Self Adjusting Data Structures

Pedro Ribeiro

DCC/FCUP

iro (DCC/FCUP) Self Adjusting Data Structures 1/31




What are self adjusting data structures?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



What are self adjusting data structures?

@ Data structures that can rearrange themselves after operations are
committed to it.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



What are self adjusting data structures?

@ Data structures that can rearrange themselves after operations are
committed to it.

@ This is typically done in order to improve efficiency on future
operations.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2/31



What are self adjusting data structures?

@ Data structures that can rearrange themselves after operations are
committed to it.

@ This is typically done in order to improve efficiency on future
operations.

@ The rearrangement can be heuristic in its nature and typically
happens in every operation (even if it was only accessing an
element).

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2/31



What are self adjusting data structures?

@ Data structures that can rearrange themselves after operations are
committed to it.

@ This is typically done in order to improve efficiency on future
operations.

@ The rearrangement can be heuristic in its nature and typically
happens in every operation (even if it was only accessing an
element).

@ Some examples:

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2/31



What are self adjusting data structures?

@ Data structures that can rearrange themselves after operations are
committed to it.

@ This is typically done in order to improve efficiency on future
operations.

@ The rearrangement can be heuristic in its nature and typically
happens in every operation (even if it was only accessing an
element).

@ Some examples:

> Self Organizing Lists

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2/31



What are self adjusting data structures?

@ Data structures that can rearrange themselves after operations are
committed to it.

@ This is typically done in order to improve efficiency on future
operations.

@ The rearrangement can be heuristic in its nature and typically
happens in every operation (even if it was only accessing an
element).

@ Some examples:

> Self Organizing Lists
» Self Adjusting Binary Search Trees

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 2/31



Traversing Linked Lists

@ Consider a classic linked list with n elements:

@ Consider a cost model in which accessing the element in position i
costs i (traversing the list)

@ What is the average cost for accessing an element using a static list?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Traversing Linked Lists

@ Consider a classic linked list with n elements:

@ Consider a cost model in which accessing the element in position i
costs i (traversing the list)
@ What is the average cost for accessing an element using a static list?

> Intuitively, if the element to be searched is a “random” element in the
list, our average cost is "roughly” n/2

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Formalizing The Cost

@ Let’s formalize a little bit more:
» Let p(i) be the probability of searching for element in position i

» On average, our cost will be:

Tog =1xp(1)+2xp(2)+3xp(3)+...+nxp(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Formalizing The Cost

@ Let’s formalize a little bit more:
» Let p(i) be the probability of searching for element in position i

» On average, our cost will be:

Tog =1xp(1)+2xp(2)+3xp(3)+...+nxp(n)

@ Suppose that the the probability is the same for every element: 1/n.
» T(n)=1/n+2/n+3/n+...+n/n=(14+24+3+...4n)/n=(n+1)/2

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 4/31



Formalizing The Cost

@ Let’s formalize a little bit more:
» Let p(i) be the probability of searching for element in position i

» On average, our cost will be:
Tog =1xp(1)+2xp(2)+3xp(3)+...+nxp(n)

@ Suppose that the the probability is the same for every element: 1/n.
» T(n)=1/n+2/n+3/n+...+n/n=(14+24+3+...4n)/n=(n+1)/2

@ But what if the probability is not the same?

» What if we typically access nodes at the front of the list?
» What if we typically access nodes at the back of the list?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 4/31



Cost on non-uniform access

@ Let's look at an example:

P(A)=01 P(B)=0.1 P(C)=04 P(D)=0.1 P(E)=03

| Aj—| B[—{ C|>{ D= E [ nul

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Cost on non-uniform access

@ Let's look at an example:

P(A)=01 P(B)=0.1 P(C)=04 P(D)=0.1 P(E)=03
B D nul

T(n)=1x0142x01+3x04+4x01+5%x03=34

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Cost on non-uniform access

@ Let's look at an example:
P(A)=0.1 P(B)=0.1 P(C)=04 PD)=01 P(E)=03
(B[ Cl-+{D} B} >

T(n)=1x0142x01+3x04+4x01+5%x03=34

If we know in advance this access pattern can we do better?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Cost on non-uniform access

@ Let's look at an example:
P(A)=0.1 P(B)=0.1 P(C)=04 PD)=01 P(E)=03
T(n)=1x014+2x01+3x04+4x01+5x%x03=34

If we know in advance this access pattern can we do better?

T(n)=1x04+4+2x03+3x014+4x01+5x%x01=22

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Cost on non-uniform access

@ Let's look at an example:
P(A)=0.1 P(B)=0.1 P(C)=04 PD)=01 P(E)=03
(B[ Cl-+{D} B} >

T(n)=1x0142x01+3x04+4x01+5%x03=34

If we know in advance this access pattern can we do better?

T(n)=1x04+4+2x03+3x014+4x01+5x%x01=22

And what if we know the exact (non-static) search pattern?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Strategies for Improving

@ Can you think of any strategies for improving if we do not know in
advance what is the access pattern?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Strategies for Improving

@ Can you think of any strategies for improving if we do not know in
advance what is the access pattern?

@ Intuition: bring items frequently accessed closer to the front

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 6/31



Strategies for Improving

@ Can you think of any strategies for improving if we do not know in
advance what is the access pattern?

@ Intuition: bring items frequently accessed closer to the front

@ Three possible strategies (among others) after accessing an element:

» Move to Front (MTF): move element to the head of the list

» Transpose (TR): swap with previous element

» Frequency Count (FC): count and store the number of accesses to
each element. Order by this count.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 6/31



Competitive Analysis

o Idea: look at the ratio of our algorithm vs best achievable

r-competitiveness

An algorithm has competitive ratio r (or is r-competitive) if for some
constant b, for any sequence of requests s, we have:

Cost,ig(s) < r x Costopr(s) + b

where OPT is the optimal algorithm (in hindsight)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 7/31



Competitive Analysis

o Idea: look at the ratio of our algorithm vs best achievable

r-competitiveness

An algorithm has competitive ratio r (or is r-competitive) if for some
constant b, for any sequence of requests s, we have:

Cost,ig(s) < r x Costopr(s) + b

where OPT is the optimal algorithm (in hindsight)

@ Consider the following cost model:

» Accessing item at position i costs i
» After accessing it, we can bring it forwards as much as we want for free

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 7/31



Competitive Analysis of Self Organizing Lists

Claim - TR has as a bad competitive ratio: Q(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Competitive Analysis of Self Organizing Lists

Claim - TR has as a bad competitive ratio: Q(n)
Consider the following sequence of operations:
@ Consider any list with n elements

@ Ask n times for the last element in the sequence

Example:
A—-B—-C—=D—=E
find(E), find(D), find(E), find(D), ...

@ This strategy will pay n?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Competitive Analysis of Self Organizing Lists

Claim - TR has as a bad competitive ratio: Q(n)

Consider the following sequence of operations:
@ Consider any list with n elements
@ Ask n times for the last element in the sequence
Example:
A—-B—-C—=D—E
find(E), find(D), find(E), find(D), ...
@ This strategy will pay n?

@ A better option would be bringing both elements to front paying
n+n+2+42424+2+4+2424+... = n+n+2(n—2) = 2n+2n—4 = 4n—4

@ The ratio for m operations like these is n?/(4n — 4) which is ©(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Competitive Analysis of Self Organizing Lists

Claim - FC has as a bad competitive ratio: Q(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Competitive Analysis of Self Organizing Lists

Claim - FC has as a bad competitive ratio: Q(n)

Consider the following sequence of operations:
@ Consider an initial request sequence that sets up counts:
n—1,n-2,...,2,1,0
@ Repeat indefinitely: ask n times for the element that was last
Example:

A—-B—-C—=D—=E
find(E), find(E), find(E), find(E), ...

@ Each of these iterations will pay
n+(n—1)+n—-2)+...+2+1=n(n+1)/2=(n*>+n)/2

@ Optimal in this case would bring the element to the front on the first
request, payingn+1+4+14+1+1+14...=2n—-1

@ The ratio for m operations like these is ©(n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 9/31



Competitive Analysis of Self Organizing Lists

What about MTF? Can you find any "bad” sequence of operations?

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Competitive Analysis of Self Organizing Lists

What about MTF? Can you find any "bad” sequence of operations?
Claim - MTF is 2-competitive

For this we can use amortized analysis

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures

10/31



Remembering Amortized Analysis

@ |In amortized analysis we are concerned about the the average over a
sequence of operations

» Some operations may be costly, but others may be quicker, and in the
end they even out

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 11/31



Remembering Amortized Analysis

@ |In amortized analysis we are concerned about the the average over a
sequence of operations
» Some operations may be costly, but others may be quicker, and in the
end they even out
@ One possible method is using potential functions
» A potential function ® maps the state of a data structure to
non-negative numbers
» You can think of it as " potential energy” that you can use later
(like a guarantee of the "money we have in the bank™)
» If the potential is non-negative and starts at 0, and at each step the
actual cost of our algorithm plus the change in potential is at most c,
then after n steps our total cost is at most cn.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 11/31



Remembering Amortized Analysis

@ Relationship between potential and actual cost

» State of data structure at time x: S,
» Sequence of n operations: O = 01,0y,...,0p,

» Amortized cost per operation o:
Tam(o) - Treal(o) + ((D(Safter) - q)(Sbefore))

» Total amortized cost: T,,(0) = Z Tam(0;)
» Total actual (real) cost: T,eq(O) . >~ Treal(0i)
> Tam(0) = 3 Treat(0) + ((Sit1) — (S))) =
i=1
Tl’ea/(o) + (¢(Send) - ¢(Sstart))
> 7_real(o) = Tam(o) + (d)(sstart) - cl>(5end))

If ®(Sstart) =0 and ®(Seng) > 0, then Tren(0) < Tm(0O) and our
amortized cost can be used to accurately predict the actual cost!

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 12/31



Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

@ The key is defining the right potential function

@ Let ® be the number of inversions between MTF and OPT lists, i.e.,
#pairs(x, y) such that x is before y in MTF and after y in OPT list.

@ Initially our @ is zero and it will never be negative.

@ We are going to show that amortized cost of MTF is smaller or equal
than twice the real cost of OPT:

Costptr + (change in potential) < 2 x Costopt
This means that after any sequence of requests:
costyTF + Pfinas < 2 X costopT

Hence, it would mean that MTF is 2-competitive.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 13/31



Competitive Analysis of Self Organizing Lists

Claim - MF is 2-competitive

@ ® is the number of inversions between MTF and OPT lists,
@ Consider request to x at position p in MTF list.

@ Of the p — 1 items in front of x, say that k are also in front of x in
the OPT list. The remaining p — 1 — k are behind x

@ Costy7r = p and Costopr > k+1
@ What happens to the potential?

» When MTF moves x forward, x cuts in front of k elements (increase ®
by k)

> At the same time, the p — 1 — k there were in front of x aren’t any
more (decrease ¢ by p — 1 — k)

» When OPT moves x forward it can only reduce .

> In the end, change in potential is <2k —p+1

» This means that:
Costyre+ (change in potential) < p+ 2k — p+ 1 < 2 x Costopr

[l

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 14 /31



Splay Trees

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Splay Trees

A self-adjusting binary search tree
They were invented by D. Sleator and R. Tarjan in 1985

The key ideas are similar to self-organizing linked lists:

> accessed items are moved to the root
> recently accessed elements are quick to access again

It provides guarantees of logarithmic access time in amortized sense

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Trees and Rotations

o Consider the following "rotations” designed to move a node to the
root of a (sub)tree:

Zig (or Zag) - Simple Rotation
(also used in AVL and red-black trees)

oAAo

AV o\ /c

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 16 /31




Trees and Rotations

@ Consider the following "rotations” designed to move a node to the
root of a (sub)tree:

Zig-Zig (or Zag-Zag)

e &
oVANANBO

oAAe
/a\ /o\ &\ /o

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 17/31




Trees and Rotations

@ Consider the following "rotations” designed to move a node to the
root of a (sub)tree:

Zig-Zag (or Zag-Zig)

o
Y /o
Ae
/o\ /2\

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 18 /31




Splay Operation

@ Splaying a node means moving it to the root of a tree using the
operations given before:

Original tree

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 19/31



Splay Operation

@ Splaying a node means moving it to the root of a tree using the
operations given before:

Zig-Zag Left (or Zag-Zig)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 20/31



Splay Operation

@ Splaying a node means moving it to the root of a tree using the
operations given before:

Now the tree is like this

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Splay Operation

@ Splaying a node means moving it to the root of a tree using the
operations given before:

o @
& & OO
D = O ®» ®
OROBNG Q
@
®

Zig-Zig Left (or Zag-Zag)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 22/31



Operations on a Splay Tree

@ Idea: do as in a normal BST but in the end splay the node
» find(x): do as in BST and then splay x
(if x is not present splay the last node accessed)
» insert(x): do as in BST and then splay x
> remove(x) find x, splay x, delete x (leaves its subtress R and L
"detached"), find largest element y in L and make it the new root:

oo

@ Running time is dominated by the splay operation.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 23/31



Why do splay trees work in practice?

Efficiency of splay trees

For any sequence of m operations on a splay tree, the running time is
O(mlog n), where n is the max number of nodes in the tree at any time.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 24 /31



Why do splay trees work in practice?

Efficiency of splay trees

For any sequence of m operations on a splay tree, the running time is
O(mlog n), where n is the max number of nodes in the tree at any time.

o Intuition: any operation on a deeper side of the tree will "bring”
nodes from that side closer to the root
» It is possible to make a splay tree have ©(n) height, and hence a splay
applied to the lowest leaf will take ©(n) time. However, the resulting
splayed tree will have an average node depth roughly decreased by half!

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 24 /31



Why do splay trees work in practice?

Efficiency of splay trees

For any sequence of m operations on a splay tree, the running time is
O(mlog n), where n is the max number of nodes in the tree at any time.

o Intuition: any operation on a deeper side of the tree will "bring”
nodes from that side closer to the root

» It is possible to make a splay tree have ©(n) height, and hence a splay
applied to the lowest leaf will take ©(n) time. However, the resulting
splayed tree will have an average node depth roughly decreased by half!

@ Two quantities: real cost and increase in balance

> If we spend much, then we will also be balancing a lot
» If don't balance a lot, than we also did not spend much

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 24 /31



Amortized Analysis of Splay Trees

@ The key is defining the right potential function ®
@ Consider the following:

> size(x) = number of nodes below x (including x)
> rank(x) = log,(size(x))
> O(S) = rank(x)

@ Our potential function is the sum of the ranks of all tree nodes

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

The key is defining the right potential function ®
Consider the following:

> size(x) = number of nodes below x (including x)
> rank(x) = log,(size(x))
> O(S) = rank(x)

Our potential function is the sum of the ranks of all tree nodes

Let the cost be the number of rotations

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

The key is defining the right potential function ®
Consider the following:

> size(x) = number of nodes below x (including x)
> rank(x) = log,(size(x))
> O(S) = rank(x)

Our potential function is the sum of the ranks of all tree nodes

Let the cost be the number of rotations

Lemma

The amortized time of splaying node x in a tree with root r is at most
3(rank(r) — rank(x)) +1

@ The rank of a single node is at most log n and therefore the above
means the amortized time per operation is O(log n)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

@ If x is at the root, the bound is trivially achieved

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

o If x is at the root, the bound is trivially achieved

@ If not, we will have a sequence of zig-zig and zig-zag rotations,
followed by at most one simple rotation at the top

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

o If x is at the root, the bound is trivially achieved

@ If not, we will have a sequence of zig-zig and zig-zag rotations,
followed by at most one simple rotation at the top

@ Let r(x) be the the rank of x before the rotation and r’'(x) be its rank
afterwards.

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 26 /31



Amortized Analysis of Splay Trees

o If x is at the root, the bound is trivially achieved

@ If not, we will have a sequence of zig-zig and zig-zag rotations,
followed by at most one simple rotation at the top

@ Let r(x) be the the rank of x before the rotation and r’'(x) be its rank
afterwards.

@ We will show that a simple rotation takes time at most
3(r'(x) — r(x)) + 1 and that the other operations take 3(r'(x) — r(x))

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 26 /31



Amortized Analysis of Splay Trees

o If x is at the root, the bound is trivially achieved

@ If not, we will have a sequence of zig-zig and zig-zag rotations,
followed by at most one simple rotation at the top

@ Let r(x) be the the rank of x before the rotation and r’'(x) be its rank
afterwards.

@ We will show that a simple rotation takes time at most
3(r'(x) — r(x)) + 1 and that the other operations take 3(r'(x) — r(x))

@ If you think about the sequence of rotations, than successive r(x) and
r'(x) will cancel out and we are left at the end with
3(r(root) — r(x)) +1

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 26 /31



Amortized Analysis of Splay Trees

o If x is at the root, the bound is trivially achieved

@ If not, we will have a sequence of zig-zig and zig-zag rotations,
followed by at most one simple rotation at the top

@ Let r(x) be the the rank of x before the rotation and r’'(x) be its rank
afterwards.

@ We will show that a simple rotation takes time at most
3(r'(x) — r(x)) + 1 and that the other operations take 3(r'(x) — r(x))

@ If you think about the sequence of rotations, than successive r(x) and
r'(x) will cancel out and we are left at the end with
3(r(root) — r(x)) +1

@ The worst case is r(x) = 0 and in that case we have 3 x log, n+1

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 26 /31



Amortized Analysis of Splay Trees

Case 1: Simple Rotation

® @
© AAo
/a\ /e\ /a\ /\

@ Only x and y change rank

> x increases rank
> y decreases rank

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 27/31



Amortized Analysis of Splay Trees

Case 1: Simple Rotation

® @
© AAo
/a\ /e\ /a\ /\

@ Only x and y change rank

> x increases rank
> y decreases rank

@ Costis 1+ r'(x)+ r'(y) — r(x) — r(y)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 27/31



Amortized Analysis of Splay Trees

Case 1: Simple Rotation

® @
© AAo
/a\ /e\ /a\ /\

@ Only x and y change rank

> x increases rank
> y decreases rank

@ Costis 1+ r'(x)+ r'(y) — r(x) — r(y)
@ Thisis <1+ r/(x) — r(x) since r(y) > r'(y)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 27/31



Amortized Analysis of Splay Trees

Case 1: Simple Rotation

® @
© AAo
/a\ /e\ /a\ /\

@ Only x and y change rank

» X increases rank

> y decreases rank
@ Costis 1+ r'(x)+r'(y) — r(x) — r(y)
@ Thisis <1+ r'(x) — r(x) since r(y) > r'(y)
@ Thisis <14 3(r'(x) — r(x)) since r'(x) > r(x)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 27/31



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

6 ®
oA O

oAAo
JAVAN /\ /o\

@ Only x, y and z change rank

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

6 ®
oA O

oAAo
JAVAN /\ /o\

@ Only x, y and z change rank
@ Costis 2+ r'(x)+ r'(y)+ r'(z) — r(x) — r(y) — r(z)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

6 ®
oA O
oAAo
JAVAN /\ /o\

@ Only x, y and z change rank
@ Costis 2+ r'(x)+ r'(y)+ r'(z) — r(x) — r(y) — r(z)
@ Thisis =2+ r'(y) + r'(z) — r(x) — r(y) since r'(x) = r(z)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation

6 ®
oA O

oAAo
JAVAN /\ /o\

@ Only x, y and z change rank

@ Costis 2+ r'(x)+ r'(y)+ r'(z) — r(x) — r(y) — r(z)

@ Thisis =2+ r'(y) + r'(z) — r(x) — r(y) since r'(x) = r(z)

@ Thisis <2+ r'(x)+r'(z) —2r(x) since r'(x) > r'(y) and r(y) > r(x)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation
@ 2+ r'(x)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation
@ 2+ r'(x)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r(x) — r'(z) > 2

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation
@ 2+ r'(x)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r(x) — r'(z) > 2

@ 2r'(x) = r(x) = r'(z) = logy(s'(x)/s(x)) + log,(s'(x)/s'(2))

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation
@ 2+ r'(x)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r(x) — r'(z) > 2

@ 2r'(x) = r(x) = r'(z) = logy(s'(x)/s(x)) + log,(s'(x)/s'(2))
@ Notice that s'(x) > s(x) + s'(2)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 2: Zig-Zig Operation
@ 2+ r'(x)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r(x) — r'(z) > 2
@ 2r'(x) = r(x) = r'(z) = logy(s'(x)/s(x)) + log,(s'(x)/s'(2))
@ Notice that s'(x) > s(x) + s'(2)
@ Given that log is convex, the way to make the two logarithms as small

as possible is to choose s(x) = s'(z) = s'(x)/2. In that case
logy2 4 log,2 =141 =2 and we have proved what we wanted!

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 29/31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
(2 ()

OAN oo
AoAAAA

/2N /e\

@ Only x, y and z change rank

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
(2 ()
GY /o oo
AR o A i 2 A
/o\ /2

@ Only x, y and z change rank
@ Costis 2+ r'(x)+ r'(y)+ r'(z) — r(x) — r(y) — r(z)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 30/31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
(2) ()
GY /o oo
AR o ANAMN
/o\ [\
@ Only x, y and z change rank

@ Costis 2+ r'(x)+ r'(y)+ r'(z) — r(x) — r(y) — r(z)
@ Thisis =2+ r'(y) + r'(z) — r(x) — r(y) since r'(x) = r(z)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 30/31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
(2 ()
GY /o oo
A o ANAN
/o\ /o
@ Only x, y and z change rank
@ Costis 2+ r'(x)+ r'(y)+ r'(z) — r(x) — r(y) — r(z)

@ Thisis =2+ r'(y) + r'(z) — r(x) — r(y) since r'(x) = r(z)
@ Thisis <2+ r'(y) + r'(z) — 2r(x) since r(y) > r(x)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures

30/31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
@ 2+ 1r(y)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
@ 2+ 1r(y)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r'(y) — r’

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
@ 2+ 1r(y)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r'(y) — r'(z) > 2
° 2r'(x) = r'(y) — r'(z) = logy(s'(x)/s'(y)) + loga(s'(x)/s'(2))

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 31/31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
@ 2+ 1r(y)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r'(y) — r'(z) > 2
0 2/(x) — '(y) — F(2) = loga(5'(x)/5'(y)) + loga(s'(x)/(2))
@ Notice that s'(x) > s'(y) + s'(2)

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 31/31



Amortized Analysis of Splay Trees

Case 3: Zig-Zag Operation
@ 2+ 1r(y)+ r'(z) — 2r(x) is at most 3(r'(x) — r(x))
@ This is equivalent to say that 2r'(x) — r'(y) — r'(z) > 2
° 2r'(x) = r'(y) — r'(z) = logy(s'(x)/s'(y)) + loga(s'(x)/s'(2))
@ Notice that s'(x) > s'(y) + s'(2)

@ By the same argument as before, the way to minimize is to choose
s'(y) = s'(z) = s'(x)/2. In that case log,2 + log,2 =1+1=2
@ And we have proved what we wanted!

Pedro Ribeiro (DCC/FCUP) Self Adjusting Data Structures 31/31



