.
Assume cutting

dimension of A is cd

In BST, we’d
findmin(A.right).

Here, we have to
findmin(A.right, cd)

cd

cd B
Everything in Q has

cd-coord < B, and
everything in P has cd-

coord ≥ B

Nearest Neighbor Searching in kd-trees

• Nearest Neighbor Queries are very common: given a point Q find the
point P in the data set that is closest to Q.

• Doesn’t work: find cell that would contain Q and return the point it
contains.

- Reason: the nearest point to P in space may be far from P in the
tree:

- E.g. NN(52,52):

60,80

70,70

50,501,10

35,9010,30

25,40

51,75

55,1

(51,75)

(25,40)

(10,30)

(55,1)
(1,10)

(70,70)

(60,80)(35,90)

(50,50)

kd-Trees Nearest Neighbor

• Idea: traverse the whole tree, BUT make two
modifications to prune to search space:

1. Keep variable of closest point C found so far.
Prune subtrees once their bounding boxes say
that they can’t contain any point closer than C

2. Search the subtrees in order that maximizes the
chance for pruning

Nearest Neighbor: Ideas, continued

dQuery
Point Q

TBounding box
of subtree

rooted at T

If d > dist(C, Q), then no
point in BB(T) can be
closer to Q than C.
Hence, no reason to search
subtree rooted at T.

Recurse, but start with the subtree “closer” to Q:
First search the subtree that would contain Q if we were
inserting Q below T.

Update the best point so far, if T is better:
if dist(C, Q) > dist(T.data, Q), C := T.data

Nearest Neighbor Facts

• Might have to search close to the whole tree in the
worst case. [O(n)]

• In practice, runtime is closer to:
- O(2d + log n)
- log n to find cells “near” the query point
- 2d to search around cells in that neighborhood

• Three important concepts that reoccur in range /
nearest neighbor searching:
- storing partial results: keep best so far, and update
- pruning: reduce search space by eliminating irrelevant trees.
- traversal order: visit the most promising subtree first.

Generalized Nearest Neighbor Search

• Saw last time: nearest neighbor search in kd-trees.

• What if you want the k-nearest neighbors?

• What if you don’t know k?

- E.g.: Find me the closest gas station with price < $3.25 /
gallon.

- Approach: go through points (gas stations) in order of
distance from me until I find one that meets the $ criteria

• Need a NN search that will find points in order of
their distance from a query point q.

• Same idea as the kd-tree NN search, just more
general

Generalized NN Search

• A feature of all spatial DS we’ve seen so far: decompose space
hierarchically.
No matter what the DS, we get something like this:

e1

e2 e3

e6 e7e5e4

Let the items in the hierarchy be e1,e2,e3...

Items may represent points, or bounding boxes, or ...

Let Type(e) be an abstract “type” of the object:
we use the type to determine which distance
function to use
E.g: if Type = “bounding box” then we’d use the
point-to-rectangle distance function.

A concrete example: in a Quadtree: internal nodes have type “bounding box”
Leaves would have type “point”

e8

Generalized, Incremental NN

HeapInsert(H, root, 0)
while not Empty(H):
 e := ExtractMin(H)
 if IsLeaf(e):
 output e as next nearest
 else
 foreach c in Children(e):
 t = Type(c)
 HeapInsert(H, c, dt(q,c))

Let IsLeaf(), Children(), and Type() represent the decomposition tree

Let dt(q,et) be the distance function appropriate to compare points
with elements of type t.

Idea: keep a priority queue that contains all elements visited so far
(points, bounding boxes)

Priority queue (heap) is ordered by distance to the query point

When you dequeue a point (leaf), it will be the next closest

dt(q,c) may be the distance
to the bounding box
represented by c, e.g.

BS AS

Incremental, Generalized NN Example

HeapInsert(H, root, 0)
while not Empty(H):
 e := ExtractMin(H)
 if IsLeaf(e):
 output e as next nearest
 else
 foreach c in Children(e):
 t = Type(c)
 HeapInsert(H, c, dt(q,c))

T

LT RT

BQ

c

a

b

c

q
T

Q

S

AQ

ab

L,R = left, right
A,B = above, below

Some spatial data structure:

It’s spatial decomposition (NOT the actual data structure)

BS AS

Incremental, Generalized NN Example

HeapInsert(H, root, 0)
while not Empty(H):
 e := ExtractMin(H)
 if IsLeaf(e) && IsPoint(e):
 output e as next nearest
 else
 foreach c in Children(e):
 t = Type(c)
 HeapInsert(H, c, dt(q,c))

T

LT RT

BQ

c

a

b

c

q
T

Q

S

AQ

ab

L,R = left, right
A,B = above, below

Some spatial data structure:

Its spatial decomposition (NOT the actual data structure)

H = []
H = [T]
H = [LT RT]

H = [AQ RT BQ]
H = [RT BQ]

H = [BS AS BQ]

H = [AS a BQ]

H = [c a BQ]
H = [c a b]

H = [a b]

H = [b]
H = []

Range Searching in kd-trees

• Range Searches: another extremely common type of
query.

• Orthogonal range queries:

- Given axis-aligned rectangle

- Return (or count) all the points inside it

• Example: find all people
between 20 and 30 years old
who are between 5’8”
and 6’ tall.

Range Searching in kd-trees

• Basic algorithmic idea:

- traverse the whole tree, BUT
• prune if bounding box doesn’t intersect with Query

• stop recursing or print all points in subtree if bounding
box is entirely inside Query

k

Range Searching Example

a

b

c

d

i

e

f

g

h

j

a

b

dh f

g i

jk

If query box doesn’t overlap bounding box, stop recursion

If bounding box is a subset of query box, report all the points in current subtree

If bounding box overlaps query box, recurse left and right.

m

m

e

c

Expected # of Nodes to Visit

• Completely process a node only
if query box intersects bounding
box of the node’s cell:

• In other words, one of the edges
of Q must cut through the cell.

• # of cells a vertical line will pass
through ≥ the number of cells cut
by the left edge of Q.

• Top, bottom, right edges are the
same, so bounding # of cells cut
by a vertical line is sufficient.

Cell u
Q

of Stabbed Nodes = O(√n)

a

c

b

Consider a node a with
cutting dimension = x

Vertical line can intersect
exactly one of a’s children
(say c)

But will intersect both of c’s
children.

Thus, line will intersect at
most 2 of a’s grandchildren.

a

bc

21

1

2

3

4

3 4

of Stabbed Nodes = O(√n)

So: you at most double #
of cut nodes every 2 levels

If kd-tree is balanced, has
O(log n) levels

Cells cut
 = 2(log n)/2

 = 2log √n

 = √n

a

bc

21 3 4

Assuming random input, or all
points known ahead of time, you’ll
get a balanced tree.

Each side of query rectangle stabs < O(√n) cells. So
whole query stabs at most O(4√n) = O(√n) cells.

Suppose we want to output all points in region

• Then cost is O(k + √n)

- where k is # of points in the query region.

• Why? Because: you visit every stabbed node [O(√n) of them] +
every node in the subtrees rooted in the contained cells.

- Takes linear time to traverse such subtrees

• Example of output sensitive running time analysis: running time
depends on size of the output.

a
AllNodesUnder(a)

Q
a

kd-tree Summary:

• Use O(n) storage [1 node for each point]

• If all points are known in advance, balanced kd-tree
can be built in O(n log n) time

- Recall: sort the points by x and y coordinates

- Always split on the median point so each split divides
remaining points nearly in half.

- Time dominated by the initial sorting.

• Can be orthogonal range searched in O(√n + k) time.

• Can we do better than O(√n) to range search?

- (possibly at a cost of additional space)

1-Dimensional Range Trees

• Suppose you have “points” in 1-dimension (aka
numbers)

• Want to answer range queries: “Return all keys
between x1 and x2.”

• How could you solve this?

Balanced Binary Search Tree

Range Queries on Binary Search Trees

x1 x2

xsplit

Assume all data are in the leaves

Search for x1 and x2

Let xsplit be the node were the search
paths diverge

Output leaves in the right subtrees of
nodes on the path from xsplit to x1

Output leaves in the left subtrees of
nodes on the path from xsplit to x2

1-D Query Time

• O(k + log n), where k is the number of points output.

- Tree is balanced, so depth is O(log n)

- Length of paths to x1 and x2 are O(log n)

- Therefore visit O(log n) nodes to find the roots of subtrees to
output

- Traversing the subtrees is linear, O(k), in the number of
items output.

How would you generalize to 2d?

2d Range Trees
• Treat range query as 2 nested one-dimensional

queries:

- [x1,x2] by [y1,y2]

- First ask for the points with x-coordinates in the given
range [x1,x2] => a set of subtrees

- Instead of all points in these subtrees, only want those
that fall in [y1,y2]

u

P(u)

v

Y(u)
P(u) is the set of points
under u

We store those points in
another tree Y(u), keyed
by the y-dimension

2-D Range Trees, Cont.

u

P(u)

v

v

v

v

v

v

Every node has a tree
associated with it:
multilevel data
structure

Range Trees, continued.

x

x

x

x

x
x

x

x

x

x

x

x

x
x

x

2d-range tree space requirements

• Sum of the sizes of Y(u) for u at a given depth is O(n)

- Each point stored in the Y(u) tree for at most one node at a
given depth

• Since main tree is balanced, has O(log n) depth

• Meaning total space requirement is O(n log n)

2d Range Tree Range Searches

1. First find trees that match the x-constraint;
2. Then output points in those subtrees that match the y-

constraint (by 1-d range searching the associated Y(u) trees)

• Step 1 will return at most O(log n) subtrees to process.

• Step 2 will thus perform the following O(log n) times:

- Range search the Y(u) tree. This takes O(log n + ku), where ku

is the number of points output for that Y(u) tree.

• Total time is ∑u O(log n + ku) where u ranges over
O(log n) nodes. Thus the total time is O(log2 n + k).

kd-tree vs. Range Tree

• 2d kd-tree:

- Space = O(n)

- Range Query Time = O(k + √n)

- Inserts O(log n)

• 2d Range Tree:

- Space = O(n log n)

- Range Query Time = O(k+ log2 n)

- Inserts O(log2 n)

How would you extend this to
> 2 dimensions?

 Range Trees for d > 2

• Now, your associated trees Y(u) themselves have
associated trees Z(v) and so on:

u

v

v

v

v

Searching: find O(log n) nodes in first tree
for each of them, find another O(log n) sets
for each of them find another log n sets

Leads to O(k+ logd n) search time
Space: O(n logd-1 n) space

Fractional Cascading Speed-up: Idea

• Suppose you had two sorted arrays A1 A2

- Elements in A2 are subset of those in A1

- Want to range search in both arrays with the same range:
[x1,x2]

• Simple:

- Binary Search to find x1 in both A1 and A2

- Walk along array until you pass x2

• O(log n) time for each Binary Search,

- have to do it twice though

Can do better:

• Since A2 subset of A1:

- Keep pointer at each element u of A1 pointing to the
smallest element of A2 that is ≥ u.

- After Binary Search in A1 , use pointer to find where to
start in A2

• Can do similar in Range Trees to eliminate an
O(log n) factor (see next slides)

3 7 11 12 15 18 30 32 41 49

7 15 30 32 41 49

Fractional Cascading in Range Trees

3 7 11 12 15 18 30 32 41 49

7 15 30 32 41

x1

x2

xsplit A(xsplit) =

3 11 12 18 49

3 12 11 18 497 32 41 15 30

7 32 41 15 30 3 12 11 49 18

11 497 32

(Only subset of pointers are shown)

Instead of an aux. tree, we store an array, sorted by Y-coord.
At xsplit, we do a binary search for y1. As we continue to search
for x1 and x2, we also use pointers to keep track of the result of
a binary search for y1 in each of the arrays along the path.

Fractional Cascading Search

• RangeQuery([x1,x2] by [y1,y2]):

- Search for xsplit

- Use binary search to find the first point in A(xsplit) that is
larger that y1.

- Continue searching for x1 and x2, following the now
diverged paths

- Let u1--u2--u3--uk be the path to x1. While following this
path, use the “cascading” pointers to find the first point
in each A(ui) that is larger than y1. [similarly with the
path v1--v2--vm to x2]

- If a child of ui or vi is the root of a subtree to output, then
use a cascading pointer to find the first point larger than
y1, output all points until you pass y2.

Fractional Cascading: Runtime

• Instead of O(log n) binary searches, you perform
just one

• Therefore, O(log2 n) becomes O(log n)

• 2d-rectangle range queries in O(log n + k) time

• In d dimensions: O(logd-1 n + k)

