Self Adjusting Data Structures

Pedro Ribeiro

DCC/FCUP

2020/2021

What are self adjusting data structures?

- Data structures that can rearrange themselves after operations are committed to it.
- This is typically done in order to improve efficiency on future operations.
- The rearrangement can be heuristic in its nature and typically happens in every operation (even if it was only accessing an element).
- Some examples:
- Self Organizing Lists
- Self Adjusting Binary Search Trees

Traversing Linked Lists

- Consider a classic linked list with n elements:

- Consider a cost model in which accessing the element in position i costs i (traversing the list)
- What is the average cost for accessing an element using a static list?
- Intuitively, if the element to be searched is a "random" element in the list, our average cost is "roughly" $n / 2$

Formalizing The Cost

- Let's formalize a little bit more:
- Let $p(i)$ be the probability of searching for element in positions i
- On average, our cost will be:

$$
T_{\text {avg }}=1 \times p(1)+2 \times p(2)+3 \times p(3)+\ldots+n \times p(n)
$$

- Suppose that the the probability is the same for every element: $1 / n$.
- $T(n)=1 / n+2 / n+3 / n+\ldots+n / n=(1+2+3+\ldots+n) / n=(n+1) / 2$
- But what if the probability is not the same?
- What if we typically access nodes at the front of the list?
- What if we typically access nodes at the back of the list?

Cost on non-uniform access

- Let's look at an example:

$$
P(A)=0.1 \quad P(B)=0.1 \quad P(C)=0.4 \quad P(D)=0.1 \quad P(E)=0.3
$$

$T(n)=1 \times 0.1+2 \times 0.1+3 \times 0.4+4 \times 0.1+5 \times 0.3=3.4$
If we know in advance this access pattern can we do better?

$T(n)=1 \times 0.4+2 \times 0.3+3 \times 0.1+4 \times 0.1+5 \times 0.1=2.2$
And what if we know the exact (non-static) search pattern?

Strategies for Improving

- Can you think of any strategies for improving if we do not know in advance what is the access pattern?
- Intuition: bring items frequently accessed closer to the front
- Three possible strategies (among others) after accessing an element:
- Move to Front (MTF): move element to the head of the list
- Transpose (TR): swap with previous element
- Frequency Count (FC): count and store the number of accesses to each element. Order by this count.

Competitive Analysis

- Idea: look at the ratio of our algorithm vs best achievable

r-competitiveness

An algorithm has competitive ratio r (or is r-competitive) if for some constant b, for any sequence of requests s, we have:
$\operatorname{Cost}_{a l g}(s) \leq r \times \operatorname{Cost}_{\text {OPT }}(s)+b$
where OPT is the optimal algorithm (in hindsight)

- Consider the following cost model:
- Accessing item at position i costs i
- After accessing it, we can bring it forwards as much as we want for free

Competitive Analysis of Self Organizing Lists

Claim - TR has as a bad competitive ratio: $\Omega(n)$

Consider the following sequence of operations:

- Consider any list with n elements
- Ask n times for the last element in the sequence

Example:
$\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
find(E), find(D), find(E), find(D), \ldots

- This strategy will pay n^{2}
- A better option would be bringing both elements to front paying $n+n+2+2+2+2+2+2+\ldots=n+n+2(n-2)=2 n+2 n-4=4 n-4$
- The ratio for m operations like these is $n^{2} /(4 n-4)$ which is $\Theta(n)$

Competitive Analysis of Self Organizing Lists

Claim - FC has as a bad competitive ratio: $\Omega(n)$

Consider the following sequence of operations:

- Consider an initial request sequence that sets up counts: $n-1, n-2, \ldots, 2,1,0$
- Repeat indefinitely: ask n times for the element that was last

Example:
$\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$ find (E), find(E), find(E), find(E), ...

- Each of these iterations will pay $n+(n-1)+(n-2)+\ldots+2+1=n(n+1) / 2=\left(n^{2}+n\right) / 2$
- Optimal in this case would bring the element to the front on the first request, paying $n+1+1+1+1+1+\ldots=2 n-1$
- The ratio for m operations like these is $\Theta(n)$

Competitive Analysis of Self Organizing Lists

What about MTF? Can you find any "bad" sequence of operations?
Claim - MTF is 2-competitive

For this we can use amortized analysis

Remembering Amortized Analysis

- In amortized analysis we are concerned about the the average over a sequence of operations
- Some operations may be costly, but others may be quicker, and in the end they even out
- One possible method is using potential functions
- A potential function Φ maps the state of a data structure to non-negative numbers
- You can think of it as "potential energy" that you can use later (like a guarantee of the " money we have in the bank")
- If the potential is non-negative and starts at 0 , and at each step the actual cost of our algorithm plus the change in potential is at most c, then after n steps our total cost is at most $c n$.

Remembering Amortized Analysis

- Relationship between potential and actual cost
- State of data structure at time x : S_{x}
- Sequence of n operations: $O=o_{1}, o_{2}, \ldots, o_{n}$
- Amortized cost per operation o:

$$
T_{\text {am }}(o)=T_{\text {real }}(o)+\left(\Phi\left(S_{\text {after }}\right)-\Phi\left(S_{\text {before }}\right)\right)
$$

- Total amortized cost: $T_{a m}(O)=\sum_{i} T_{a m}\left(o_{i}\right)$
- Total actual (real) cost: $T_{\text {real }}(O)=\sum_{i} T_{\text {real }}\left(o_{i}\right)$
- $T_{a m}(O)=\sum_{i=1}^{n} T_{\text {real }}(0)+\left(\Phi\left(S_{i+1}\right)-\Phi\left(S_{i}\right)\right)=$
$T_{\text {real }}(O)+\left(\Phi\left(S_{\text {end }}\right)-\Phi\left(S_{\text {start }}\right)\right)$
- $T_{\text {real }}(O)=T_{\text {am }}(O)+\left(\Phi\left(S_{\text {start }}\right)-\Phi\left(S_{\text {end }}\right)\right)$

If $\Phi\left(S_{\text {start }}\right)=0$ and $\Phi\left(S_{\text {end }}\right) \geq 0$, then $T_{\text {real }}(O) \leq T_{\text {am }}(O)$ and our amortized cost can be used to accurately predict the actual cost!

Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

- The key is defining the right potential function Φ
- Let Φ be the number of inversions between MTF and OPT lists, i.e., \#pairs (x, y) such that x is before y in MTF and after y in OPT list.
- Initially our Φ is zero and it will never be negative.
- We are going to show that amortized cost of MTF is smaller or equal than twice the real cost of OPT:

Cost $_{\text {MTF }}+($ change in potential $) \leq 2 \times$ Cost $_{\text {OPT }}$
This means that after any sequence of requests:
$\operatorname{cost}_{M T F}+\Phi_{\text {final }} \leq 2 \times$ cost $_{\text {OPT }}$
Hence, it would mean that MTF is 2-competitive.

Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

- Φ is the number of inversions between MTF and OPT lists,
- Consider request to x at position p in MTF list.
- Of the $p-1$ items in front of x, say that k are also in front of x in the OPT list. The remaining $p-1-k$ are behind x
- $\operatorname{Cost}_{\text {MTF }}=p$ and $\operatorname{Cost}_{O P T} \geq k+1$
- What happens to the potential?
- When MTF moves x forward, x cuts in front of k elements (increase Φ by k)
- At the same time, the $p-1-k$ there were in front of x aren't any more (decrease Φ by $p-1-k$)
- When OPT moves x forward it can only reduce Φ.
- In the end, change in potential is $\leq 2 k-p+1$
- This means that:

Cost $_{\text {MTF }}+($ change in potential $) \leq p+2 k-p+1 \leq 2 \times$ Costopt $_{\text {OP }}$

Splay Trees

- A self-adjusting binary search tree
- They were invented by D. Sleator and R. Tarjan in 1985
- The key ideas are similar to self-organizing linked lists:
- accessed items are moved to the root
- recently accessed elements are quick to access again
- It provides guarantees of logarithmic access time in amortized sense

Trees and Rotations

- Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig (or Zag) - Simple Rotation (also used in AVL and red-black trees)

Trees and Rotations

- Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig-Zig (or Zag-Zag)

Trees and Rotations

- Consider the following "rotations" designed to move a node to the root of a (sub)tree:

Zig-Zag (or Zag-Zig)

Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Original tree

Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Zig-Zag Left (or Zag-Zig)

Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Now the tree is like this

Splay Operation

- Splaying a node means moving it to the root of a tree using the operations given before:

Zig-Zig Left (or Zag-Zag)

Operations on a Splay Tree

- Idea: do as in a normal BST but in the end splay the node
- find (x) : do as in BST and then splay x (if x is not present splay the last node accessed)
- insert(x): do as in BST and then splay x
- remove(x): find x, splay x, delete x (leaves its subtress R and L "detached"), find largest element y in L and make it the new root:

- Running time is dominated by the splay operation.

Why do splay trees work in practice?

Efficiency of splay trees

For any sequence of m operations on a splay tree, the running time is $\mathcal{O}(m \log n)$, where n is the max number of nodes in the tree at any time.

- Intuition: any operation on a deeper side of the tree will " bring" nodes from that side closer to the root
- It is possible to make a splay tree have $\Theta(n)$ height, and hence a splay applied to the lowest leaf will take $\Theta(n)$ time. However, the resulting splayed tree will have an average node depth roughly decreased by half!
- Two quantities: real cost and increase in balance
- If we spend much, then we will also be balancing a lot
- If don't balance a lot, than we also did not spend much

Amortized Analysis of Splay Trees

- The key is defining the right potential function Φ
- Consider the following:
- $\operatorname{size}(x)=$ number of nodes below x (including x)
- $\operatorname{rank}(x)=\log _{2}(\operatorname{size}(x))$
- $\Phi(S)=\sum_{x} \operatorname{rank}(x)$
- Our potential function is the sum of the ranks of all tree nodes
- Let the cost be the number of rotations

Lemma

The amortized time of splaying node x in a tree with root r is at most $3(\operatorname{rank}(r)-\operatorname{rank}(x))+1$

- The rank of a single node is at most $\log n$ and therefore the above means the amortized time per operation is $\mathcal{O}(\log n)$

Amortized Analysis of Splay Trees

- If x is at the root, the bound is trivially achieved
- If not, we will have a sequence of zig-zig and zig-zag rotations, followed by at most one simple rotation at the top
- Let $r(x)$ be the the rank of x before the rotation and $r^{\prime}(x)$ be its rank afterwards.
- We will show that a simple rotation takes time at most $3\left(r^{\prime}(x)-r(x)\right)+1$ and that the other operations take $3\left(r^{\prime}(x)-r(x)\right)$
- If you think about the sequence of rotations, than successive $r(x)$ and $r^{\prime}(x)$ will cancel out and we are left at the end with $3(r(r o o t)-r(x))+1$
- The worst case is $r(x)=0$ and in that case we have $3 \times \log _{2} n+1$

Amortized Analysis of Splay Trees

Case 1: Simple Rotation

- Only x and y change rank
- x increases rank
- y decreases rank
- Cost is $1+r^{\prime}(x)+r^{\prime}(y)-r(x)-r(y)$
- This is $\leq 1+r^{\prime}(x)-r(x)$ since $r(y) \geq r^{\prime}(y)$
- This is $\leq 1+3\left(r^{\prime}(x)-r(x)\right)$ since $r^{\prime}(x) \geq r(x)$

Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

- Only x, y and z change rank
- Cost is $2+r^{\prime}(x)+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)-r(z)$
- This is $=2+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)$ since $r^{\prime}(x)=r(z)$
- This is $\leq 2+r^{\prime}(x)+r^{\prime}(z)-2 r(x)$ since $r^{\prime}(x) \geq r^{\prime}(y)$ and $r(y) \geq r(x)$

Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

- $2+r^{\prime}(x)+r^{\prime}(z)-2 r(x)$ is at most $3\left(r^{\prime}(x)-r(x)\right)$
- This is equivalent to say that $2 r^{\prime}(x)-r(x)-r^{\prime}(z) \geq 2$
- $2 r^{\prime}(x)-r(x)-r^{\prime}(z)=\log _{2}\left(s^{\prime}(x) / s(x)\right)+\log _{2}\left(s^{\prime}(x) / s^{\prime}(z)\right)$
- Notice that $s^{\prime}(x) \geq s(x)+s^{\prime}(z)$
- Given that log is convex, the way to make the two logarithms as small as possible is to choose $s(x)=s(z)=s^{\prime}(x) / 2$. In that case $\log _{2} 2+\log _{2} 2=1+1=2$ and we have proved what we wanted!

Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation

- Only x, y and z change rank
- Cost is $2+r^{\prime}(x)+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)-r(z)$
- This is $=2+r^{\prime}(y)+r^{\prime}(z)-r(x)-r(y)$ since $r^{\prime}(x)=r(z)$
- This is $\leq 2+r^{\prime}(y)+r^{\prime}(z)-2 r(x)$ since $r(y) \geq r(x)$

Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation

- $2+r^{\prime}(y)+r^{\prime}(z)-2 r(x)$ is at most $2\left(r^{\prime}(x)-r(x)\right)$
- This is equivalent to say that $2 r^{\prime}(x)-r^{\prime}(y)-r^{\prime}(z) \geq 2$
- $2 r^{\prime}(x)-r^{\prime}(y)-r^{\prime}(z)=\log _{2}\left(s^{\prime}(x) / s^{\prime}(y)\right)+\log _{2}\left(s^{\prime}(x) / s^{\prime}(z)\right)$
- Notice that $s^{\prime}(x) \geq s^{\prime}(y)+s^{\prime}(z)$
- By the same argument a before, the way to minimize is to choose $s^{\prime}(y)=s^{\prime}(z)=s^{\prime}(x) / 2$. In that case $\log _{2} 2+\log _{2} 2=1+1=2$
- Obviously, $2\left(r^{\prime}(x)-r(x)\right)<3\left(r^{\prime}(x)-r(x)\right)$

