
Probabilistic Data Structures

Pedro Ribeiro

DCC/FCUP

2020/2021

(heavily inspired/based on the lecture notes by Jeff Erickson @ University of Illinois at Urbana-Champaign)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 1 / 36



What are probabilistic data structures?

Data structures that use some randomized algorithm or takes
advantage of some probabilistic characteristics internally

There are mainly two types of randomized algorithms:
I Las Vegas algorithm: always outputs the correct answer, but runtime

is a random variable
I Monte Carlo algorithm: always terminates in given time bound, and

outputs the correct answer with at least some (high) probability

Likewise, we have two types of probabilistic data structures:
I Some always give exact results, but runtime is random variable

F E.g.: Treaps, Skip Lists
I Some have bounded runtime, but give approximate results

F E.g.: Bloom Filters, Count-Min Sketches, HyperLogLog

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 2 / 36



Random Binary Search Trees

What happens when we insert elements in randomized order in a
binary search tree?

I What is the expected depth of a node?

The average efficiency of searching, inserting and removing from that
random tree is related to the expected depth of a node

I Depth might n, but what is the chance that we are that ”unlucky”?
(all permutations are equally likely)

Let’s have a first empirical look at this:

Gnarley Trees - Visualization of Data Structures
https://people.ksp.sk/~kuko/gnarley-trees/

97 nodes, height = 12 = 1.71 ·opt, Avg. Depth = 7.09
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 3 / 36

https://people.ksp.sk/~kuko/gnarley-trees/


Random Binary Search Trees

The depth seems to be always just a (small) constant away from the
optimal and therefore logarithmic in terms of expected value

Can we prove this?

Example (Theorem - Expected Depth in Random BST )

If n values are inserted in random order on a binary search tree, the
expected depth of any node will be O(log n)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 4 / 36



Expected Depth of a Node in a Random BST

Let xk denote the node the k-th smallest of n search keys

We will use i ↑ k to denote that xi is a (proper) ancestor of xk

The depth of a node is simply the number of its ancestors, so:

depth(xk ) =
n∑

i=1

[i ↑ k]

[i ↑ k] is just an indicator variable of i ↑ k)
this is called the Iverson bracket notation

We can now express the expected depth of a node as:

E[depth(xk )] = E

[
n∑

i=1

[i ↑ k]

]
=

n∑
i=1

E
[
[i ↑ k]

]
=

n∑
i=1

Pr [i ↑ k]

using linearity of expectation: E[X + Y ] = E[X ] + E[Y ]
and indicator variables: E[X ] = Pr [X = 1] if X is an indicator variable

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 5 / 36



Expected Depth of a Node in a Random BST

Let X (i , k) denote the subset of node between xi and xk

I {xi , xi+1, · · · , xk} if i < k
I {xk , xk+1, · · · , xi} if i > k

If i 6= k , we have i ↑ k if and only if xi was the first element being
inserted in X (i , k)

I xi must obviously be inserted before xk

I if j is between i and k (i < j < k or i > j > k) and xj is inserted
before xi , then xi and xj will end up in different subtrees

Each node is in X (i , k) is equally likely to be the first one inserted, so:

Pr [i ↑ k] =
[i 6= k]

|k − i |+ 1
=


1

k−i+1 if i < k

0 if i = k
1

i−k+1 if i > k

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 6 / 36



Expected Depth of a Node in a Random BST

Plugging it in the expectation formula:

E[depth(xk )] =
n∑

i=1

Pr [i ↑ k] =
k−1∑
i=1

1

k − i + 1
+

n∑
i=k+1

1

i − k + 1

=
k∑

j=2

1

j
+

n−k+1∑
j=2

1

j

= Hk − 1 + Hn−k+1 − 1

≤ ln k + ln(n − k + 1)

≤ 2 ln n ∈ O(log n)

[the sum Hn = 1 + 1
2
+ · · ·+ 1

n
is known as the harmonic series and Hn ≤ ln(n) + 1]

The expected depth of a node is logarithmic in relation to the nr of nodes
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 7 / 36



Using the ideas Random BSTs

So, on a random BST with n keys, the nodes are expected to be at
O(log n) depth

However, we are not so lucky that the insertion order is random...

Can we guarantee the same properties for any insertion order?

”yes we can”, and treaps are here for the rescue :)

Aragon, C. R., and Seidel, R. (1989). Randomized search trees.
In IEEE Symposium on Foundations of Computer Science (FOCS)
(Vol. 30, pp. 540-545).

Note: there are other ways of obtaining the same properties, such as:
Mart́ınez, C., & Roura, S. (1998). Randomized binary search
trees. Journal of the ACM (JACM), 45(2), 288-323.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 8 / 36



Treaps - Concept

A treap is a binary tree in which every node has both a search key
and a priority, where the inorder sequence of search keys is sorted
and each node’s priority is smaller than the priorities of its children.
In other words, it is simultaneously:

I a binary search tree for the search keys
I a (min-)heap for the priorities

Let’s see a first example using letters meaning search keys and
numbers for the priorities:

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 9 / 36



Treaps are uniquely determined

Let’s assume that all keys and priorities are distinct

The structure of the treap is completely determined by the
search keys and priorities of its nodes

I Since it’s a heap:
F the node v with highest priority must be the root

I Since it’s a BST:
F any node u with key(u) < key(v) must be in the left subtree
F any node w with key(w) > key(v) must be in the right subtree

I Since the subtrees are treaps, by induction, their structures are
completely determined (the base case is the empty treap).

In other words, a treap is exactly the binary search tree that results of
inserting the nodes in order of increasing priority into an initially
empty tree (using the standard textbook insertion algorithm)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 10 / 36



Treap Operations - Search

Search is done as in a normal BST
I Successful search has time proportional to the depth of the node
I Unsuccessful search has time proportional to the depth of its

predecessor or ancestor

(time is proportional to the depth of the node)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 11 / 36



Treap Operations - Insert

Insertion is done in the following way
I Let’s call z to the new node
I You do the insertion using the standard BST algorithm
I This results in z being a leaf, at the bottom of the tree
I At this point you have a BST, but priorities may no longer form a heap
I To fix this, you do something similar to a standard heap:

F As long as the parent of z has a smaller priority, you perform a
rotation at z , decreasing the depth of z (and increasing the depth of
the parent), while keeping the BST property

F One rotation takes constant time

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 12 / 36



Treap Operations - Insert/Remove

The overall time to insert z is proportional to the depth of z before
the rotations (roughly equi. to 2× of an unsucessfull search for z):

I we have to walk down the treap to insert z
I and then walk back up the treap doing rotations

This suggest an algorithm for removing an element z
(as the inverse in time of insertion)

I push z to the bottom of three using rotation
I simply remove z , which is now a leaf
I time is proportional to depth of z

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 13 / 36



Treap Operations - Split/Join

Treaps are also very handy for splitting: imagine we want to split a
treap T into two treaps T< and T> along some pivot π

I T< contains all nodes with keys smaller than π
I T> contains all nodes with keys bigger than π

A simple way to do this is to insert a new node z with
key(z) = π and priority(z) = −∞

I after the insertion z is the root
I deleting the root the left and right subtrees are T < and T >

Joining two treaps T < and T > is just splitting in reverse
I create a dummy root, rotate it to the bottom and chop it off

For both splitting or joining, time is again proportional to the depth

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 14 / 36



Randomized Treaps

A randomized treap is a treap in which the priorities are
independently and uniformly distributed random variables.

Whenever we insert a new search key into the treap, we generate a
random real number between (say) 0 and 1 and use that number as
the priority of the new node.

As we saw before, a treap is exactly the BST that results of inserting
the nodes in order of increasing priority into an initially empty
tree (using the standard textbook insertion algorithm)

Because the priorities are random and independent this is equivalent
to inserting them in random order; as we know, this means the
expected depth of any node is O(log n)

The cost of a treap operation (search/insert/remove/split/join) is
proportional to the depth of the node, so all these operations are
logarithmic :)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 15 / 36



Treaps: Conclusion

Treaps are a Las Vegas Algorithm: they always output the correct
answer, but runtime is a random variable

Treaps are very easy to implement (and extend), while providing
(expected) logarithmic time for all main operations

You can try out a visualization with Gnarley trees:
https://people.ksp.sk/~kuko/gnarley-trees/

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 16 / 36

https://people.ksp.sk/~kuko/gnarley-trees/


Skip Lists

How to have the properties of BSTs without trees?

Pugh, W. (1990). Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM, 33(6), 668-676.

At a high level, a skip list is just a sorted linked list with some
random shortcuts

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 17 / 36



Skip Lists: Concept

To search in a normal singly-linked list of length n, we obviously need
to look at n items in the worst case.

To speed up this process, we can make a second-level list that
contains roughly half the items from the original list

I For each item in the original list, we duplicate it with probability 1/2
I We string together all the duplicates into a second sorted linked list,

and add a pointer from each duplicate back to its original
I (to be safe) We add sentinel nodes at the start and end of both lists

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 18 / 36



Skip Lists: Concept

We can now find a value x using a two-stage algorithm:
I First, we scan for x in the shortcut list, starting at −∞
I If we find x , we’re done
I Otherwise, we reach a value > x and we know that x /∈ shortcut list
I In the second phase, we scan for x in the original list, starting from the

largest item less than x

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 19 / 36



Skip Lists: Concept

Since each node appears in the shortcut list with probability 1/2, the
expected number of nodes examined in the first phase is at most n/2

Only one of the nodes examined in the second phase has a duplicate

The probability that any node is followed by k nodes without
duplicates is 2−k .

So, the expected number of nodes examined in the second phase is at
most 1 +

∑
k>0 2−k = 2

Thus, by adding these random shortcuts, we’ve reduced the cost of a
search from n to n/2 + 2 (roughly a factor of two in savings).

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 20 / 36



Skip Lists: Recursive Random Shortcuts

There’s an obvious improvement: add shortcuts to the shortcuts,
and repeat recursively! That’s exactly how skip lists are made...

I For each original node, we repeatedly flip a coin until we get tails
I Each time we get heads, we make a new copy of the node
I The duplicates are stacked up in levels, and the nodes on each level are

strung together into sorted linked lists
I Each node v stores a search key key(v), a pointer down(v) to its next

lower copy, and a pointer right(v) to the next node in its level.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 21 / 36



Skip Lists: Searching

The search algorithm for skip lists is very simple:

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 22 / 36



Skip Lists: Searching

The search algorithm for skip lists is very simple:

Intuitively, since each level of the skip lists has about half the number
of nodes as the previous level, the total number of levels should be
about O(log n)

Similarly, each time we add another level of random shortcuts to the
skip list, we cut the search time roughly in half, except for a constant
overhead, so O(log n) levels should give us an overall expected search
time of O(log n).

Let’s try to formalize each of these two intuitive observations.
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 23 / 36



Skip Lists: Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume
the keys are the integers 1 through n

Let L(x) be the number of levels of the skip list that contain some
search key x , not counting the bottom level

Each new copy of x is created with probability 1/2 from the previous
level

We can compute the expected value of L(x) recursively:

E[L(x)] =
1

2
· 0 +

1

2
(1 + E[L(x)]

Solving this equation gives us E[L(x)] = 1

In order to analyze the expected worst-case cost of a search, however, we
need a bound on the number of levels L = maxxL(x).
Unfortunately, we can’t compute the average of a maximum the way we
would compute the average of a sum.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 24 / 36



Skip Lists: Number of Levels

Instead, we derive a stronger result:

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with high probability.

”High probability” is a technical term that means the probability is at least
1− 1

nc for some constant c ≥ 1; the hidden constant in the O(log n)
bound could depend on c .

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with prob. ≥ 1− 1
nc .

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 25 / 36



Skip Lists: Number of Levels

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with prob. ≥ 1− 1
nc .

For a search key x to appear on level `, it must have flipped heads in
a row when it was inserted, so Pr(L ≥ `) = 2−`

The skip list has at least ` levels if and only if L(x) ≥ ` for at least
one of the n search keys, so:

Pr [L ≥ `] = Pr [(L(1) ≥ `) ∨ (L(2) ≥ `) ∨ · · · ∨ (L(n) ≥ `)]

Using the union bound — Pr [A ∨ B] ≤ Pr [A] + Pr [B] for any
random events A and B — we can simplify this as follows:

Pr [L ≥ `] ≤
n∑

x=1

Pr [L(x) ≥ `] = n · Pr [L(x) ≥ `] =
n

2`

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 26 / 36



Skip Lists: Number of Levels

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with prob. ≥ 1− 1
nc .

Pr [L ≥ `] ≤ n

2`

When ` ≤ log n, this bound is trivial (since Pr ≤ 1)

However, for any constant c > 1, we have a strong upper bound:

Pr [L ≥ c log n] ≤ 1

nc−1

We conclude that with high probability, a skip list has O(log n) levels.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 27 / 36



Skip Lists: Number of Levels

This high-probability bound indirectly implies a bound on the expected
number of levels:

E[L] =
∑
`≥0

` · Pr [L = `] =
∑
`≥0

Pr [L ≥ `]

Clearly, if ` < `′ then Pr [L(x ] ≥ `] > Pr [L(x) ≥ `′]. So we can derive an
upper bound on the expected number of levels as follows:

E[L] =
∑
`≥1

Pr [L ≥ `] =

log n∑
`=1

Pr [L ≥ `] +
∑

`≥log n+1

Pr [L ≥ `]

≤
log n∑
`=1

1 +
∑

`≥log n+1

n

2`

= log n +
∑
i≥1

1

2i

= log n + 2
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 28 / 36



Skip Lists: Number of Levels

E[L] ≤ log n + 2

Expected Number of Levels in a Skip List

The expected depth of a skip list with n keys is ≤ log n + 2

So in expectation, a skip list has at most two more levels than an ideal
version where each level contains exactly half the nodes of the next level
below. Notice that this is an additive penalty over a perfectly balanced
structure, as opposed to treaps, where the expected depth is a constant
multiple of the ideal log n.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 29 / 36



Skip Lists: Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the
algorithm backwards

SkipListFind takes the output from SkipListFind as input and traces
back through the data structure to the upper left corner (for simplification,
imagine you have up and left pointers).

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 30 / 36



Skip Lists: Logarithmic Search Time

For any v in the skip list, up(v) exists with probability 1/2. So, for the
purpose of analysis, SkipListFind is equivalent to the following algorithm:

Obviously, the expected number of heads is exactly the same as the
expected number of tails. Thus, the expected running time of this
algorithm is twice the expected number of upward jumps. But we already
know that the number of upward jumps is O(log n) with high probability.
It follows the running time of FlipWalk is O(log n) with high probability
(and therefore in expectation)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 31 / 36



Skip Lists and Binary Trees

If you rotate the skip list and remove duplicate edges, you can see how it
resembles a binary search tree (images from http://ticki.github.io):

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 32 / 36

http://ticki.github.io


Skip Lists: Some Advantages

Skip lists perform very well on insertions
(no rotations or reallocations).

They are simple to implement and extend

You can easily retrieve the next element in constant time

”Easy” to parallelize (lock-free skip lists)

Skips lists are used in some (in memory) databases / search engines:

https://www.singlestore.com/blog/

what-is-skiplist-why-skiplist-index-for-memsql/

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 33 / 36

https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/
https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/


Skip Lists: Implementation

The following article gives very nice hints on how to implement skip lists:

Skip Lists: Done Right
http://ticki.github.io/blog/skip-lists-done-right/

For example, to avoid wasting memory, one could consider each node as an
array (avoiding the downward pointers), while also reducing cache misses.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 34 / 36

http://ticki.github.io/blog/skip-lists-done-right/


Skip Lists: Visualizations

You can try out a visualization with Gnarley trees:
https://people.ksp.sk/~kuko/gnarley-trees/

Or a visualization Yves Lucet (@ UBritishColumbia):
https://people.ok.ubc.ca/ylucet/DS/Algorithms.html

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 35 / 36

https://people.ksp.sk/~kuko/gnarley-trees/
https://people.ok.ubc.ca/ylucet/DS/Algorithms.html


Bloom Filters: Concept

(slides to be added)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2020/2021 36 / 36


