
Balanced Binary Search Trees

Pedro Ribeiro

DCC/FCUP

2020/2021

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 1 / 48



Motivation

Let S be a set of ”comparable” objects/items:

I Let a and b be two different objects. They are ”comparable” if it is
possible to say that a < b, a = b or a > b.

I Example: numbers, but we could have other data types (students with
names and numbers, teams with points and goal-average, . . .)

A few possible problems of interest:

I Given a set S , determine if a certain item is in S
I Given a dynamic set S (that changes with insertions and removals),

determine if a certain item is in S
I Given a dynamic set S , determine the min/max item in S
I Given a dynamic set S , determine the elements in a range [a, b]
I Sort a set S
I . . .

Binary Search Trees!

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 2 / 48



Binary Search Trees - Notation

An overview of notation for binary trees:

Node A is the root and nodes D, E and F are the leafs

Nodes {B,D,E} are a subtree

Node A is the parent of nodes B and C

Nodes D and E are children of node B

Node B is a brother of node C

. . .
Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 3 / 48



Binary Search Trees - Overview

For all nodes of tree, the following must hold:
the node is bigger than all nodes in the left subtree and smaller
than all nodes in the right subtree

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 4 / 48



Binary Search Trees - Example

The smallest element is... in the leftmost node

The biggest element is... in the rightmost node

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 5 / 48



Binary Search Trees - Search

Searching for values in binary search trees:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 6 / 48



Binary Search Trees - Search

Searching for values in binary search trees:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 7 / 48



Binary Search Trees - Search

Seaching for values in binary search trees:

Searching in a binary search tree (true/false to check if exists)

Search(T , v):
If Null(T ) then

return false
Else If v < T .value then

return Search(T .left child , v)
Else If v > T .value then

return Search(T .right child , v)
Else

return true

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 8 / 48



Binary Search Trees - Insertion

Inserting values in binary search trees:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 9 / 48



Binary Search Trees - Insertion

Inserting values in binary search trees:

Insertion on a binary search tree

Insert(T , v):
If Null(T ) then return new Node(v)
If v < T .value then
T .left child = Insert(T .left child , v)

Else If v > T .value then
T .right child = Insert(T .right child , v)

return T

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 10 / 48



Binary Search Trees - Removal

Removing values from binary search trees:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 11 / 48



Binary Search Trees - Removal

After finding the node we need to decide how to remove
I 3 possible cases:

⇓ ⇓ ⇓

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 12 / 48



Binary Search Trees - Execution Time

How to characterize the execution time of each operation?
I All operations search for a node traversing the height of the tree

Complexity of operations in a binary search tree

Let h be the height of a binary search tree T . The complexity of finding
the minimum, maximum, or searching for an element, or inserting or
removing an element in T is O(h).

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 13 / 48



Binary Search Trees - Visualization

A nice visualization of search, insertion and removal can be seen in:

https://www.cs.usfca.edu/˜galles/visualization/BST.html

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 14 / 48

https://www.cs.usfca.edu/~galles/visualization/BST.html


Unbalanced Trees

The problem of the previous methods:

The height of the tree can be of the order of O(n)
(where n is the number of elements)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 15 / 48



Balancing Strategies

There are many strategies to guarantee that the complexity of the
search, insertion and removal operations are better than O(n)

Balanced Trees:
(height O(log n))

I AVL Trees

I Red-Black Trees

I Splay Trees

I Treaps

Other Data Structures:

I Skip Lists

I Hash Tables

I Bloom Filters

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 16 / 48



Balancing Strategies

A simple strategy: reconstruct the tree once in a while

⇒

On a ”perfect” binary tree with n nodes, the height is... O(log(n))

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 17 / 48



Balancing Strategies

Given a sorted list of numbers, in which order should we insert them in
a binary search tree so that it stays as balanced as possible?

Answer: “binary search”, insert the element in the middle, split the
reamaining list in two (smaller and bigger) based on that element and
insert each half applying the same method

How frequently should we reconstruct the binary search tree so that we
can guarantee efficiency?

If we reconstruct often we have many O(n) operations

If we rarely reconstruct, the tree may become unbalanced

A possible answer: after O(
√
N) insertions

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 18 / 48



Balancing Strategies

Simple case: how to balance the following tree
(between parenthesis is the height):

⇒

This operation is called a right rotation

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 19 / 48



Balancing Strategies

The relevant rotation operations are the following:
I Note that we must not break the properties that turn the tree into a

binary search tree

Right Rotation

⇒

Left Rotation

⇒

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 20 / 48



AVL Trees

AVL Tree

A binary search tree that guarantees that for each node, the heights of the
left and right subtrees differ by at most one unit (height invariant)

When inserting and removing nodes, we change the tree so that we
keep the height invariant

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 21 / 48



AVL Trees

Inserting on a AVL tree works like inserting on any binary search
tree. However, the tree might break the height invariant (and stop
being ”balanced”)

The following cases may occur:

+2 on the left +2 on the right

Let’s see how to correct the first case with simple rotations.
Correcting the second case is similar, but with mirrored rotations

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 22 / 48



AVL Trees

In the first case, we have two different possible shapes of the AVL Tree

The first:

⇒

Left is too ”heavy”, case 1

We correct by making a right rotation starting in X

Note: the height of Y2 might be h + 1 or h: this correction works for
both cases

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 23 / 48



AVL Trees

The second:

⇒ ⇒

Left is too ”heavy”, case 2

We correct by making a left rotation starting in Y , followed by a right
rotation starting in X

Note: the height of Y21 or Y22 might be h or h − 1: this correction
works for both cases

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 24 / 48



AVL Trees

By inserting nodes we might unbalance the tree (breaking the height
invariant)

In order to correct this, we apply rotations along the path where the
node was inserted

There are two analogous unbalancing types: to the left or to the
right

Each type has two possible cases, that are solved by applying
different rotations

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 25 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

Example of node insertion:

(after two rotations)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 26 / 48



AVL Trees

To remove elements, we apply the same idea of insertion

First, we find the node to remove

We apply one of the modifications seen for binary search trees

We apply rotations as described along the path until we reach the root

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 27 / 48



AVL Trees

For the search operation, we only traverse the tree height

For the insertion operation, we traverse the tree height and the we
apply at most two rotations (why only two?), that take O(1)

For the removal operation, we traverse the tree height and the we
apply at most two rotations over the path until the root

We conclude that the complexity of each operation is O(h), where h
is the tree height

What is the maximum height of an AVL Tree?

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 28 / 48



AVL Trees

To calculate the worst case of the tree height, let’s do the following
exercise:

I What is the smallest AVL tree (following the height invariant) with
height exactly h?

I We will call N(h) to the number of nodes of a tree with height h

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 29 / 48



AVL Trees

Height 1

Height 2
Height 3

Height 4
Height 5

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 30 / 48



AVL Trees

Summarizing:
I N(1) = 1
I N(2) = 2
I N(3) = 4
I N(4) = 7
I N(5) = 12
I . . .
I N(h) = N(h − 2) + N(h − 1) + 1

It has a behavior similar to the Fibonacci sequence!

Remembering your linear algebra courses:
I N(h) ≈ φh
I log(N(h)) ≈ log(φ)h
I h ≈ 1

log(φ) log(N(h))

The height h of an AVL Tree with n nodes obeys to h ≤ 1.44 log(n)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 31 / 48



AVL Tree

Advantages of AVL Trees:
I Search, insertion and removal operations with guaranteed worst case

complexity of O(log n);
I Very efficient search (when comparing with other related data

structures), because the height limit of 1.44 log(n) is small;

Disadvantages of AVL trees:
I Complex implementation (we can simplify removal by using lazy delete,

similar to the idea of reconstructing);
I Implementation requires two extra bits of memory per node (to store

the ”unbalancedness” of a node: +1, 0 or -1);
I Insertion and removal less efficient (when comparing with other related

data structures) because of having to guarantee a smaller maximum
height;

I The rotations frequently change the tree structure (not cache or disk
friendly);

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 32 / 48



AVL Trees

The name AVL comes from the authors: G. Adelson-Velsky and E.
Landis. The original paper describing them is from 1962 (”An
algorithm for the organization of information”, Proceedings of the
USSR Academy of Sciences)

You can use an AVL Tree visualization to ”play” a little bit with the
concept and seeing how are insertions, removals and rotations made.
https://www.cs.usfca.edu/˜galles/visualization/AVLtree.html

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 33 / 48

https://www.cs.usfca.edu/~galles/visualization/AVLtree.html


Red-Black Trees

We will now explore another type of binary search trees known as
red-black trees

This type of trees appeared as an ”adaptation” of 2-3-4 trees to
binary trees

The original paper is from 1978 and was it was written by L. Guibas e
R. Sedgewick (”A Dichromatic Framework for Balanced Trees”)

The authors say they use the red and black colors because they
looked good when printed and because those were the pen colors thay
they had available to draw the trees :)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 34 / 48



Red-Black Trees

Red-Black Tree

A binary search tree where each node is either black or red and:
(root property) The root node is black
(leaf property) The leaves are null/empty black nodes
(red property) The children of a red node are black
(black property) For each node, a path to any of its descending
leaves has the same number of black nodes

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 35 / 48



Red-Black Trees

For better visibility, the images may not contain the ”null” leaves, but
you may assume those nodes exist.
We call internal nodes to the non null nodes.

The number of black nodes in a path from a node n to any of its
leaves (not including the node itself) is known as black height and
will be denoted as bh(n)

I Ex: → bh(12) = 2 and bh(21) = 1

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 36 / 48



Red-Black Trees

What type of balance do the restrictions guarantee?

If bh(n) = k, then a path from n to a leaf has:
I At least k nodes (only black nodes)
I At most 2k nodes (alternating between black and red nodes)

[recall that there are never two consecutive red nodes]

The height of a branch is therefore at most double the height of a
sister branch

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 37 / 48



Red-Black Trees

Theorem - Height of a Red-Black Tree

A red-black tree with n nodes has height h ≤ 2× log2(n + 1)
[that is, the height h of a red-black tree is O(log n)]

Intuition:
Let’s merge the red nodes with their black parents:

This process produces a tree with 2, 3 or 4 children

This 2-3-4 tree has leaves at an uniform height of h’
(where h’ is the black height)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 38 / 48



Red-Black Trees

Theorem - Height of a Red-Black Tree

A red-black tree with n nodes has height h ≤ 2× log2(n + 1)
[that is, the height h of a red-black tree is O(log n)]

The height of this tree is at least half of the original: h′ ≥ h/2

A complete binary tree of height h′ has 2h
′
− 1 internal (non null) nodes

The number of internal nodes of the new tree is ≥ 2h
′
− 1 (it is a 2-3-4 tree)

The original tree had even more nodes than the new one: n ≥ 2h
′
− 1

n + 1 ≥ 2h
′

log2(n + 1) ≥ h′ ≥ h/2

h ≤ 2 log2(n + 1)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 39 / 48



Red-Black Trees

How to make an insertion?

Inserting a node in a non empty red-black tree

Insert as in any binary search tree

Color the inserted node as red (adding the null black nodes)

Recolor and restructure if needed (restore the invariants)

Because the tree is non empty we don’t break the root property

Because the inserted node is red, we don’t break the black property

The only invariant than can be broken is the red property
I If the parent of the inserted node is black, nothing needs to be done
I If the parent is red we now have two consecutive red nodes

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 40 / 48



Red-Black Trees

When the parent of the inserted node is black nothing needs to be done:

Example:

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 41 / 48



Red-Black Trees

Red-Red after insertion (red parent)

Case 1.a) The uncle is a black node and the inserted node x is the
left child

Description: right rotate the grandfather, followed by swapping the colors between the
parent and the grandfather

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 42 / 48



Red-Black Trees

Red-Red after insertion (red parent)

Case 1.b) The uncle is a black node and the inserted node x is the
right child

Description: left rotation of parent followed by the moves of 1.a

[If the parent was the right child of the grandfather, we would have similar
cases, but symmetric in relation to these]

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 43 / 48



Red-Black Trees

Red-Red after insertion (red parent)

Case 2: The uncle is a red node, with x being the inserted node

Description: swap colors of parent, uncle and grandfather

Now, if the father of the grandfather is red, we have a new red-red
situation and we can simply apply one of the cases we already know (if the
gradparent is the root, we simply color it as black)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 44 / 48



Red-Black Trees

Let’s visualize some insertions (try the indicated url):

https://www.cs.usfca.edu/˜galles/visualization/RedBlack.html

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 45 / 48

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


Red-Black Trees

The cost of an insertion is therefore O(log n)
I O(log n) to get to the insertion position
I O(1) to eventually recolor and restructure

The removals are similar albeit a bit more complicated, but they also
cost O(log n)
(we will not detail in class, but you can try the visualizations)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 46 / 48



Red-Black Trees

Comparison of Red-Black Trees (RB) with AVL trees
I Both are implemented with balanced binary search trees (search,

insertion and removal are O(log n))

I RB are a little bit more unbalanced in the worst case,
with height ∼ 2 log(n) vs AVL with height ∼ 1.44 log(n)

I RB may take a little bit more time to search
(at the worst case, because of the height)

I RB are a bit faster in insertions/removals on average
(”lighter” rebalancing)

I RB spend less memory
(RB only need 1 extra bit for color, AVL 2 bits for unbalancedness)

I RB are (probably) more used in the classical programming languages
Examples of data structures that use them:

F C++ STL: set, multiset, map, multiset
F Java: java.util.TreeMap , java.util.TreeSet
F Linux kernel: scheduler, linux/rbtree.h

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 47 / 48



Use in C/C++, Java and other languages

Any typical programming language has an implementation of
balanced binary search trees

The associated main data structures are:
I set: search, insert and remove elements
I multiset: a set with possibly repeated elements
I map: associative array (associates a key with a value)

ex: associating strings to ints)
I multimap: a map with the possibility of repeated keys

The nodes may contain any data types as long as they are
comparable

Because there is relative order between nodes, you can use iterators
to traverse the trees in order (ex: in increasing order, from min to
max)

Pedro Ribeiro (DCC/FCUP) Balanced Binary Search Trees 2020/2021 48 / 48


