extensions [nw] globals [ clust-coeff ;; the clustering coefficient of the network ;; this is the average of clustering coefficients of all nodes average-path-length ;; average path length of the network clustering-coefficient-of-lattice ;; the clustering coefficient of the initial lattice average-path-length-of-lattice ;; average path length of the initial lattice infinity ;; a very large number. ;; used to denote distance between two nodes which ;; don't have a connected or unconnected path between them tot-links num-valid-nodes clustcoeffsum numqualifyingnodes current-node num-neighbors n1 n2 is-connected ] turtles-own [ distance-from-other-nodes node-clustering-coefficient ] ;;;;;;;;;;;;;;;;;;;;;;;; ;;; Setup Procedures ;;; ;;;;;;;;;;;;;;;;;;;;;;;; to generate-topology set infinity 99999 set-default-shape turtles "outlined circle" ;; setup small world topology ; create-turtles num-nodes ask turtles [reset-node] ask links [die] ;; Layout turtles: layout-circle (sort turtles) max-pxcor - 8 ;; space out turtles to see clustering ask turtles [ facexy 0 0 if who mod 2 = 0 [fd 4] ] display create-lattice ;; make sure num-nodes is setup correctly else run setup first if count turtles != num-nodes [ setup ] ; setup rewire-network set is-connected do-calculations do-plotting end ; ************************ ; calculation of clustering coefficient as described by Watts and Strogatz ; ************************ to cluster-coeff set numqualifyingnodes 0 set clustcoeffsum 0 ask turtles [ set tot-links 0 set num-neighbors count link-neighbors set current-node self ask link-neighbors [ set tot-links (tot-links + count link-neighbors with [link-neighbor? current-node]) ] if (num-neighbors > 1) [set clustcoeffsum (clustcoeffsum + (tot-links / (num-neighbors * (num-neighbors - 1)))) set numqualifyingnodes numqualifyingnodes + 1] ] set clust-coeff (clustcoeffsum / numqualifyingnodes) create-lattice end to initial-setup ;; (for this model to work with NetLogo's new plotting features, ;; __clear-all-and-reset-ticks should be replaced with clear-all at ;; the beginning of your setup procedure and reset-ticks at the end ;; of the procedure.) __clear-all-and-reset-ticks set infinity 99999 set rewiring-probability 0 set-default-shape turtles "outlined circle" ;; setup small world topology create-turtles num-nodes ask turtles [reset-node] ask links [set color gray + 1.5] ;; Layout turtles: layout-circle (sort turtles) max-pxcor - 8 ;; space out turtles to see clustering ask turtles [ facexy 0 0 if who mod 2 = 0 [fd 4] ] display create-lattice rewire-network set is-connected do-calculations set clustering-coefficient-of-lattice clust-coeff set average-path-length-of-lattice average-path-length display end to setup ; ca ask links [die] set infinity 99999 ask turtles [reset-node] ask links [set color gray + 1.5] create-lattice rewire-network set is-connected do-calculations ; show average-path-length do-plotting display end to vary-p ; clear-plot initial-setup set rewiring-probability 0.0 while [rewiring-probability < 1.0] [ setup set rewiring-probability rewiring-probability + 0.05 ] end to reset-node set color gray - 0.75 set size 2.1 end ;; WARNING: the simplified rewiring algorithm does not certain checks (ie disconnected graph) ;; for large networksthis shouldn't be too much of an issue. to rewire-network ask links [ ;; whether to rewire it or not? if (random-float 1) < rewiring-probability [ ask end1 [ create-link-with one-of other turtles with [not link-neighbor? myself ] [set color gray + 1.5] ] die ] ] end ;; spring layout all nodes and links to do-layout repeat 5 [layout-spring turtles links 0.2 4 0.9] display end ;; creates a new lattice to create-lattice ;; iterate over the nodes let n 0 while [n < count turtles] [ ;; make links with the next two neighbors ;; this makes a lattice with average degree of 4 make-link-between turtle n turtle ((n + 1) mod count turtles) make-link-between turtle n turtle ((n + 2) mod count turtles) set n n + 1 ] end ;; connects the two nodes to make-link-between [node1 node2] ask node1 [ create-link-with node2 [ set color gray + 1.5] ] end to-report do-calculations ;; set up a variable so we can report if the network is disconnected let connected? true ;; check whether network got disconnected and ignore those runs (should not happen often); ;; we only want to calculate average path length when we have one connected component find-path-lengths ;; find the clustering coefficient and add to the aggregate for all iterations cluster-coeff ;; report whether the network is connected or not report connected? end to find-path-lengths ;; reset the distance list nw:set-context turtles links set average-path-length nw:mean-path-length end ;;;;;;;;;;;;;;;; ;;; Plotting ;;; ;;;;;;;;;;;;;;;; to do-plotting ;; plot the number of infected individuals at each step set-current-plot "Clustering coefficient and average path length" set-current-plot-pen "av-path" if (average-path-length != false) [ plotxy rewiring-probability average-path-length / average-path-length-of-lattice ] set-current-plot-pen "cc" ;; note: dividing by initial value to normalize the plot plotxy rewiring-probability clust-coeff / clustering-coefficient-of-lattice end ; *** NetLogo 4.0 Model Copyright Notice *** ; ; This model was adopted by Eytan Bakshy and Lada Adamic from ; the model below: ; ; Copyright 2005 by Uri Wilensky. All rights reserved. ; ; Permission to use, modify or redistribute this model is hereby granted, ; provided that both of the following requirements are followed: ; a) this copyright notice is included. ; b) this model will not be redistributed for profit without permission ; from Uri Wilensky. ; Contact Uri Wilensky for appropriate licenses for redistribution for ; profit. ; ; To refer to this model in academic publications, please use: ; Wilensky, U. (2005). NetLogo Small Worlds model. ; http://ccl.northwestern.edu/netlogo/models/SmallWorlds. ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL. ; ; In other publications, please use: ; Copyright 2005 Uri Wilensky. All rights reserved. ; See http://ccl.northwestern.edu/netlogo/models/SmallWorlds ; for terms of use. ; ; *** End of NetLogo 4.0 Model Copyright Notice *** @#$#@#$#@ GRAPHICS-WINDOW 295 10 786 502 -1 -1 3.0 1 10 1 1 1 0 0 0 1 -80 80 -80 80 1 1 1 ticks 30.0 SLIDER 6 132 278 165 num-nodes num-nodes 20 300 100.0 1 1 NIL HORIZONTAL SLIDER 5 92 278 125 rewiring-probability rewiring-probability 0 1 0.0 0.01 1 NIL HORIZONTAL PLOT 9 261 286 455 Clustering coefficient and average path length rewiring-probability normalized cc and av-path 0.0 1.0 0.0 1.0 true true "" "" PENS "cc" 1.0 2 -2674135 true "" "" "av-path" 1.0 2 -16777216 true "" "" MONITOR 155 170 252 219 NIL clust-coeff 4 1 12 BUTTON 7 49 251 82 vary rewiring prob. from 0.0 to 1.0 vary-p NIL 1 T OBSERVER NIL NIL NIL NIL 1 MONITOR 9 170 150 219 NIL average-path-length 2 1 12 BUTTON 9 222 94 255 NIL do-layout T 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 144 10 250 43 rewire-once setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 BUTTON 8 11 111 44 initial setup initial-setup NIL 1 T OBSERVER NIL NIL NIL NIL 1 @#$#@#$#@ ## WHAT IS IT? This model explores the formation of networks that result in the "small world" phenomenon -- the idea that a person is only a couple of connections away any other person in the world. A popular example of the small world phenomenon is the network formed by actors appearing in the same movie (e.g. the "six degrees of Kevin Bacon" game), but small worlds are not limited to people-only networks. Other examples range from power grids to the neural networks of worms. This model illustrates some general, theoretical conditions under which small world networks between people or things might occur. ## HOW IT WORKS This model is an adaptation of a model proposed by Duncan Watts and Steve Strogatz (1998). It begins with a network where each person (or "node") is connected to his or her two neighbors on either side. The REWIRE-ONCE button creates the network and then visits all edges and tries to rewire them. By rewiring, we mean changing one end of a connected pair of nodes, and keeping the other end the same. The REWIRING-PROBABILITY slider determines the probability that an edge will get rewired. Running VARY REWIRING-PROBABILITY will rewire at multiple probabilities and produces a range of possible networks with varying average path lengths and clustering coefficients. To identify small worlds, the "average path length" (abbreviated "av-path") and "clustering coefficient" (abbreviated "cc") of the network are calculated and plotted. (Note: The plots for both the clustering coefficient and average path length are normalized by dividing by the values of the initial network. The monitors give the actual values.) Average Path Length: Average path length is calculated by finding the shortest path between all pairs of nodes, adding them up, and then dividing by the total number of pairs. This shows us, on average, the number of steps it takes to get from one member of the network to another. Clustering Coefficient: Another property of small world networks is that from one person's perspective it seems unlikely that they could be only a few steps away from anybody else in the world. This is because their friends more or less know all the same people they do. The clustering coefficient is a measure of this "all-my-friends-know-each-other" property. This is sometimes described as the friends of my friends are my friends. More precisely, the clustering coefficient of a node is the ratio of existing links connecting a node's neighbors to each other to the maximum possible number of such links. ## HOW TO USE IT The NUM-NODES slider controls the size of the network. Choose a size and press INITIAL SETUP. Pressing the REWIRE-ONCE button rewires the network for a given REWIRING-PROBABILITY. Pressing the VARY REWIRING-PROBABILITY button re-creates the initial network (each node connected to its two neighbors on each side for a total of four neighbors) and rewires all the edges with varying rewiring probability, then plots the resulting network properties. ## THINGS TO NOTICE Note that for certain ranges of the fraction of nodes, the relative average path length decreases faster than the relative clustering coefficient. That is, the average path length soon reaches that of the random graph (the graph when REWIRING-PROBABILITY = 1), while the clustering coefficient more slowly descends to that value. The region when the average shortest path is close to that of a random graph while the clustering coefficient is still significantly higher than that of a random graph is when one would call the graph "small world". ## THINGS TO TRY Try plotting the values for different rewiring probabilities and observe the trends of the values for average path length and clustering coefficient. What is the relationship between rewiring probability and fraction of nodes? In other words, what is the relationship between the rewire-one plot and the rewire-all plot? Do the trends depend on the number of nodes in the network? ## EXTENDING THE MODEL Try to see if you can produce the same results if you start with a different initial network. Create new BehaviorSpace experiments to compare results. In a precursor to this model, Watts and Strogatz created an "alpha" model where the rewiring was not based on a global rewiring probability. Instead, the probability that a node got connected to another node depended on how many mutual connections the two nodes had. The extent to which mutual connections mattered was determined by the parameter "alpha." Create the "alpha" model and see if it also can result in small world formation. ## RELATED MODELS Diffusion in a small world: http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldDiffusionSIS.html Search in a small world: http://projects.si.umich.edu/netlearn/NetLogo4/SmallWorldSearch.html Graph coloring in a small world: http://projects.si.umich.edu/netlearn/NetLogo4/GraphColoring.html ## CREDITS AND REFERENCES This model is adapted from: Duncan J. Watts, Six Degrees: The Science of a Connected Age (W.W. Norton & Company, New York, 2003), pages 83-100. The work described here was originally published in: DJ Watts and SH Strogatz. Collective dynamics of 'small-world' networks, Nature, 393:440-442 (1998) For more information please see Watts' website: http://smallworld.columbia.edu/index.html The small worlds idea was first made popular by Stanley Milgram's famous experiment (1967) which found that two random US citizens where on average connected by six acquaintances (giving rise to the popular "six degrees of separation" expression): Stanley Milgram. The Small World Problem, Psychology Today, 2: 60-67 (1967). This model and documentation was adapted by Eytan Bakshy and Lada Adamic from: Wilensky, U. (2005). NetLogo Small Worlds model. http://ccl.northwestern.edu/netlogo/models/SmallWorlds. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. @#$#@#$#@ default true 0 Polygon -7500403 true true 150 5 40 250 150 205 260 250 airplane true 0 Polygon -7500403 true true 150 0 135 15 120 60 120 105 15 165 15 195 120 180 135 240 105 270 120 285 150 270 180 285 210 270 165 240 180 180 285 195 285 165 180 105 180 60 165 15 arrow true 0 Polygon -7500403 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 box false 0 Polygon -7500403 true true 150 285 285 225 285 75 150 135 Polygon -7500403 true true 150 135 15 75 150 15 285 75 Polygon -7500403 true true 15 75 15 225 150 285 150 135 Line -16777216 false 150 285 150 135 Line -16777216 false 150 135 15 75 Line -16777216 false 150 135 285 75 bug true 0 Circle -7500403 true true 96 182 108 Circle -7500403 true true 110 127 80 Circle -7500403 true true 110 75 80 Line -7500403 true 150 100 80 30 Line -7500403 true 150 100 220 30 butterfly true 0 Polygon -7500403 true true 150 165 209 199 225 225 225 255 195 270 165 255 150 240 Polygon -7500403 true true 150 165 89 198 75 225 75 255 105 270 135 255 150 240 Polygon -7500403 true true 139 148 100 105 55 90 25 90 10 105 10 135 25 180 40 195 85 194 139 163 Polygon -7500403 true true 162 150 200 105 245 90 275 90 290 105 290 135 275 180 260 195 215 195 162 165 Polygon -16777216 true false 150 255 135 225 120 150 135 120 150 105 165 120 180 150 165 225 Circle -16777216 true false 135 90 30 Line -16777216 false 150 105 195 60 Line -16777216 false 150 105 105 60 car false 0 Polygon -7500403 true true 300 180 279 164 261 144 240 135 226 132 213 106 203 84 185 63 159 50 135 50 75 60 0 150 0 165 0 225 300 225 300 180 Circle -16777216 true false 180 180 90 Circle -16777216 true false 30 180 90 Polygon -16777216 true false 162 80 132 78 134 135 209 135 194 105 189 96 180 89 Circle -7500403 true true 47 195 58 Circle -7500403 true true 195 195 58 circle false 0 Circle -7500403 true true 0 0 300 circle 2 false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 cow false 0 Polygon -7500403 true true 200 193 197 249 179 249 177 196 166 187 140 189 93 191 78 179 72 211 49 209 48 181 37 149 25 120 25 89 45 72 103 84 179 75 198 76 252 64 272 81 293 103 285 121 255 121 242 118 224 167 Polygon -7500403 true true 73 210 86 251 62 249 48 208 Polygon -7500403 true true 25 114 16 195 9 204 23 213 25 200 39 123 cylinder false 0 Circle -7500403 true true 0 0 300 dot false 0 Circle -7500403 true true 90 90 120 face happy false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 255 90 239 62 213 47 191 67 179 90 203 109 218 150 225 192 218 210 203 227 181 251 194 236 217 212 240 face neutral false 0 Circle -7500403 true true 8 7 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Rectangle -16777216 true false 60 195 240 225 face sad false 0 Circle -7500403 true true 8 8 285 Circle -16777216 true false 60 75 60 Circle -16777216 true false 180 75 60 Polygon -16777216 true false 150 168 90 184 62 210 47 232 67 244 90 220 109 205 150 198 192 205 210 220 227 242 251 229 236 206 212 183 fish false 0 Polygon -1 true false 44 131 21 87 15 86 0 120 15 150 0 180 13 214 20 212 45 166 Polygon -1 true false 135 195 119 235 95 218 76 210 46 204 60 165 Polygon -1 true false 75 45 83 77 71 103 86 114 166 78 135 60 Polygon -7500403 true true 30 136 151 77 226 81 280 119 292 146 292 160 287 170 270 195 195 210 151 212 30 166 Circle -16777216 true false 215 106 30 flag false 0 Rectangle -7500403 true true 60 15 75 300 Polygon -7500403 true true 90 150 270 90 90 30 Line -7500403 true 75 135 90 135 Line -7500403 true 75 45 90 45 flower false 0 Polygon -10899396 true false 135 120 165 165 180 210 180 240 150 300 165 300 195 240 195 195 165 135 Circle -7500403 true true 85 132 38 Circle -7500403 true true 130 147 38 Circle -7500403 true true 192 85 38 Circle -7500403 true true 85 40 38 Circle -7500403 true true 177 40 38 Circle -7500403 true true 177 132 38 Circle -7500403 true true 70 85 38 Circle -7500403 true true 130 25 38 Circle -7500403 true true 96 51 108 Circle -16777216 true false 113 68 74 Polygon -10899396 true false 189 233 219 188 249 173 279 188 234 218 Polygon -10899396 true false 180 255 150 210 105 210 75 240 135 240 house false 0 Rectangle -7500403 true true 45 120 255 285 Rectangle -16777216 true false 120 210 180 285 Polygon -7500403 true true 15 120 150 15 285 120 Line -16777216 false 30 120 270 120 leaf false 0 Polygon -7500403 true true 150 210 135 195 120 210 60 210 30 195 60 180 60 165 15 135 30 120 15 105 40 104 45 90 60 90 90 105 105 120 120 120 105 60 120 60 135 30 150 15 165 30 180 60 195 60 180 120 195 120 210 105 240 90 255 90 263 104 285 105 270 120 285 135 240 165 240 180 270 195 240 210 180 210 165 195 Polygon -7500403 true true 135 195 135 240 120 255 105 255 105 285 135 285 165 240 165 195 line true 0 Line -7500403 true 150 0 150 300 line half true 0 Line -7500403 true 150 0 150 150 link true 0 Line -7500403 true 150 0 150 300 link direction true 0 Line -7500403 true 150 150 30 225 Line -7500403 true 150 150 270 225 outlined circle false 0 Circle -7500403 true true 0 0 300 Circle -16777216 false false -1 -1 301 pentagon false 0 Polygon -7500403 true true 150 15 15 120 60 285 240 285 285 120 person false 0 Circle -7500403 true true 110 5 80 Polygon -7500403 true true 105 90 120 195 90 285 105 300 135 300 150 225 165 300 195 300 210 285 180 195 195 90 Rectangle -7500403 true true 127 79 172 94 Polygon -7500403 true true 195 90 240 150 225 180 165 105 Polygon -7500403 true true 105 90 60 150 75 180 135 105 plant false 0 Rectangle -7500403 true true 135 90 165 300 Polygon -7500403 true true 135 255 90 210 45 195 75 255 135 285 Polygon -7500403 true true 165 255 210 210 255 195 225 255 165 285 Polygon -7500403 true true 135 180 90 135 45 120 75 180 135 210 Polygon -7500403 true true 165 180 165 210 225 180 255 120 210 135 Polygon -7500403 true true 135 105 90 60 45 45 75 105 135 135 Polygon -7500403 true true 165 105 165 135 225 105 255 45 210 60 Polygon -7500403 true true 135 90 120 45 150 15 180 45 165 90 square false 0 Rectangle -7500403 true true 30 30 270 270 square 2 false 0 Rectangle -7500403 true true 30 30 270 270 Rectangle -16777216 true false 60 60 240 240 star false 0 Polygon -7500403 true true 151 1 185 108 298 108 207 175 242 282 151 216 59 282 94 175 3 108 116 108 target false 0 Circle -7500403 true true 0 0 300 Circle -16777216 true false 30 30 240 Circle -7500403 true true 60 60 180 Circle -16777216 true false 90 90 120 Circle -7500403 true true 120 120 60 tree false 0 Circle -7500403 true true 118 3 94 Rectangle -6459832 true false 120 195 180 300 Circle -7500403 true true 65 21 108 Circle -7500403 true true 116 41 127 Circle -7500403 true true 45 90 120 Circle -7500403 true true 104 74 152 triangle false 0 Polygon -7500403 true true 150 30 15 255 285 255 triangle 2 false 0 Polygon -7500403 true true 150 30 15 255 285 255 Polygon -16777216 true false 151 99 225 223 75 224 truck false 0 Rectangle -7500403 true true 4 45 195 187 Polygon -7500403 true true 296 193 296 150 259 134 244 104 208 104 207 194 Rectangle -1 true false 195 60 195 105 Polygon -16777216 true false 238 112 252 141 219 141 218 112 Circle -16777216 true false 234 174 42 Rectangle -7500403 true true 181 185 214 194 Circle -16777216 true false 144 174 42 Circle -16777216 true false 24 174 42 Circle -7500403 false true 24 174 42 Circle -7500403 false true 144 174 42 Circle -7500403 false true 234 174 42 turtle true 0 Polygon -10899396 true false 215 204 240 233 246 254 228 266 215 252 193 210 Polygon -10899396 true false 195 90 225 75 245 75 260 89 269 108 261 124 240 105 225 105 210 105 Polygon -10899396 true false 105 90 75 75 55 75 40 89 31 108 39 124 60 105 75 105 90 105 Polygon -10899396 true false 132 85 134 64 107 51 108 17 150 2 192 18 192 52 169 65 172 87 Polygon -10899396 true false 85 204 60 233 54 254 72 266 85 252 107 210 Polygon -7500403 true true 119 75 179 75 209 101 224 135 220 225 175 261 128 261 81 224 74 135 88 99 wheel false 0 Circle -7500403 true true 3 3 294 Circle -16777216 true false 30 30 240 Line -7500403 true 150 285 150 15 Line -7500403 true 15 150 285 150 Circle -7500403 true true 120 120 60 Line -7500403 true 216 40 79 269 Line -7500403 true 40 84 269 221 Line -7500403 true 40 216 269 79 Line -7500403 true 84 40 221 269 x false 0 Polygon -7500403 true true 270 75 225 30 30 225 75 270 Polygon -7500403 true true 30 75 75 30 270 225 225 270 @#$#@#$#@ NetLogo 6.0.4 @#$#@#$#@ setup repeat 5 [rewire-one] @#$#@#$#@ @#$#@#$#@ rewire-all rewiring-probability > 1 average-path-length clustering-coefficient @#$#@#$#@ @#$#@#$#@ default 0.0 -0.2 0 0.0 1.0 0.0 1 1.0 0.0 0.2 0 0.0 1.0 link direction true 0 Line -7500403 true 150 150 90 180 Line -7500403 true 150 150 210 180 @#$#@#$#@ 0 @#$#@#$#@