
Self Adjusting Data Structures

Pedro Ribeiro

DCC/FCUP

2019/2020

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 1 / 31



What are self adjusting data structures?

Data structures that can rearrange themselves after operations are
committed to it.

This is typically done in order to improve efficiency on future
operations.

The rearrangement can be heuristic in its nature and typically
happens in every operation (even if it was only accessing an
element).

Some examples:

I Self Organizing Lists
I Self Adjusting Binary Search Trees

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 2 / 31



Traversing Linked Lists

Consider a classic linked list with n elements:

Consider a cost model in which accessing the element in position i
costs i (traversing the list)

What is the average cost for accessing an element using a static list?

I Intuitively, if the element to be searched is a ”random” element in the
list, our average cost is ”roughly” n/2

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 3 / 31



Formalizing The Cost

Let’s formalize a little bit more:

I Let p(i) be the probability of searching for element in positions i

I On average, our cost will be:

Tavg = 1× p(1) + 2× p(2) + 3× p(3) + . . . + n × p(n)

Suppose that the the probability is the same for every element: 1/n.

I T (n) = 1/n+2/n+3/n+ . . .+n/n = (1+2+3+ . . .+n)/n = (n+1)/2

But what if the probability is not the same?

I What if we typically access nodes at the front of the list?
I What if we typically access nodes at the back of the list?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 4 / 31



Cost on non-uniform access

Let’s look at an example:

P(A) = 0.1 P(B) = 0.1 P(C ) = 0.4 P(D) = 0.1 P(E ) = 0.3

T (n) = 1× 0.1 + 2× 0.1 + 3× 0.4 + 4× 0.1 + 5× 0.3 = 3.4

If we know in advance this access pattern can we do better?

T (n) = 1× 0.4 + 2× 0.3 + 3× 0.1 + 4× 0.1 + 5× 0.1 = 2.2

And what if we know the exact (non-static) search pattern?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 5 / 31



Strategies for Improving

Can you think of any strategies for improving if we do not know in
advance what is the access pattern?

Intuition: bring items frequently accessed closer to the front

Three possible strategies (among others) after accessing an element:

I Move to Front (MTF): move element to the head of the list
I Transpose (TR): swap with previous element
I Frequency Count (FC): count and store the number of accesses to

each element. Order by this count.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 6 / 31



Competitive Analysis

Idea: look at the ratio of our algorithm vs best achievable

r-competitiveness

An algorithm has competitive ratio r (or is r -competitive) if for some
constant b, for any sequence of requests s, we have:

Costalg (s) ≤ r × CostOPT (s) + b

where OPT is the optimal algorithm (in hindsight)

Consider the following cost model:
I Accessing item at position i costs i
I After accessing it, we can bring it forwards as much as we want for free

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 7 / 31



Competitive Analysis of Self Organizing Lists

Claim - TR has as a bad competitive ratio: Ω(n)

Consider the following sequence of operations:

Consider any list with n elements

Ask n times for the last element in the sequence

Example:
A → B → C → D → E

find(E), find(D), find(E), find(D), ...

This strategy will pay n2

A better option would be bringing both elements to front paying
n+n+2+2+2+2+2+2+. . . = n+n+2(n−2) = 2n+2n−4 = 4n−4

The ratio for m operations like these is n2/(4n − 4) which is Θ(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 8 / 31



Competitive Analysis of Self Organizing Lists

Claim - FC has as a bad competitive ratio: Ω(n)

Consider the following sequence of operations:

Consider an initial request sequence that sets up counts:
n − 1, n − 2, . . . , 2, 1, 0

Repeat indefinitely: ask n times for the element that was last

Example:
A → B → C → D → E

find(E), find(E), find(E), find(E), ...

Each of these iterations will pay
n + (n − 1) + (n − 2) + . . . + 2 + 1 = n(n + 1)/2 = (n2 + n)/2

Optimal in this case would bring the element to the front on the first
request, paying n + 1 + 1 + 1 + 1 + 1 + . . . = 2n − 1

The ratio for m operations like these is Θ(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 9 / 31



Competitive Analysis of Self Organizing Lists

What about MTF? Can you find any ”bad” sequence of operations?

Claim - MTF is 2-competitive

For this we can use amortized analysis

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 10 / 31



Remembering Amortized Analysis

In amortized analysis we are concerned about the the average over a
sequence of operations

I Some operations may be costly, but others may be quicker, and in the
end they even out

One possible method is using potential functions
I A potential function Φ maps the state of a data structure to

non-negative numbers
I You can think of it as ”potential energy” that you can use later

(like a guarantee of the ”money we have in the bank”)
I If the potential is non-negative and starts at 0, and at each step the

actual cost of our algorithm plus the change in potential is at most c ,
then after n steps our total cost is at most cn.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 11 / 31



Remembering Amortized Analysis

Relationship between potential and actual cost

I State of data structure at time x : Sx

I Sequence of n operations: O = o1, o2, . . . , on

I Amortized cost per operation o:
Tam(o) = Treal (o) + (Φ(Safter )− Φ(Sbefore))

I Total amortized cost: Tam(O) =
∑

i

Tam(oi )

I Total actual (real) cost: Treal (O) =
∑

i

Treal (oi )

I Tam(O) =
n∑

i=1

Treal (o) + (Φ(Si+1)− Φ(Si )) =

Treal (O) + (Φ(Send )− Φ(Sstart))

I Treal (O) = Tam(O) + (Φ(Sstart)− Φ(Send ))

If Φ(Sstart) = 0 and Φ(Send ) ≥ 0, then Treal (O) ≤ Tam(O) and our
amortized cost can be used to accurately predict the actual cost!

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 12 / 31



Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

The key is defining the right potential function Φ

Let Φ be the number of inversions between MTF and OPT lists, i.e.,
#pairs(x , y) such that x is before y in MTF and after y in OPT list.

Initially our Φ is zero and it will never be negative.

We are going to show that amortized cost of MTF is smaller or equal
than twice the real cost of OPT:

CostMTF + (change in potential) ≤ 2× CostOPT

This means that after any sequence of requests:

costMTF + Φfinal ≤ 2× costOPT

Hence, it would mean that MTF is 2-competitive.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 13 / 31



Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

Φ is the number of inversions between MTF and OPT lists,

Consider request to x at position p in MTF list.

Of the p − 1 items in front of x , say that k are also in front of x in
the OPT list. The remaining p − 1− k are behind x

CostMTF = p and CostOPT ≥ k + 1

What happens to the potential?
I When MTF moves x forward, x cuts in front of k elements (increase Φ

by k)
I At the same time, the p − 1− k there were in front of x aren’t any

more (decrease Φ by p − 1− k)
I When OPT moves x forward it can only reduce Φ.
I In the end, change in potential is ≤ 2k − p + 1
I This means that:

CostMTF + (change in potential) ≤ p + 2k − p + 1 ≤ 2× CostOPT

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 14 / 31



Splay Trees

A self-adjusting binary search tree

They were invented by D. Sleator and R. Tarjan in 1985

The key ideas are similar to self-organizing linked lists:
I accessed items are moved to the root
I recently accessed elements are quick to access again

It provides guarantees of logarithmic access time in amortized sense

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 15 / 31



Trees and Rotations

Consider the following ”rotations” designed to move a node to the
root of a (sub)tree:

Zig (or Zag) - Simple Rotation
(also used in AVL and red-black trees)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 16 / 31



Trees and Rotations

Consider the following ”rotations” designed to move a node to the
root of a (sub)tree:

Zig-Zig (or Zag-Zag)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 17 / 31



Trees and Rotations

Consider the following ”rotations” designed to move a node to the
root of a (sub)tree:

Zig-Zag (or Zag-Zig)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 18 / 31



Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Original tree

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 19 / 31



Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Zig-Zag Left (or Zag-Zig)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 20 / 31



Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Now the tree is like this

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 21 / 31



Splay Operation

Splaying a node means moving it to the root of a tree using the
operations given before:

Zig-Zig Left (or Zag-Zag)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 22 / 31



Operations on a Splay Tree

Idea: do as in a normal BST but in the end splay the node

I find(x): do as in BST and then splay x
(if x is not present splay the last node accessed)

I insert(x): do as in BST and then splay x
I remove(x): find x , splay x , delete x (leaves its subtress R and L

”detached”), find largest element y in L and make it the new root:

Running time is dominated by the splay operation.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 23 / 31



Why do splay trees work in practice?

Efficiency of splay trees

For any sequence of m operations on a splay tree, the running time is
O(m log n), where n is the max number of nodes in the tree at any time.

Intuition: any operation on a deeper side of the tree will ”bring”
nodes from that side closer to the root

I It is possible to make a splay tree have Θ(n) height, and hence a splay
applied to the lowest leaf will take Θ(n) time. However, the resulting
splayed tree will have an average node depth roughly decreased by half!

Two quantities: real cost and increase in balance
I If we spend much, then we will also be balancing a lot
I If don’t balance a lot, than we also did not spend much

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 24 / 31



Amortized Analysis of Splay Trees

The key is defining the right potential function Φ

Consider the following:
I size(x) = number of nodes below x (including x)
I rank(x) = log2(size(x))
I Φ(S) =

∑
x
rank(x)

Our potential function is the sum of the ranks of all tree nodes

Let the cost be the number of rotations

Lemma

The amortized time of splaying node x in a tree with root r is at most
3(rank(r)− rank(x)) + 1

The rank of a single node is at most log n and therefore the above
means the amortized time per operation is O(log n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 25 / 31



Amortized Analysis of Splay Trees

If x is at the root, the bound is trivially achieved

If not, we will have a sequence of zig-zig and zig-zag rotations,
followed by at most one simple rotation at the top

Let r(x) be the the rank of x before the rotation and r ′(x) be its rank
afterwards.

We will show that a simple rotation takes time at most
3(r ′(x)− r(x)) + 1 and that the other operations take 3(r ′(x)− r(x))

If you think about the sequence of rotations, than successive r(x) and
r ′(x) will cancel out and we are left at the end with
3(r(root)− r(x)) + 1

The worst case is r(x) = 0 and in that case we have 3× log2 n + 1

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 26 / 31



Amortized Analysis of Splay Trees

Case 1: Simple Rotation

Only x and y change rank
I x increases rank
I y decreases rank

Cost is 1 + r ′(x) + r ′(y)− r(x)− r(y)

This is ≤ 1 + r ′(x)− r(x) since r(y) ≥ r ′(y)

This is ≤ 1 + 3(r ′(x)− r(x)) since r ′(x) ≥ r(x)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 27 / 31



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

Only x , y and z change rank

Cost is 2 + r ′(x) + r ′(y) + r ′(z)− r(x)− r(y)− r(z)

This is = 2 + r ′(y) + r ′(z)− r(x)− r(y) since r ′(x) = r(z)

This is ≤ 2 + r ′(x) + r ′(z)− 2r(x) since r ′(x) ≥ r ′(y) and r(y) ≥ r(x)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 28 / 31



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

2 + r ′(x) + r ′(z)− 2r(x) is at most 3(r ′(x)− r(x))

This is equivalent to say that 2r ′(x)− r(x)− r ′(z) ≥ 2

2r ′(x)− r(x)− r ′(z) = log2(s ′(x)/s(x)) + log2(s ′(x)/s ′(z))

Notice that s ′(x) ≥ s(x) + s ′(z)

Given that log is convex, the way to make the two logarithms as small
as possible is to choose s(x) = s(z) = s ′(x)/2. In that case
log2 2 + log2 2 = 1 + 1 = 2 and we have proved what we wanted!

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 29 / 31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation

Only x , y and z change rank

Cost is 2 + r ′(x) + r ′(y) + r ′(z)− r(x)− r(y)− r(z)

This is = 2 + r ′(y) + r ′(z)− r(x)− r(y) since r ′(x) = r(z)

This is ≤ 2 + r ′(y) + r ′(z)− 2r(x) since r(y) ≥ r(x)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 30 / 31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation

2 + r ′(y) + r ′(z)− 2r(x) is at most 2(r ′(x)− r(x))

This is equivalent to say that 2r ′(x)− r ′(y)− r ′(z) ≥ 2

2r ′(x)− r(y)− r ′(z) = log2(s ′(x)/s(y)) + log2(s ′(x)/s ′(z))

Notice that s ′(x) ≥ s(y) + s ′(z)

By the same argument a before, the way to minimize is to choose
s(y) = s(z) = s ′(x)/2. In that case log2 2 + log2 2 = 1 + 1 = 2

Obviously, 2(r ′(x)− r(x)) < 3(r ′(x)− r(x))

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2019/2020 31 / 31


