
String Matching

Pedro Ribeiro

DCC/FCUP

2019/2020

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 1 / 40

String Problems

There is an entire area of study dealing with string related problems

Examples of string related problems:
I Given a text and a pattern, find all exact or approximate occurrences of

the pattern in the text (classic text search)
I Given a string, find the largest string that occurs at least k times
I Given two strings find the edit distance between them, with various

operations available, such as deletions, additions and substitutions.
I Given two strings, find the largest common substring
I Given a set of strings, find the ”better” tree that can describe and

connect them (phylogeny tree)
I Given a set of strings, find the shortest superstring that contains all the

strings (one of the core problems of DNA sequencing)
I ...

Here we will just give a brief glimpse on the whole field and in
particular we will focus on the string matching problem

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 2 / 40

The String Matching Problem

Let’s formalize the string matching problem:

Text: array T [1..n] of length n
Pattern: array P[1..m] of length m ≤ n
The characters of T and P are characters drawn from an alphabet Σ

I For example, we could have Σ = {0, 1} or Σ = {a, b, ..., z}
A pattern P occurs with shift s in text T (or occurs beginning at
position s + 1) if T [s + i] = P[i] for 1 ≤ i ≤ m

String Matching Problem

Given a text T and a pattern P, find all valid shifts of P in T , or output
that no occurrence can be found.

One common variation is to find only one (ex: the first) possible shift
Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 3 / 40

Naive String Matching

Here is an (obvious) brute force algorithm for finding all valid shifts:

This algorithm tries explicitely every possible shift s

Line 4 implies a loop to check if all characters match or exits if there
is a mismatch

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 4 / 40

Naive String Matching

What is the time complexity of the naive algorithm?

O((n −m)m), which is O(mn) assuming m is ”relatively small”
(m < n/2) compared to n.

The worst case is something like searching for aaa...aaab in a text
consisting solely of a’s.

If the text is random, this algorithm would be ”not too bad” (if
exiting as soon as a mismatch is found) but real text (ex: english or
DNA) is really not completely random.

This solution can also be acceptable if m is ”really” small

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 5 / 40

Deterministic Finite Automaton

How can we do better?

Once we are at a certain shift, what information can we use about the
previous shifts we tested?

One possible (high-level) idea is to build a deterministic finite
automaton (DFA) to represent what we know about the pattern and
in what state of the search we are.

An example DFA that matches strings of Σ = {a, b} finishing with an odd
number of a’s

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 6 / 40

Deterministic Finite Automaton

Imagine a DFA with m + 1 states, arranged in a ”line”

The i-th state represents that we are now at position i of the pattern,
that is, we matched the first i characters.

Now, if we match the next character, we move to state i + 1 (matched
i + 1 characters). If not, we can skip to another (previous) state.

Which state should we go once we have a miss? If we go back to the
initial state, then we are no better than the naive algorithm! We
should go to the furthest state we know its possible.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 7 / 40

Deterministic Finite Automaton

Imagine P = 001. We could use the following DFA:

This would only find the first occurrence of P. What to change so that it
finds all occurrences?

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 8 / 40

Deterministic Finite Automaton

What if the pattern is for instance P = 01101?

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 9 / 40

Deterministic Finite Automaton

What is the complexity of matching after having a DFA like this?

The matching is linear on the size of the text! O(n)

We must however take in account the time to build the respective
DFA. If it takes f (m), than the total time is f (m) +O(n).

We will now show how the Knuth-Morris-Pratt (KMP) algorithm
can build the ”equivalent” of this DFA in time linear on the size of
the pattern! O(m)

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 10 / 40

Knuth-Morris-Pratt Algorithm

Let π[i] be the largest integer smaller than i such that
P[1..π[i]] (longest prefix) is a suffix of P[1..i].

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 11 / 40

Knuth-Morris-Pratt Algorithm

How can we use the information in π[] to our matching?

When he have a mismatch at position i + 1... we rollback to π[i]!
I This is the next possible ”largest” partial match

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 12 / 40

Knuth-Morris-Pratt Algorithm

Let us look at the KMP main algorithm:

What is the temporal complexity of this algorithm?

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 13 / 40

Knuth-Morris-Pratt Algorithm

Let’s for now ignore the time taken in computing π.

The loop on line 5 takes time n. But what about the loop on line 6?

The main ”insight” is that we can never go back more than what we
have already advanced. If we advance k characters in the text, than
the call to line 7 can only make q go back k characters

In other words, q is only increased in line 9 (at most once per each
iteration of the cycle of line 5). Since when it is decreased it can
never be negative (by the definition of π), this means it will have at
most n decrements.

This means that the while loop will never have more than n iterations!

In an amortized sense (aggregate method), the time needed for the
entire procedure is linear on the size of the text: O(n)

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 14 / 40

Knuth-Morris-Pratt Algorithm

What about computing π?

It is basically comparing the pattern against itself!

What is the temporal complexity of this part?

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 15 / 40

Knuth-Morris-Pratt Algorithm

Using a similar rationale to what we did before, the time is linear on
the size of the pattern: O(m)

The entire KMP algorithm then takes O(n + m)
I Pre-processing: O(m)
I Matching: O(n)

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 16 / 40

Rabin-Karp Algorithm

Let’s now look at a completely different approach

Imagine that we have an hash function h that maps each possible
string to an integer.

We could then proceed as follows:
I Start by computing h(P)
I For every possible shift s, compute hi = h(T [s + 1...s + m])
I If hi 6= h(P) then we know we do not have a match
I If hi = h(P) we could have a match, and we loop to see if its really a

match on that position

The efficiency of this procedure depends mainly on two things:

I How good is the hash function (how well does it separate strings),
because some invalid shifts may not be filtered out

I How many valid occurrences exist, because for each of these shifts we
will really make a loop of at most m

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 17 / 40

Rabin-Karp Algorithm

Let’s actually create a procedure using these core ideas

We will start be defining a suitable rolling hash function.

Suppose each character is assigned an integer. For ease of
explanation, we will show examples only with digits (0..9) and a
decimal base, but if we have k = |Σ| characters, we could use base k.

A pattern of a k-sized alphabet can be seen as a number on base k .
With our simple scheme for digits, the pattern "12345" could then be
viewed as the number 12, 345. Let’s call this function value.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 18 / 40

Rabin-Karp Algorithm

We can compute the value of the pattern in time O(m):

value(P) = P[m] + 10(P[m−1] + 10(P[m−2] + ...+ 10(P[2] + 10P[1])...))

Example: value("324") = 4 + 10(2 + 10× 3) = 324

Similarly, if Ti = T [i + 1...i + m], we can compute value(Ti) in O(m)

After we compute T0, do we really need m operations to compute
T1? No! We can do it in constant time:

value(Ts+1) = 10(Ts − 10m−1T [s + 1]) + T [s + m + 1]

Example: value("5678") = 5, 678
value("6789") = 10(5, 678− 103 × 5) + 9 = 6, 789

This means we can compute all Ti ’s in time linear to the size of the
text!

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 19 / 40

Rabin-Karp Algorithm

If we ignore the fact that our value() could get really large, we would
have an O(n) algorithm for doing string matching

The problem is that we cannot assume that the m characters of P
will give origin to arithmetic operations that take constant time.

How can we solve this problem? Consider that we know that:

(a× b) mod c = ((a mod c)× (b mod c)) mod c
(a + b) mod c = ((a mod c) + (b mod c)) mod c

What we can do is always apply mod q operation on our results! In
that way the value will always stay between 0 and q − 1!

value(Ts+1) = (10(Ts − 10m−1T [s + 1]) + T [s + m + 1]) mod q

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 20 / 40

Rabin-Karp Algorithm

The solution with mod q is not perfect, however...
I value(Ts) mod q = value(P) mod q does not imply Ts = P
I However, value(Ts) mod q 6= value(P) mod q, implies that Ts 6= P

If the values are equal mod q we still have to test to see if we have a
match or not. On case it is not a match we have a spurious hit.

Example: imagine we are looking for 31, 415 and use q = 13
We have that 31, 415 mod 13 = 7.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 21 / 40

Rabin-Karp Algorithm

Our value() function is in reality just a fast heuristic for ruling out
invalid shifts.

If q is high enough, we hope that the spurious hits will be rare

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 22 / 40

Rabin-Karp Algorithm

How to analyze the running time?

What would the worst case be? Imagine a string always with the
same characters, and a pattern also with the same characters. In that
case we will always have a hit and will always be making the
verification.

In many applications, however, the valid shifts are rare. In those cases
this may be a good choice.

If we have only c occurrences, than the expected time will be
O(n + cm), plus the time for the spurious hits.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 23 / 40

Rabin-Karp Algorithm

How often do spurious hit occur? How good is our hash function?
This is not going to be explored today, but choosing a (large) prime
not close to a power of two is a good choice.

If we are able to really spread the possible values, and the text is
”random”, than the number of expected spurious hits is O(n/q) (the
chance that an arbitrary substring has the same value of P is 1/q).

If v is the number of valid shifts, then the running time is
O(n + m(v + n/q)).

If v is O(1) and q > m then the total expected running time is O(n)!

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 24 / 40

Trie

From algorithms revolving around the pattern, we will now focus on
data-structures centered on the text (or set of words) being searched

A trie (also known as prefix tree) is a data structure representing a
set of words (that can have values associated with it)

I The root represents the empty string

I Descendants share the same prefix

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 25 / 40

Trie
An example trie with 6 words

Note that the letters can be thought of as the edges and not the nodes

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 26 / 40

Trie

We can check if a string of size n is stored in the trie in O(n) time

We can insert a new word of size n in O(n) time

We can remove a word of size n in O(n) time

We exemplified with words, but tries can store other types of data
(ex: numbers, or any data that we can separate in individual pieces)

For space efficiency we can compact the tree: if a node has only one
child, merge it with that child. This type of tree is called a
compressed prefix tree, which is sometimes called radix tree

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 27 / 40

Compressed Prefix Tree
An example compressed prefix tree with 6 words

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 28 / 40

Suffix Tree

A trie is not efficient in searching for substrings.

For that we need a different data structure: a suffix tree. It is
essentially a compressed trie of all suffixes of a given word.

$ is being used for marking the end of a word

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 29 / 40

Suffix Tree

We can check if a string of size n is a substring in O(n) time

A suffix tree of a word of size n can be created in O(n) time, but the
algorithms have an high constant factor and are not trivial to
implement (ex: Ukkonen’s algorithm)

We can put more than one word in the suffix tree: a generalized
suffix tree is just is a suffix tree of a set of words.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 30 / 40

Suffix Tree

There are many possible applications besides the ”obvious” substring
matching. Here are some examples:

Longest repeated substring on a single word? Just find node with
the highest depth through which two different suffixes passed by.

Longest common substring of two words? Just put both on a suffix
tree and find the node with the highest depth through which both
strings passed by.

Most frequent k-gram? (substring of size k) For all nodes with
depth k, find which has more leafs descending from it.

Shortest unique substring? Find the lowest depth node with only
one leaf descending from it

...

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 31 / 40

Suffix Arrays

The biggest problem with suffix trees is it high memory usage.

A much more space efficient alternative with the same kind of
applications is the suffix array: a sorted array of all suffixes

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 32 / 40

Suffix Arrays
An example

Consider S=”banana”

i 1 2 3 4 5 6 7
s[i] b a n a n a $

Suffix i
banana$ 1
anana$ 2
nana$ 3
ana$ 4
na$ 5
a$ 6
$ 7

Suffixes of S

Suffix i
$ 7
a$ 6
ana$ 4
anana$ 2
banana$ 1
na$ 5
nana$ 3

Sorted Suffixes

The suffix array A contains the starting positions of these sorted suffixes:

i 1 2 3 4 5 6 7
A[i] 7 6 4 2 1 5 3

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 33 / 40

Suffix Arrays
Substring matching

How to search if a string P is a substring of a text T?

You can use binary search on the suffix array of T !

Without auxiliary data structures each comparison takes O(|P|) and
you need to make O(log |T |) comparisons, leading to an
O(|P| × log |T |) algorithm.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 34 / 40

Suffix Arrays vs Suffix Trees

Suffix arrays can be constructed by performing a depth-first traversal
(DFS) of a suffix tree. The suffix array corresponds to the leaf-labels
given in the order in which these are visited during the traversal, if
edges are visited in the lexicographical order of their first character.

A suffix tree can be constructed in linear time by using a combination
of suffix arrays and LCP array

In fact, every suffix tree algorithm can be systematically
replaced by an algorithm with suffix arrays by using auxiliary
information (such as the LCP array), having an ”equivalent” time
complexity (just a bit slower).

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 35 / 40

Suffix Arrays
LCP Array

What is the LCP array? LCP = Longest Common Prefix
It stores the lengths of the longest common prefixes between pairs of
consecutive suffixes in the sorted suffix array.

Consider S=”banana”
i 1 2 3 4 5 6 7

s[i] b a n a n a $

Suffix Array A:
i 1 2 3 4 5 6 7

A[i] 7 6 4 2 1 5 3

LCP Array H
i 1 2 3 4 5 6 7

A[i] 0 1 3 0 0 2

Example: H[4] = 3 because ana and anana have a common prefix of size 3

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 36 / 40

Suffix Arrays
LCP Array

How can we use the LCP array?

Imagine again you want to check if a string P is a substring of T .

You can use binary search on the suffix array of T

Without anything else we can use binary search in O(|P| × log |T |)

With LCP and derivatives you can turn this into O(|P|+ log |T |)

Consider an LCP-LR array that tells you the longest common prefix of
any given suffixes (not necessarily consecutive).

We can use LCP-LR to only check the ”new characters”. How?

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 37 / 40

Suffix Arrays and Binary Search

During the binary search we consider a range [L,R] and its central
point M. We then decide whether to continue with the left half
[L,M] or the right half [M,R].

For that decision, we compare P to the string at position M. If
P == M, we are done. If not, we have compared the first k chars of
P and then decided whether P is lexicographically smaller or larger
than M. Let’s assume the outcome is that P is larger than M.

In the next step we will therefore consider [M,R] and a new central
point M ′ in the middle:

M M’ R

|

we know:

lcp(P,M)==k

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 38 / 40

Suffix Arrays and Binary Search

M M’ R

|

lcp(P,M)==k

The ”trick” now is that LCP-LR is precomputed such that a O(1)
lookup gives the longest common prefix of M and M’, lcp(M,M’).

We know already that M itself has a prefix of k chars common with
P: lcp(P,M) = k. Now there are 3 possibilities:

I k < lcp(M,M′). This means the (k+1)-th char of M ′ is the same as
M. Since P is lexicographically larger than M, it must be lexicogr.
larger than M ′, too. We continue in the right half [M ′,R]

I k > lcp(M,M′). the common prefix of P and M ′ would be < k, and
M ′ would be lexicographically larger than P, so, without actually
making the comparison, we continue in the left half [M,M ′]

I k == lcp(M,M′). M and M ′ have the same first k chars as P. It
suffices to compare P to M ′ starting from the (k + 1)-th char.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 39 / 40

Suffix Arrays and Binary Search

In the end every character of P is compared to any character of T
only once!

We get our desired O(|P|+ log |T |) complexity!

But how to build the LCP-LR array?

I Only certain ranges may appear during a binary search

I In fact, every entry of the suffix array is the central point of exactly one
possible range

I So there are |T | distinct ranges, and it suffices to compute lcp(L,M)
and lcp(M,R) for those ranges

I In the end we have 2× |T | values to pre-compute

I There is a ”straightforward” recursive algorithm to compute the
2× |T | values of LCP-LR in O(|T |) from the standard LCP array.

Pedro Ribeiro (DCC/FCUP) String Matching 2019/2020 40 / 40

