Self Adjusting Data Structures

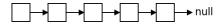
Pedro Ribeiro

DCC/FCUP

2019/2020

- Data structures that can **rearrange** themselves **after operations** are committed to it.
- This is typically done in order to improve efficiency on future operations.
- The rearrangement can be **heuristic** in its nature and typically happens in **every operation** (even if it was only accessing an element).
- Some examples:
 - Self Organizing Lists
 - Self Adjusting Binary Search Trees

• Consider a classic linked list with *n* elements:



- Consider a **cost model** in which accessing the element in position *i* costs *i* (*traversing the list*)
- What is the average cost for accessing an element using a static list?
 - Intuitively, if the element to be searched is a "random" element in the list, our average cost is "roughly" n/2

- Let's formalize a little bit more:
 - Let p(i) be the probability of searching for element in positions *i*
 - On average, our cost will be:

 $T_{avg} = 1 \times p(1) + 2 \times p(2) + 3 \times p(3) + \ldots + n \times p(n)$

• Suppose that the the probability is the same for every element: 1/n.

► T(n) = 1/n + 2/n + 3/n + ... + n/n = (1+2+3+...+n)/n = (n+1)/2

- But what if the probability is not the same?
 - What if we typically access nodes at the front of the list?
 - What if we typically access nodes at the back of the list?

Cost on non-uniform access

• Let's look at an example:

$$P(A) = 0.1$$
 $P(B) = 0.1$ $P(C) = 0.4$ $P(D) = 0.1$ $P(E) = 0.3$
 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow null$
 $T(n) = 1 \times 0.1 + 2 \times 0.1 + 3 \times 0.4 + 4 \times 0.1 + 5 \times 0.3 = 3.4$

If we know in advance this access pattern can we do better?

$$C \rightarrow E \rightarrow A \rightarrow B \rightarrow D \rightarrow \text{null}$$

$$T(n) = 1 \times 0.4 + 2 \times 0.3 + 3 \times 0.1 + 4 \times 0.1 + 5 \times 0.1 = 2.2$$

And what if we know the exact (non-static) search pattern?

Pedro Ribeiro (DCC/FCUP)

Self Adjusting Data Structures

- Can you think of any strategies for improving if we do not know in advance what is the access pattern?
- Intuition: bring items frequently accessed closer to the front
- Three possible strategies (among others) after accessing an element:
 - Move to Front (MTF): move element to the head of the list
 - **Transpose (TR)**: swap with previous element
 - Frequency Count (FC): count and store the number of accesses to each element. Order by this count.

• Idea: look at the ratio of our algorithm vs best achievable

r-competitiveness

An algorithm has competitive ratio r (or is r-competitive) if for some constant b, for any sequence of requests s, we have:

 $Cost_{alg}(s) \leq r \times Cost_{OPT}(s) + b$

where OPT is the optimal algorithm (in hindsight)

- Consider the following cost model:
 - Accessing item at position i costs i
 - After accessing it, we can bring it forwards as much as we want for free

Competitive Analysis of Self Organizing Lists

Claim - TR has as a bad competitive ratio: $\Omega(n)$

Consider the following sequence of operations:

- Consider any list with *n* elements
- Ask *n* times for the last element in the sequence

Example:

 $\begin{array}{l} A \ \rightarrow \ B \ \rightarrow \ C \ \rightarrow \ D \ \rightarrow \ E \\ find(E), \ find(D), \ find(E), \ find(D), \ \ldots \end{array}$

- This strategy will pay n^2
- A better option would be bringing both elements to front paying $n+n+2+2+2+2+2+2+2+\ldots = n+n+2(n-2) = 2n+2n-4 = 4n-4$
- The ratio for *m* operations like these is $n^2/(4n-4)$ which is $\Theta(n)$

Competitive Analysis of Self Organizing Lists

Claim - FC has as a bad competitive ratio: $\Omega(n)$

Consider the following sequence of operations:

- Consider an initial request sequence that sets up counts: $n-1, n-2, \ldots, 2, 1, 0$
- Repeat indefinitely: ask *n* times for the element that was last Example: $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$

 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ find(E), find(E), find(E), ...

- Each of these iterations will pay
 n + (n − 1) + (n − 2) + ... + 2 + 1 = n(n + 1)/2 = (n² + n)/2
- Optimal in this case would bring the element to the front on the first request, paying $n + 1 + 1 + 1 + 1 + 1 + \dots = 2n 1$
- The ratio for *m* operations like these is $\Theta(n)$

What about MTF? Can you find any "bad" sequence of operations?

Claim - MTF is 2-competitive

For this we can use amortized analysis

- In amortized analysis we are concerned about the the average over a sequence of operations
 - Some operations may be costly, but others may be quicker, and in the end they even out
- One possible method is using potential functions
 - A potential function Φ maps the state of a data structure to non-negative numbers
 - You can think of it as "potential energy" that you can use later (like a guarantee of the "money we have in the bank")
 - If the potential is non-negative and starts at 0, and at each step the actual cost of our algorithm plus the change in potential is at most c, then after n steps our total cost is at most cn.

Remembering Amortized Analysis

- Relationship between potential and actual cost
 - State of data structure at time x: S_x
 - Sequence of *n* operations: $O = o_1, o_2, \ldots, o_n$
 - Amortized cost per operation o: $T_{am}(o) = T_{real}(o) + (\Phi(S_{after}) - \Phi(S_{before}))$
 - Total amortized cost: $T_{am}(O) = \sum_{i} T_{am}(o_i)$
 - Total actual (real) cost: $T_{real}(O) = \sum_{i} T_{real}(o_i)$

•
$$T_{am}(O) = \sum_{i=1}^{n} T_{real}(o) + (\Phi(S_{i+1}) - \Phi(S_i)) = T_{real}(O) + (\Phi(S_{end}) - \Phi(S_{start}))$$

T_{real}(O) = T_{am}(O) + (Φ(S_{start}) - Φ(S_{end}))
 If Φ(S_{start}) = 0 and Φ(S_{end}) ≥ 0, then T_{real}(O) ≤ T_{am}(O) and our amortized cost can be used to accurately predict the actual cost!

Claim - MF is 2-competitive

- \bullet The key is defining the right potential function Φ
- Let Φ be the number of inversions between MTF and OPT lists, i.e., #pairs(x, y) such that x is before y in MTF and after y in OPT list.
- Initially our Φ is zero and it will never be negative.
- We are going to show that amortized cost of MTF is smaller or equal than twice the real cost of OPT:

 $Cost_{MTF}$ + (change in potential) $\leq 2 \times Cost_{OPT}$

This means that after any sequence of requests:

 $\textit{cost}_{\textit{MTF}} + \Phi_{\textit{final}} \leq 2 \times \textit{cost}_{\textit{OPT}}$

Hence, it would mean that MTF is 2-competitive.

Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

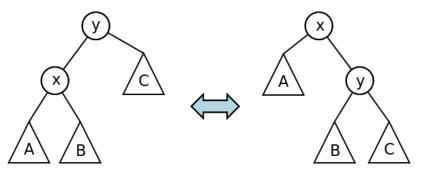
- Φ is the number of inversions between MTF and OPT lists,
- Consider request to x at position p in MTF list.
- Of the *p*−1 items in front of *x*, say that *k* are also in front of *x* in the OPT list. The remaining *p*−1−*k* are behind *x*
- $Cost_{MTF} = p$ and $Cost_{OPT} \ge k + 1$
- What happens to the potential?
 - When MTF moves x forward, x cuts in front of k elements (increase Φ by k)
 - At the same time, the p − 1 − k there were in front of x aren't any more (decrease Φ by p − 1 − k)
 - When OPT moves x forward it can only reduce Φ.
 - In the end, change in potential is $\leq 2k p + 1$
 - This means that:

 $Cost_{MTF}$ + (change in potential) $\leq p + 2k - p + 1 \leq 2 \times Cost_{OPT}$

- A self-adjusting binary search tree
- They were invented by D. Sleator and R. Tarjan in 1985
- The key ideas are similar to self-organizing linked lists:
 - accessed items are moved to the root
 - recently accessed elements are quick to access again
- It provides guarantees of logarithmic access time in **amortized sense**

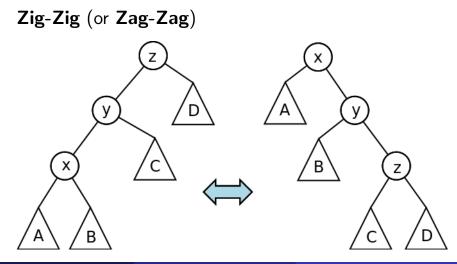
• Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig (or **Zag**) - Simple Rotation (also used in AVL and red-black trees)



Trees and Rotations

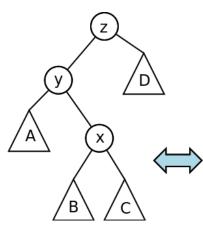
• Consider the following "rotations" designed to move a node to the root of a (sub)tree:

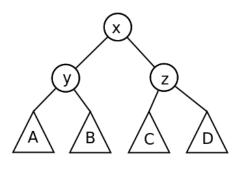


Trees and Rotations

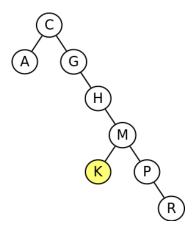
• Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig-Zag (or Zag-Zig)





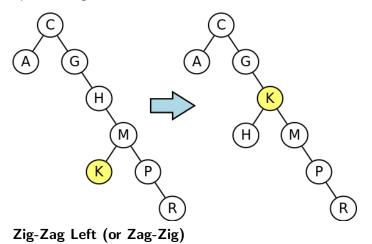
• Splaying a node means moving it to the root of a tree using the operations given before:



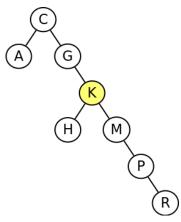
Original tree

Pedro Ribeiro (DCC/FCUP)

• Splaying a node means moving it to the root of a tree using the operations given before:

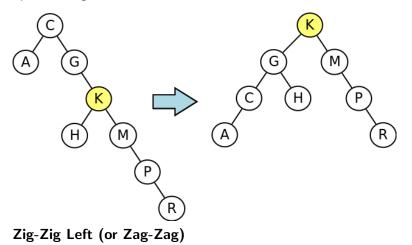


• Splaying a node means moving it to the root of a tree using the operations given before:



Now the tree is like this

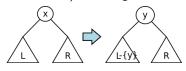
• Splaying a node means moving it to the root of a tree using the operations given before:



Operations on a Splay Tree

• Idea: do as in a normal BST but in the end splay the node

- find(x): do as in BST and then splay x (if x is not present splay the last node accessed)
- insert(x): do as in BST and then splay x
- remove(x): find x, splay x, delete x (leaves its subtress R and L "detached"), find largest element y in L and make it the new root:



• Running time is **dominated** by the splay operation.

Efficiency of splay trees

For any sequence of *m* operations on a splay tree, the running time is $O(m \log n)$, where *n* is the max number of nodes in the tree at any time.

- Intuition: any operation on a deeper side of the tree will "bring" nodes from that side closer to the root
 - It is possible to make a splay tree have Θ(n) height, and hence a splay applied to the lowest leaf will take Θ(n) time. However, the resulting splayed tree will have an average node depth roughly decreased by half!
- Two quantities: real cost and increase in balance
 - If we spend much, then we will also be balancing a lot
 - If don't balance a lot, than we also did not spend much

Amortized Analysis of Splay Trees

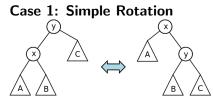
- $\bullet\,$ The key is defining the right potential function $\Phi\,$
- Consider the following:
 - size(x) = number of nodes below x (including x)
 - $rank(x) = log_2(size(x))$
 - $\Phi(S) = \sum_{x} rank(x)$
- Our potential function is the sum of the ranks of all tree nodes
- Let the **cost** be the number of rotations

Lemma

The amortized time of splaying node x in a tree with root r is at most 3(rank(r) - rank(x)) + 1

• The rank of a single node is at most log *n* and therefore the above means the amortized time per operation is $O(\log n)$

- If x is at the root, the bound is trivially achieved
- If not, we will have a sequence of zig-zig and zig-zag rotations, followed by at most one simple rotation at the top
- Let r(x) be the the rank of x before the rotation and r'(x) be its rank afterwards.
- We will show that a simple rotation takes time at most 3(r'(x) r(x)) + 1 and that the other operations take 3(r'(x) r(x))
- If you think about the sequence of rotations, than successive r(x) and r'(x) will cancel out and we are left at the end with 3(r(root) r(x)) + 1
- The worst case is r(x) = 0 and in that case we have $3 \times \log_2 n + 1$



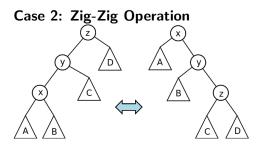
- Only x and y change rank
 - x increases rank
 - y decreases rank

• Cost is
$$1 + r'(x) + r'(y) - r(x) - r(y)$$

• This is $\leq 1 + r'(x) - r(x)$ since $r(y) \geq r'(y)$

• This is
$$\leq 1 + 3(r'(x) - r(x))$$
 since $r'(x) \geq r(x)$

Amortized Analysis of Splay Trees



- Only x, y and z change rank
- Cost is 2 + r'(x) + r'(y) + r'(z) r(x) r(y) r(z)
- This is = 2 + r'(y) + r'(z) r(x) r(y) since r'(x) = r(z)
- This is $\leq 2 + r'(x) + r'(z) 2r(x)$ since $r'(x) \geq r'(y)$ and $r(y) \geq r(x)$

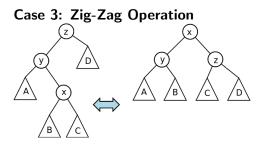
Case 2: Zig-Zig Operation

- 2 + r'(x) + r'(z) 2r(x) is at most 3(r'(x) r(x))
- This is equivalent to say that $2r'(x) r(x) r'(z) \ge 2$

•
$$2r'(x) - r(x) - r'(z) = \log_2(s'(x)/s(x)) + \log_2(s'(x)/s'(z))$$

- Notice that $s'(x) \ge s(x) + s'(z)$
- Given that log is convex, the way to make the two logarithms as small as possible is to choose s(x) = s(z) = s'(x)/2. In that case $\log_2 2 + \log_2 2 = 1 + 1 = 2$ and we have proved what we wanted!

Amortized Analysis of Splay Trees



- Only x, y and z change rank
- Cost is 2 + r'(x) + r'(y) + r'(z) r(x) r(y) r(z)
- This is = 2 + r'(y) + r'(z) r(x) r(y) since r'(x) = r(z)
- This is $\leq 2 + r'(y) + r'(z) 2r(x)$ since $r(y) \geq r(x)$

Case 3: Zig-Zag Operation

- 2 + r'(y) + r'(z) 2r(x) is at most 2(r'(x) r(x))
- This is equivalent to say that $2r'(x) r'(y) r'(z) \ge 2$
- $2r'(x) r(y) r'(z) = \log_2(s'(x)/s(y)) + \log_2(s'(x)/s'(z))$
- Notice that $s'(x) \ge s(y) + s'(z)$
- By the same argument a before, the way to minimize is to choose s(y) = s(z) = s'(x)/2. In that case $\log_2 2 + \log_2 2 = 1 + 1 = 2$
- Obviously, 2(r'(x) r(x)) < 3(r'(x) r(x))