
Probabilistic Data Structures

Pedro Ribeiro

DCC/FCUP

2021/2022

(parts of this are heavily inspired/based on the lecture notes by Jeff Erickson @ University of Illinois at Urbana-Champaign)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 1 / 61

What are probabilistic data structures?

Data structures that use some randomized algorithm or takes
advantage of some probabilistic characteristics internally

There are mainly two types of randomized algorithms:
I Las Vegas algorithm: always outputs the correct answer, but runtime

is a random variable
I Monte Carlo algorithm: always terminates in given time bound, and

outputs the correct answer with at least some (high) probability

Likewise, we have two types of probabilistic data structures:
I Some always give exact results, but runtime is random variable

F E.g.: Treaps, Skip Lists
I Some have bounded runtime, but give approximate results

F E.g.: Bloom Filters, Count-Min Sketches, HyperLogLog

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 2 / 61

Randomized Algorithms

Randomized algorithms

We call an algorithm randomized if its behavior is determined not only by
its input but also by values produced by a random-number generator

Most programming environments offer a (deterministic)
pseudorandom-number generator: it returns numbers that ”look”
statistically random

We typically refer to the analysis of randomized algorithms by talking
about the expected cost (ex: the expected running time)

We can use probabilistic analysis to analyse randomized algorithms

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 3 / 61

Basics of Probabilistic Analysis

Consider rolling two dice and observing the results.

We call this an experiment.

It has 36 possible outcomes:

1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 2-1, 2-2, 2-3, ..., 6-4, 6-5, 6-6

Each of these outcomes has probability 1/36 (assuming fair dice)

What is the probability of the sum of dice being 7?

Add the probabilities of all the outcomes satisfying this condition:
1-6, 2-5, 3-4, 4-3, 5-2, 6-1 (probability is 1/6)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 4 / 61

Basics of Probabilistic Analysis

In the language of probability theory, this setting is characterized by a
sample space S and a probability measure p.

Sample Space is constituted by all possible outcomes, which are
called elementary events

In a discrete probability distribution (d.p.d.), the probability
measure is a function p(e) (or Pr(e)) over elementary events e such
that:

I p(e) ≥ 0 for all e ∈ S

I
∑
e∈S

p(e) = 1

An event is a subset of the sample space.

For a d.p.d. the probability of an event is just the sum of the
probabilities of its elementary events.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 5 / 61

Basics of Probabilistic Analysis

A random variable is a function from elementary events to integers
or reals:

Ex: let X1 be a random variable representing result of first die and X2

representing the second die.
X = X1 + X2 would represent the sum of the two
We could now ask: what is the probability that X = 7?

One property of a random variable we care is expectation:

Expectation

For a discrete random variable X over sample space S , the expected value
of X is:

E[X] =
∑
e∈S

Pr(e)X (e)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 6 / 61

Basics of Probabilistic Analysis

In words: the expectation of a random variable X is just its average
value over S , where each elementary event e is weighted according to
its probability.

Ex: If we roll a single die, the expected value is 3.5
(all six elementary events have equal probability).

One possible rewrite of the previous equation, grouping elementary
events:

Expectation (possible rewrite)

E[X] =
∑
a

Pr(X = a)a

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 7 / 61

Basics of Probabilistic Analysis

More generally:

Expectation (rewrite using disjoint events)

For any partition of the sample space into disjoint events A1,A2, . . .:

E[X] =
∑

i

∑
e∈Ai

Pr(e)X (e) =
∑

i
Pr(Ai)E[X |Ai]

E[X |Ai] is the expected value of X given Ai , defined to be:

1
Pr(Ai)

∑
e∈Ai

Pr(e)X (e).

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 8 / 61

Basics of Probabilistic Analysis

An important fact about expected values is Linearity of Expectation:

Theorem - Linearity of Expectation

For any two random variables X and Y : E[X + Y] = E[X] + E[Y]

Proof for discrete random variables:
E[X + Y] =

∑
e∈S

Pr(e)(X (e) + Y (e)) =

=
∑
e∈S

Pr(e)X (e) +
∑
e∈S

Pr(e)Y (e) = E[X] + E[Y]

It is not necessary that the variables are independent

This theorem is very important for the analysis of algorithms:
complicated variables become a sum of simple variables which we can
analyse separately.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 9 / 61

A first example

Suppose we unwrap a fresh deck of n cards and shuffle it until the cards
are completely random.

How many cards do we expect to be in the same position as they
were at the start?

X : number of cards that end in the same position as they started

We are looking for E[X]!

By linearity of expectation we can write this as a sum of Xi , where
Xi = 1 if the i-th card ends up in position i , and Xi = 0 otherwise:

X = X1 + X2 + . . .+ Xn =
n∑

i=1
Xi

Pr(Xi = 1) = 1/n where n is the number of cards!

Pr(Xi = 1) is also E[Xi] (E[Xi] = 1 · Pr(Xi = 1) + 0 · Pr(Xi = 0))

E[X] = E[X1 + . . .+ Xn] = E[X1] + . . .+ E[Xn] = 1

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 10 / 61

Indicator Variables

In the previous example we used an indicator random variable:

Indicator Random Variable

The indicator random variable I{A} associated with event A is defined as:

I{A} =

{
1 if A occurs
0 if A does not occur

Indicator random variables may be very handy in simplifying our
analysis, by giving us a simpler way to model our desired cost

Note that if XA = I{A}, then E[XA] = Pr(A)
E[XA] = 1 · Pr(A) + 0 · Pr(A) where A is the complement of A)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 11 / 61

Random Binary Search Trees

What happens when we insert elements in randomized order in a
binary search tree?

I What is the expected depth of a node?

The average efficiency of searching, inserting and removing from that
random tree is related to the expected depth of a node

I Depth might n, but what is the chance that we are that ”unlucky”?
(all permutations are equally likely)

Let’s have a first empirical look at this:

Gnarley Trees - Visualization of Data Structures
https://people.ksp.sk/~kuko/gnarley-trees/

97 nodes, height = 12 = 1.71 ·opt, Avg. Depth = 7.09
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 12 / 61

https://people.ksp.sk/~kuko/gnarley-trees/

Random Binary Search Trees

The depth seems to be always just a (small) constant away from the
optimal and therefore logarithmic in terms of expected value

Can we prove this?

Example (Theorem - Expected Depth in Random BST)

If n values are inserted in random order on a binary search tree, the
expected depth of any node will be O(log n)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 13 / 61

Expected Depth of a Node in a Random BST

Let xk denote the node the k-th smallest of n search keys

We will use i ↑ k to denote that xi is a (proper) ancestor of xk

The depth of a node is simply the number of its ancestors, so:

depth(xk) =
n∑

i=1

[i ↑ k]

[i ↑ k] is just an indicator variable of i ↑ k)
this is called the Iverson bracket notation

We can now express the expected depth of a node as:

E[depth(xk)] = E

[
n∑

i=1

[i ↑ k]

]
=

n∑
i=1

E
[
[i ↑ k]

]
=

n∑
i=1

Pr(i ↑ k)

using linearity of expectation: E[X + Y] = E[X] + E[Y]
and indicator variables: E[X] = Pr(X = 1) if X is an indicator variable

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 14 / 61

Expected Depth of a Node in a Random BST

Let X (i , k) denote the subset of nodes between xi and xk

I {xi , xi+1, · · · , xk} if i < k
I {xk , xk+1, · · · , xi} if i > k

If i 6= k , we have i ↑ k if and only if xi was the first element being
inserted in X (i , k)

I xi must obviously be inserted before xk

I if j is between i and k (i < j < k or i > j > k) and xj is inserted
before xi , then xi and xj will end up in different subtrees

Each node is in X (i , k) is equally likely to be the first one inserted, so:

Pr(i ↑ k) =
[i 6= k]

|k − i |+ 1
=

1

k−i+1 if i < k

0 if i = k
1

i−k+1 if i > k

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 15 / 61

Expected Depth of a Node in a Random BST

Plugging it in the expectation formula:

E[depth(xk)] =
n∑

i=1

Pr(i ↑ k) =
k−1∑
i=1

1

k − i + 1
+

n∑
i=k+1

1

i − k + 1

=
k∑

j=2

1

j
+

n−k+1∑
j=2

1

j

= Hk − 1 + Hn−k+1 − 1

≤ ln k + ln(n − k + 1)

≤ 2 ln n ∈ O(log n)

Hn = 1+ 1
2
+ · · ·+ 1

n
is known as the harmonic number and is in the range [ln n, ln n +1]

The expected depth of a node is logarithmic in relation to the nr of nodes
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 16 / 61

Using the ideas Random BSTs

So, on a random BST with n keys, the nodes are expected to be at
O(log n) depth

However, the insertion order is not always random...

Can we guarantee the same properties for any insertion order?

”yes we can”, and treaps are here for the rescue :)

Aragon, C. R., and Seidel, R. (1989). Randomized search trees.
In IEEE Symposium on Foundations of Computer Science (FOCS)
(Vol. 30, pp. 540-545).

Note: there are other ways of obtaining the same properties, such as:
Mart́ınez, C., & Roura, S. (1998). Randomized binary search
trees. Journal of the ACM (JACM), 45(2), 288-323.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 17 / 61

Treaps - Concept

A treap is a binary tree in which every node has both a search key
and a priority, where the inorder sequence of search keys is sorted
and each node’s priority is smaller than the priorities of its children.

In other words, it is simultaneously:
I a binary search tree for the search keys
I a (min-)heap for the priorities

Wait! Let’s first remember what a heap is...

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 18 / 61

Heaps - Concept

An heap is a tree that obeys the following restriction:

(min)Heap Invariant

The parent of any node has always an higher priority than its children,
that is, on a minHeap, the parent is always smaller than its children

Note: on a maxHeap, a node would be bigger than its children

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 19 / 61

Heaps - O(log n) height

To guarantee the efficiency of the associated operations, a heap
should be a complete binary tree:

Complete Tree

A tree where all the levels (except perhaps the last one) are completely
filled in and all nodes are as much as possible to the left.

In a complete tree with n nodes, the height is O(log n)
I It is a very balanced tree and we already saw an explanation for this,

but intuitively you can think that to increment by one the height, we
would need to duplicate the number of elements

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 20 / 61

Heaps - Mapping into an array

The easiest and more compact way of implementing a heap is to use
an array that implicitly represents a tree.

I The numbers appear on the array on a breadth-first (BFS) order
(from top to bottom and then from left to right)

I If the root is put on position 1:
F The children of position x are in positions x ∗ 2 and x ∗ 2 + 1
F The parent of position x is on position x/2 (integer division)

Let’s see an example:

e.g. children of position 3 (node 5) are in positions 3 ∗ 2 = 6 (node 9) and 3 ∗ 2 + 1 = 7

(node 7). The parent of position 3 is the node on position 3/2 = 1.

Since the tree is complete, this means that the array has all
consecutive positions filled in.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 21 / 61

Heaps - min() operation

Since each node is smaller than its children the smallest node is
guaranteed to be in the root position (the first element of the array):

min(): time O(1)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 22 / 61

Heaps - removeMin() operation

After removing the root we need to restore the heap conditions. For
that, we can do the following:

I We take the last element of the array and we put it on the root
position (the tree is now complete)

I The element ”goes down” (downHeap), swapping with the smallest
child, until the invariant is restored

I At most, we traverse the height of the tree, which is O(log n)

An example of the previous heap, after removing the minimum (1) and
putting the last element (11) on its position (the root):

removeMin(): time O(log n)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 23 / 61

Heaps - insert(x) operation

To insert we can:
I Position it after the last one, on the first free array position (the tree is

now complete)
I The element ”goes up” (upHeap), swapping with its father, until the

heap invariant is restored
I At most, we traverse the height of the tree, which is O(log n)

An example of inserting 2 in the heap of the previous slide:

insert(x): time O(log n)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 24 / 61

Heaps - Visualization

You can visualize heap insertions and removals
(try the following url):

https://www.cs.usfca.edu/~galles/visualization/Heap.html

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 25 / 61

https://www.cs.usfca.edu/~galles/visualization/Heap.html

Treaps - Concept (continued)

A treap is a binary tree in which every node has both a search key
and a priority, where the inorder sequence of search keys is sorted
and each node’s priority is smaller than the priorities of its children.
In other words, it is simultaneously:

I a binary search tree for the search keys
I a (min-)heap for the priorities (not necessarily complete)

Let’s see a first example using letters meaning search keys and
numbers for the priorities:

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 26 / 61

Treaps are uniquely determined

Let’s assume that all keys and priorities are distinct

The structure of the treap is completely determined by the
search keys and priorities of its nodes

I Since it’s a heap:
F the node v with highest priority must be the root

I Since it’s a BST:
F any node u with key(u) < key(v) must be in the left subtree
F any node w with key(w) > key(v) must be in the right subtree

I Since the subtrees are treaps, by induction, their structures are
completely determined (the base case is the empty treap).

In other words, a treap is exactly the binary search tree that results of
inserting the nodes in order of increasing priority into an initially
empty tree (using the standard textbook insertion algorithm)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 27 / 61

Treap Operations - Search

Search is done as in a normal BST
I Successful search has time proportional to the depth of the node
I Unsuccessful search has time proportional to the depth of its

predecessor or ancestor

(time is proportional to the depth of the node)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 28 / 61

Treap Operations - Insert

Insertion is done in the following way
I Let’s call z to the new node
I You do the insertion using the standard BST algorithm
I This results in z being a leaf, at the bottom of the tree
I At this point you have a BST, but priorities may no longer form a heap
I To fix this, you do something similar to a standard heap:

F As long as the parent of z has a smaller priority, you perform a
rotation at z , decreasing the depth of z (and increasing the depth of
the parent), while keeping the BST property

F One rotation takes constant time

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 29 / 61

Treap Operations - Insert/Remove

The overall time to insert z is proportional to the depth of z before
the rotations (roughly equiv. to 2× of an unsuccessful search for z):

I we have to walk down the treap to insert z
I and then walk back up the treap doing rotations

This suggests an algorithm for removing an element z
(as the inverse in time of insertion)

I push z to the bottom of three using rotations
I simply remove z , which is now a leaf
I time is proportional to depth of z

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 30 / 61

Treap Operations - Split/Join

Treaps are also very handy for splitting: imagine we want to split a
treap T into two treaps T< and T> along some pivot π

I T< contains all nodes with keys smaller than π
I T> contains all nodes with keys bigger than π

A simple way to do this is to insert a new node z with
key(z) = π and priority(z) = −∞

I after the insertion z is the root
I deleting the root the left and right subtrees are T< and T>

Joining two treaps T < and T > is just splitting in reverse
I create a dummy root, rotate it to the bottom and chop it off

For both splitting or joining, time is again proportional to the depth

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 31 / 61

Randomized Treaps

A randomized treap is a treap in which the priorities are
independently and uniformly distributed random variables.

Whenever we insert a new search key into the treap, we generate a
random real number between (say) 0 and 1 and use that number as
the priority of the new node.

As we saw before, a treap is exactly the BST that results of inserting
the nodes in order of increasing priority into an initially empty
tree (using the standard textbook insertion algorithm)

Because the priorities are random and independent this is equivalent
to inserting them in random order; as we know, this means the
expected depth of any node is O(log n)

The cost of a treap operation (search/insert/remove/split/join) is
proportional to the depth of the node, so all these operations are
logarithmic :)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 32 / 61

Treaps: Conclusion

(Randomized) Treaps are a Las Vegas Algorithm: they always
output the correct answer, but runtime is a random variable

Treaps are very easy to implement (and extend), while providing
(expected) logarithmic time for all main operations

You can try out a visualization with Gnarley trees:
https://people.ksp.sk/~kuko/gnarley-trees/

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 33 / 61

https://people.ksp.sk/~kuko/gnarley-trees/

Skip Lists

How to have the properties of (random) BSTs without trees?

Pugh, W. (1990). Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM, 33(6), 668-676.

At a high level, a skip list is just a sorted linked list with some
random shortcuts

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 34 / 61

Skip Lists: Concept

To search in a normal singly-linked list of length n, we obviously need
to look at n items in the worst case.

To speed up this process, we can make a second-level list that
contains roughly half the items from the original list

I For each item in the original list, we duplicate it with probability 1/2
I We string together all the duplicates into a second sorted linked list,

and add a pointer from each duplicate back to its original
I (to be safe) We add sentinel nodes at the start and end of both lists

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 35 / 61

Skip Lists: Concept

We can now find a value x using a two-stage algorithm:
I First, we scan for x in the shortcut list, starting at −∞
I If we find x , we’re done
I Otherwise, we reach a value > x and we know that x /∈ shortcut list
I In the second phase, we scan for x in the original list, starting from the

largest item less than x

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 36 / 61

Skip Lists: Concept

Since each node appears in the shortcut list with probability 1/2, the
expected number of nodes examined in the first phase is at most n/2

Only one of the nodes examined in the second phase has a duplicate

The probability that any node is followed by k nodes without
duplicates is 2−k .

So, the expected number of nodes examined in the second phase is at
most 1 +

∑
k>0 2−k = 2

Thus, by adding these random shortcuts, we’ve reduced the cost of a
search from n to n/2 + 2 (roughly a factor of two in savings).

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 37 / 61

Skip Lists: Recursive Random Shortcuts

There’s an obvious improvement: add shortcuts to the shortcuts,
and repeat recursively! That’s exactly how skip lists are made...

I For each original node, we repeatedly flip a coin until we get tails
I Each time we get heads, we make a new copy of the node
I The duplicates are stacked up in levels, and the nodes on each level are

strung together into sorted linked lists
I Each node v stores a search key key(v), a pointer down(v) to its next

lower copy, and a pointer right(v) to the next node in its level.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 38 / 61

Skip Lists: Searching

The search algorithm for skip lists is very simple:

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 39 / 61

Skip Lists: Searching

The search algorithm for skip lists is very simple:

Intuitively, since each level of the skip lists has about half the number
of nodes as the previous level, the total number of levels should be
about O(log n)

Similarly, each time we add another level of random shortcuts to the
skip list, we cut the search time roughly in half, except for a constant
overhead, so O(log n) levels should give us an overall expected search
time of O(log n).

Let’s try to formalize each of these two intuitive observations.
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 40 / 61

Skip Lists: Number of Levels

The actual values of the search keys don’t affect the skip list analysis, so let’s assume
the keys are the integers 1 through n

Let L(x) be the number of levels of the skip list that contain some
search key x , not counting the bottom level

Each new copy of x is created with probability 1/2 from the previous
level

We can compute the expected value of L(x) recursively:

E[L(x)] =
1

2
· 0 +

1

2
(1 + E[L(x)])

Solving this equation gives us E[L(x)] = 1

In order to analyze the expected worst-case cost of a search, however, we
need a bound on the number of levels L = maxx L(x).
Unfortunately, we can’t compute the average of a maximum the way we
would compute the average of a sum.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 41 / 61

Skip Lists: Number of Levels

Instead, we derive a stronger result:

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with high probability.

”High probability” is a technical term that means the probability is at least
1− 1

nc for some constant c ≥ 1; the hidden constant in the O(log n)
bound could depend on c .

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 42 / 61

Skip Lists: Number of Levels

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with prob. ≥ 1− 1
nc .

For a search key x to appear on level `, it must have flipped heads in
a row when it was inserted, so Pr(L(x) ≥ `) = 2−`

The skip list has at least ` levels if and only if L(x) ≥ ` for at least
one of the n search keys, so:

Pr(L ≥ `) = Pr((L(1) ≥ `) ∨ (L(2) ≥ `) ∨ · · · ∨ (L(n) ≥ `))

Using the union bound — Pr [A ∨ B] ≤ Pr [A] + Pr [B] for any
random events A and B — we can simplify this as follows:

Pr(L ≥ `) ≤
n∑

x=1

Pr(L(x) ≥ `) = n · Pr(L(x) ≥ `) =
n

2`

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 43 / 61

Skip Lists: Number of Levels

Number of Levels in a Skip List

The depth of a skip list with n keys is O(log n) with prob. ≥ 1− 1
nc .

Pr(L ≥ `) ≤ n

2`

When ` ≤ log n, this bound is trivial (since Pr ≤ 1)

However, for any constant c > 1, we have a strong upper bound:

Pr(L ≥ c log n) ≤ 1

nc−1

We conclude that with high probability, a skip list has O(log n) levels.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 44 / 61

Skip Lists: Number of Levels

This high-probability bound indirectly implies a bound on the expected
number of levels:

E[L] =
∑
`≥0

` · Pr(L = `) =
∑
`≥0

Pr(L ≥ `)

Clearly, if ` < `′ then Pr(L(x] ≥ `) > Pr(L(x) ≥ `′). So we can derive an
upper bound on the expected number of levels as follows:

E[L] =
∑
`≥1

Pr(L ≥ `) =

log n∑
`=1

Pr(L ≥ `) +
∑

`≥log n+1

Pr(L ≥ `)

≤
log n∑
`=1

1 +
∑

`≥log n+1

n

2`

= log n +
∑
i≥1

1

2i

= log n + 1
Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 45 / 61

Skip Lists: Number of Levels

E[L] ≤ log n + 1

Expected Number of Levels in a Skip List

The expected depth of a skip list with n keys is ≤ log n + 1

So in expectation, a skip list has at most one more level than an ideal
version where each level contains exactly half the nodes of the next level
below. Notice that this is an additive penalty over a perfectly balanced
structure, as opposed to treaps, where the expected depth is a constant
multiple of the ideal log n.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 46 / 61

Skip Lists: Logarithmic Search Time

It’s a little easier to analyze the cost of a search if we imagine running the
algorithm backwards

SkipListFind takes the output from SkipListFind as input and traces
back through the data structure to the upper left corner (for simplification,
imagine you have up and left pointers).

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 47 / 61

Skip Lists: Logarithmic Search Time

For any v in the skip list, up(v) exists with probability 1/2. So, for the
purpose of analysis, SkipListFind is equivalent to the following algorithm:

Obviously, the expected number of heads is exactly the same as the
expected number of tails. Thus, the expected running time of this
algorithm is twice the expected number of upward jumps. But we already
know that the number of upward jumps is O(log n) with high probability.
It follows the running time of FlipWalk is O(log n) with high probability
(and therefore in expectation)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 48 / 61

Skip Lists and Binary Trees

If you rotate the skip list and remove duplicate edges, you can see how it
resembles a binary search tree (images from http://ticki.github.io):

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 49 / 61

http://ticki.github.io

Skip Lists: Some Advantages

Skip lists perform very well on insertions
(no rotations or reallocations).

They are simple to implement and extend

You can easily retrieve the next element in constant time

”Easy” to parallelize (lock-free skip lists)

Skips lists are used in some (in memory) databases / search engines:

https://www.singlestore.com/blog/

what-is-skiplist-why-skiplist-index-for-memsql/

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 50 / 61

https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/
https://www.singlestore.com/blog/what-is-skiplist-why-skiplist-index-for-memsql/

Skip Lists: Implementation

The following article gives very nice hints on how to implement skip lists:

Skip Lists: Done Right
http://ticki.github.io/blog/skip-lists-done-right/

For example, to avoid wasting memory, one could consider each node as an
array (avoiding the downward pointers), while also reducing cache misses.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 51 / 61

https://web.archive.org/web/20201108130351/http://ticki.github.io/blog/skip-lists-done-right/

Skip Lists: Visualizations

You can try out a visualization with Gnarley trees:
https://people.ksp.sk/~kuko/gnarley-trees/

Or a visualization by Yves Lucet (@ UBritishColumbia):
https://cmps-people.ok.ubc.ca/ylucet/DS/SkipList.html

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 52 / 61

https://people.ksp.sk/~kuko/gnarley-trees/
https://cmps-people.ok.ubc.ca/ylucet/DS/SkipList.html

Bloom Filters

What about a Monte Carlo Data Structure? (always terminate in a
given time bound, outputs the correct answer with high probability)

Can we provide efficient membership queries on a dynamic set in
less then O(n) space?

I Having a set X of n elements from a universe U , answer whether a
given element x ∈ U is an element of X

Bloom filters are capable of doing this!
I Hash Tables already provide O(1) expected time, using O(n) space
I Bloom filters can be considered as an extension of hash tables
I By allowing false positives - occasionally reporting x ∈ X when in fact

x /∈ X we can still answer queries in O(1) expected time using
considerably less space.

I This makes bloom filters unsuitable as an exact membership data
structure, but because of their speed and low false positive rate, they
are commonly used as filters or sanity checks for more complex
data structures.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 53 / 61

Bloom Filters - Concept

A bloom filter consists of an array B[0 . . .m − 1] of bits, together
with k hash functions h1, h2, . . . , hk : U → {0, 1, . . . ,m − 1}

A Bloom filter for a set X = {x1, x2, . . . , xn} is initialized by setting
the bit B[hj (xi)] to 1 for all indices i and j . Because of collisions,
some bits may be set more than once, but that’s fine.

Example bloom filter, representing the set {x , y , z} with k = 3 and m = 18. Colored
arrows show the positions in the bit array that each set element is mapped to.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 54 / 61

Bloom Filters - Concept

Given a new item w , the bloom filter determines whether w ∈ X by
checking each bit B[hj (w)].

If any of those bits is 0, it correctly reports that w /∈ X .

If all bits are 1, it reports that w ∈ X , although this is not necessarily
correct.

The same bloom filter of the previous slide. The element w is not in the set {x , y , z} ,
because it hashes to one bit-array position containing 0.

One nice feature of bloom filters is that the various hash functions hi

can be evaluated in parallel (e.g. on a multicore machine)

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 55 / 61

Bloom Filters - Visualization

You can check a visualization of a bloom filter in:
https://www.jasondavies.com/bloomfilter/

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 56 / 61

https://www.jasondavies.com/bloomfilter/

Bloom Filters - False Positive Rate

For the purposes of theoretical analysis, we assume the hash functions
hi are mutually independent, ideal random functions.

This assumption is of course unsupportable in practice, but may be
necessary to guarantee theoretical performance.

Fortunately, the actual real-world behavior of Bloom filters appears to
be consistent with this unrealistic theoretical analysis.

Let’s estimate the probability of a false positive, as a function of the
various parameters n, m and k .

For all indices pos, i , and j , we have Pr(hj (xi) = p) = 1
m , so ideal

randomness gives us probability p (for every position pos):

p = Pr(B[pos] = 0) =

(
1− 1

m

)kn

≈ e−kn/m

given that lim
x→∞

(
1− 1

x

)x

=
1

e

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 57 / 61

Bloom Filters - False Positive Rate

The expected number of 0-bits in the array is approximately mp

Thus, the probability ε of a false positive can be approximated as:

ε ≈ (1− p)k = (1− e−kn/m)k

This is not strictly correct as it assumes independence for the probabilities of each
bit being set

If all other parameters are held constant, then the false positive rate
increases with n (the number of items) and decreases with m (the
number of bits)

The dependence on k (the number of hash functions) is a bit more
complicated, but we can derive the best value for k given n and m:

k =
m

n
ln 2

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 58 / 61

Bloom Filters - Choosing the parameters

Armed we this we can achieve any desired fale positive ratio ε > 0 by
choosing the right parameters:

m = − n ln ε
(ln 2)2

that uses k = − ln ε
ln 2 = − log2 ε hash functions (ignoring integrality)

For example, we can achieve a 1% false-positive rate using a Bloom
filter of size 10n bits with 7 hash functions; in practice, this is
considerably fewer its than we would need to store all the elements of
S explicitly.

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 59 / 61

Bloom Filters - Conclusion

It is out of this scope of this course to provide a fully fledged analysis
of what hash functions to choose

The course website provides links to possible hash functions that work
well in practice:

I Murmur, FNV, Jenkins, ...

Here is a final visualization using real hash functions:
http://llimllib.github.io/bloomfilter-tutorial/

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 60 / 61

http://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters - Variations

What about element deletion?

What if we want to have the frequency of the elements?
I Count-Min Sketches

There are many more possible variations (e.g. HyperLogLog) and
there is still much to learn!

The website provides further links for exploration

Pedro Ribeiro (DCC/FCUP) Probabilistic Data Structures 2021/2022 61 / 61

