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Network Properties:
how to measure a network?
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Plan: Key Network Properties

● (1) Degree distribution             P(k)

● (2) Path Length                          h

● (3) Clustering coefficient           C

● (4) Connected components        s
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(1) Degree Distribution
● Degree distribution P(k): probability that 

a randomly chosen node has degree k
Nk = # nodes with degree k

● Normalized histogram:
P(k) = Nk / N    →   plot
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(2) Paths in a Graph
● A path is a sequence of nodes in which 

each node is linked to the next one
Pn = {i0, i1, i2, … ,in}    or

Pn = {(i0, i1), (i1, i2), (i2, i3), …, (in-1, in),}

● A path can intersect itself
and pass trough the same
edge multiple times
– E.g. ACBDCDEG
– In a directed graph, a path

can only follow the direction
of the “arrow”
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Distance in a Graph

● Distance (shortest path, geodesic) 
between a pair of nodes is defined
as the number of edges along the 
shortest path connecting the nodes
– If the two nodes are not connected, the 

distance is usually defined as infinite

● In directed graphs paths need to 
follow the direction of the arrows
– Consequence: distance is

not symmetric: hB,C ≠ hC,B
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Network Diameter
● Diameter: The maximum (shortest path) 

distance between any pair of nodes in a 
graph

● Average path length for a connected 
graph (component) or a strongly connected 
(component of a) directed graph

– Many times we compute the average only over 
the connected pairs of nodes (that is, we ignore 
“infinite”length paths)

Where h
ij
 is the distance from node i to node j 

E
max

 is max number of edges (total number of 
node pairs) = n(n-1)/2
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(3) Clustering Coefficient
● Clustering coefficient:

– What portion of i’s neighbors are connected?
– Node i with degree ki

–

–

● Average clustering coefficient:

C i=
2 ei

k i(ki−1)

C i∈[0,1]

where e
i
 is the number of edges 

between the neighbors of node i

C=
1
N
∑
i

n

C i



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Clustering Coefficient
● Clustering coefficient:

– What portion of i’s neighbors are connected?
– Node i with degree ki

– C i=
2 ei

k i(ki−1)

where e
i
 is the number of edges 

between the neighbors of node i

k
B
=2,   e

B
=1,   C

B
 = 2/2 = 1

k
D
=4,   e

D
=2,   C

D
 = 4/12 = 1/3

Avg. Clustering: C = 0.33



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

(4) Connectivity
● Size of the largest connected component

– Largest set where any two vertices can be 
joined by a path

● Largest component = Giant component

How to find connected components:

• Start from random node and perform
Breadth First Search (BFS)
• Label the nodes BFS visited
• If all nodes are visited, the network is connected
• Otherwise find an unvisited node and repeat BFS
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Summary: Key Network Properties

● (1) Degree distribution             P(k)

● (2) Path Length                          h

● (3) Clustering coefficient           C

● (4) Connected components        s



  

Measuring these properties
in a Real World Graph
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MSN Messenger

● MSN Messenger
– 1 month activity

● 245 million users logged in
● 180 million users engaged in 

conversations
● More than 30 billion 

conversations
● More than 255 billion 

exchanged messages

WWW 2008
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Spatial Network: Geography
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Communication → Connections

Network: 180M people, 1.3B edges
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Messaging as multigraph
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MSN: (1) Degree Distribution
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MSN: Log-Log Degree Distribution
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MSN: (2) Diameter 
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MSN: (3) Clustering Coefficient
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MSN: (4) Connected Components
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MSN: Key Network Properties

● (1) Degree distribution             

● (2) Path Length                          6.6

● (3) Clustering coefficient           0.11

● (4) Connected components        
giant 

component

Heavily skewed
avg. degree = 14.4

Are these values “expected”?
Are they “surprising”?

To answer this we need a null-model!
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Another Example: PPI Network
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Intermezzo: Network Datasets

http://konect.cc/
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Intermezzo: Network Datasets

http://networkrepository.com/



  

Erdös-Renyi
Random Graph Model
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Simplest Model of Graphs
● Erdös-Renyi

Random Graphs
[Erdös-Renyi, ‘60]

● Gn,p: undirected graph on n nodes and each 
(u,v) appears i.i.d. with probability p

● Gn,m: undirected graph with n nodes and m 
uniformly at random picked edges

What kind of networks do
such models produce?
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Random Graph Model
● n and p do not uniquely determine the graph!

– The graph is a result of a random process

● We can have many different realizations given
the same n and p
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Properties of Gn,p

● Degree distribution             P(k)

● Clustering coefficient           C

● Path Length                          h

● Connected components        s

What are the values of
these properties for G

n,p
 ?



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Gn,p: degree distribution
● Fact: Degree Distribution of Gn,p is binomial

● Let P(k) denote the fraction of nodes with degree k
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Intermezzo: NetLogo

Visualize some of the properties described in this course

https://ccl.northwestern.edu/netlogo/
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NetLogo: Gn,p and degree dist.

ErdosRenyiDegDist.nlogo
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Gn,p: clustering coefficient

● Remember:

● Edges in Gn,p appear i.i.d. with prob. p

● So, expected E[ei] is = 

● Therefore E[C] = 

C i=
2 ei

k i(ki−1)
where e

i
 is the number of edges 

between the neighbors of node i

p
k i(k i−1)

2
each pair is connected

with prob. p

number of distinct pairs of
neighbors of node i of degree k

i

p⋅k i(k i−1)

k i(ki−1)
=p=

k̄
n−1

≈
k̄
n

Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree k (that is we
set p = k  1/n⋅ ), then C decreases with the graph size n.
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Properties of Gn,p

● Degree distribution             

● Clustering coefficient           

● Path Length                          next!

● Connected components        

What are the values of
these properties for G

n,p
 ?

C=p≈
k̄
n
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Definition: expansion
● Graph G(V,E) has expansion α:

# of edges leaving 
● Or equivalently:

if ∀ S⊆V :

S≥α⋅min(|S|,|V ∖S|)
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Expansion: measures robustness
● Expansion is measure of robustness:

– to disconnect L nodes, we need to 

● Low expansion

● High Expansion

● Social Networks:
– “communities”

cut≥α⋅Ledges
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Expansion: Gn,p

● Fact: In a graph of n nodes with expansion α for all
pairs of nodes there is a path of length O((log n)/α).

● Random graph Gn,p:
For log n > np > c, diam(Gn,p) = O(log n / log (np))

– random graphs have good expansion, so it takes a 
logarithmic number of steps for BFS to visit all nodes
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Gn,p: average shortest path

Erdös-Renyi Random Graphs can grow very 
large but nodes will be just a few hops apart
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Properties of Gn,p

● Degree distribution             

● Clustering coefficient           

● Path Length                        O(log n)

● Connected components       next! 

What are the values of
these properties for G

n,p
 ?

C=p≈
k̄
n
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“Evolution” of a random graph
● Graph structure of Gn,p as p changes

● Emergence of a giant component

avg. degree k=2E/n or p=k/(n-1)
– k=1-ε: all components are of size Ω(log n)

– k=1+ε: 1 component of size Ω(n), others have size Ω(log n)
● Each node has at least one edge in expectation
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Gn,p Simulation Experiment

● Gn,p, n=106, k=p(n-1) = 0.5 ... 3
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NetLogo: Gn,p and giant component

GiantComponent.nlogo
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Gn,p - Erdös-Renyi Model

● Gn,p is a cool model!

But let’s compare it to real world networks

“[When asked why are numbers 
beautiful?]

It’s like asking why is Ludwig van 
Beethoven’s Ninth Symphony beautiful. If 
you don't see why, someone can't tell you. 
I know numbers are beautiful. If they 
aren't beautiful, nothing is.” 

― Paul Erdos 
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MSN vs Gn,p 

                                      MSN         Gn,p

● Degree distribution             

● Avg. Clustering coef.       0.11      

● Path Length                     6.6     O(log n) 

● Largest Conn. Comp.       99%   

k̄ /n

h ≈ 8.2

C ≈ 8·10 -8

GCC exists
when k̄>1

k̄≈14

n=180M



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Real Networks vs Gn,p 
● Are real networks like random graphs?

– Average Path Length

– Giant Connected Component

– Degree Distribution

– Clustering Coefficient

● Problems with the random networks model:
– Degree distribution differs from that of real networks

– Clustering Coefficient is much lower than on real networks

– Giant component in most real network does NOT

emerge through a phase transition

● Most important: Are real networks random?
– The answer is simply: NO!
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Real Networks vs Gn,p 

● If Gn,p is wrong, why did we spend time on it?
– It is the reference model
– It will help us calculate many quantities, that can 

then be compared to the real data
– It will help us understand to what degree is a 

particular property the result of some random 
process

So, while Gn,p is “WRONG”, it can turn out
            to be extremely USEFUL!
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Intermezzo: Configuration Model
● Goal: Generate a random graph with a 

given degree sequence k1, k2, ... kN

● Configuration Model:

● Useful as a “null” model of networks:
– We can compare the real network G and a “random” 

G’ which has the same degree sequence as G



  

The Small World
Random Graph Model

Can we have high clustering while also having short paths?
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The Small World Experiment
● What is the typical shortest path 

length between any two persons?
– Experiment on the global friendship 

network
● Can’t measure, need to probe explicitly

● Small-world experiment
[Milgram’67] [Travers and Milgram ’69]

– Picked 296 people in Omaha, Nebraska 
and Wichita, Kansas

– Ask them to get a letter to a stock-broker 
in Boston by passing it through friends

● How many steps did it take?
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The Small World Experiment
● 64 chains completed:

(i.e., 64 letters reached the target)

– It took 6.2 steps on the
average, thus
“6 degrees of separation”

● Further observations:
– People who owned stock

had shorter paths to the
stockbroker than random
people: 5.4 vs. 6.7

– People from the Boston
area have even closer paths: 4.4

[Travers and Milgram ’69]
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6 degrees: Should we be surprised?
● Assume each human is connected to 100 other people

Then:
– Step 1: reach 100 people

– Step 2: reach 100*100 = 10,000 people

– Step 3: reach 100*100*100 = 1M people

– Step 4: reach 100*100*100*100 = 100M people

– In 5 steps we can reach 10 billion people!

● What’s wrong here? We ignore clustering!
– Not all edges point to new people

● 92% of FB friendships happen
through a friend-of-a-friend
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Clustering Implies Edge Locality
● MSN network has 7 orders of

magnitude larger clustering
than the corresponding Gn,p!

● Other Examples:
– Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61

– Electrical power grid: N = 4,941 nodes, k = 2.67

– Network of neurons: N = 282 nodes, k = 14

h ... Average shortest path length
C ... Average clustering coefficient
“actual” ... real network
“random” ... random graph with same avg. degree
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The “Controversy”
● Consequence of expansion:

– Short paths: O(log n)
● This is the smallest diameter we can

get if we have a constant degree.

– But clustering is low!

● However, networks
have “local” structure:
– Triadic closure:

● Friend of a friend is my friend

– High clustering but
diameter is also high

● How can we have both?
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Small-World: How?
● Could a network with high clustering also 

be “small world” (log n diameter)?
– How can we at the same time have

high clustering and small diameter?

– Clustering implies edge “locality”
– Randomness enables “shortcuts”
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Solution: The Small-World Model
Small-World Model
[Watts-Strogatz ‘98]

Two components to the model:
● (1) Start with a low-dimensional regular lattice

– (In our case we are using a ring as a lattice)
– Has high clustering coefficient

● Now introduce randomness (“shortcuts”)
● (2) Rewire:

– Add/remove edges to create
shortcuts to join remote parts
of the lattice

– For each edge with prob. p move
the other end to a random node
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The Small World Model
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The Small World Model
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NetLogo: Gn,p and Small-World

SmallWorldWS.nlogo
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Small-World: Summary
● Could a network with high clustering be at 

the same time a “small world”?
– Yes! You don’t need more than a few random links

● The Watts-Strogatz Model:
– Provides insight on the interplay between clustering 

and being “small-world”
– Captures the structure of many realistic networks
– Accounts for the high clustering of real networks
– Does not lead to the correct degree distribution

We usually call small world to networks which exhibit:
● Short avg. path length (log n)

● High clustering coefficient



  

Power Laws and
Degree Distributions
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Realistic Degree Distribution
Which interesting graph
properties do we observe
that need explaining?

● Small-world model:
– Avg. Path Length
– Clustering coefficient

● What about node degree distribution?
– What fraction of nodes has degree k (as a function of k)?

– Observation in real networks:
very often a power law:

– Small-World is similar to Gn,p: pronounced peak at k
does not result in realistic distributions...

P (k)∝k−α
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Realistic Degree Distribution
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Example: Flickr

[Leskovec et al. KDD ‘08]
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Example: Flickr

Same plot, but now on log-log scale
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● How to distinguish:
– Exponential:

vs
– Power-Law:  

Intermezzo: exponential vs power-law

gnuplot

P (k)∝k−α

P (k)∝ λ e−λ k

  plot [1:20] 2*exp(-2*x) lt rgb "#0000aa" lw 2, 0.4*x**-3 lt rgb "#aa0000" lw 2
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● Exponential:
vs

● Power-Law:  

Intermezzo: exponential vs power-law

P (k)∝k−α

P (k)∝ λ e−λ k

If y = f(x) = x-α, then
log(y) = -α log(x)

gnuplot   set logscale xy

Same plot, but now on log-log scale

On a log-log axis
a power law

looks like
a straight line

of slope -α
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● Exponential:
vs

● Power-Law:  

Intermezzo: exponential vs power-law

P (k)∝k−α

P (k)∝ λ e−λ k

gnuplot   plot [4:20] 1.5**-x, x**-1.5, x**-2

Above a certain x value,
the power law is

always higher than
the exponential
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● Power-Law:  

Intermezzo: power-law “slope”

P (k)∝k−α

gnuplot   plot [1:1000] x**-2 lw 2, x**-2.5 lw 2, x**-3 lw 2

lower alpha (α)
will mean less

pronounced slope
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Example: Internet Autonomous Systems

● First observed in Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]
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Example: World Wide Web
[Broder et al., 2000]
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Other Examples
[Barabasi-Albert, 1999]
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Interpreting Power-Laws



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Power-Law Degree Exponent
● Power-law degree exponent is typically:

● Examples
– Web graph:

● αin = 2.1, αout = 2.4 [Broder et al. 00]

– Autonomous systems:
● α = 2.4 [Faloutsos 3 , 99]

– Actor-collaborations:
● α = 2.3 [Barabasi-Albert 00]

– Citations to papers:
● α ≈ 3 [Redner 98]

– Online social networks:
● α ≈ 2 [Leskovec et al. 07]

2<α<3
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Many real world networks are power-law
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Power Laws are Everywhere

[Clauset, Shalizi, Newman, 2009]
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Power Laws are Everywhere

[Clauset, Shalizi, Newman, 2009]
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Some exponents for real world data
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Not everyone likes Power Laws    
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Scale Free Networks
● Networks with a power-law tail in their 

degree distribution are often called 
“scale-free networks”

● Where does the term scale-free com from?
– Scale invariance: there is no characteristic scale

● means laws do not change if scales of length, energy, 
or other variables, are multiplied by a common factor

– Scale free function: f(λx) = C(λ) f(x) ∝ f(x)
● Power-law: f(x) = ax-α

                              f(λx) = a(λx)-α = λ-α(ax-α) = λ-α f(x) ∝ f(x)

C(λ) depends 
only on λ 

Log() or Exp() are not scale free
f(λx) = log(λx) = log(λ) + log(x) = log(λ) + f(x)
f(λx) = exp(λx) = exp(x)λ = f(x)λ
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Random vs Scale Free



  

Preferential Attachment
Model
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Rich Get Richer
● New nodes are more likely to link to nodes that 

already have high degree
● Herbert Simon’s result:

– Power-laws arise from “Rich get richer”
(cumulative advantage)

● Examples:
– Citations [de Solla Price ‘65]: New

citations to a paper are proportional to
the number it already has

● Herding: If a lot of people cite a paper, then it must be good,
and therefore I should cite it too

– Sociology: Matthew effect (http://en.wikipedia.org/wiki/Matthew_effect)

● “For whoever has will be given more, and they will have an abundance. 
Whoever does not have, even what they have will be taken from them.”

● Eminent scientists often get more credit than a comparatively unknown 
researcher, even if their work is similar
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Model: Preferential Attachment
● Preferential attachment:

[Barabasi-Albert ’99] (Barabasi-Albert model)

– Nodes arrive in order 1,2,...,n

– At step j, let di be the degree of a previous node i

– A new node j arrives and creates m out-links
– Probability of j linking to a previous node i is 

proportional to degree di of node i
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Results for Simple Model
● We analyze the following simple model:

– Nodes arrive in order 1,2,3, ... , n

– When node j is created it makes a
single out-link to an earlier node i chosen:

● 1) With prob. p, j links to i chosen uniformly at 
random (from among all earlier nodes)

● 2) With prob. 1 − p, node j chooses i uniformly at 
random & links to a random node v that i points to

– This is same as saying: With prob. 1 − p, node j links to 
node v with prob. proportional to dv (the in-degree of v)

● Our graph is directed: every node has out-degree 1
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Results for Simple Model
● Claim: The described model generates

networks where the fraction of nodes
with in-degree k scales as:

The model gives a power-law
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Preferential Attachment: The Good

● Preferential attachment gives
power-law in-degrees!

● Intuitively reasonable process

● Can tune model parameter p to get the
observed exponent
– On the web, P[node has in-degree k] ~ k-2.1

– 2.1 = 1+1/(1-p) →  p~0.1

p = 0 → P(d
i 
= k) ~ k-2 p = 0.5 → P(d

i 
= k) ~ k-3
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Preferential Attachment: The Bad

● Preferential attachment is not so good at 
predicting network structure
– Age-degree correlation

● Node degree is proportional to its age
● Possible Solution: Node fitness (virtual degree)

– Links among high degree nodes:
● On the web nodes sometimes avoid linking to each 

other

● Further questions:
– What is a reasonable model for how people sample 

network nodes and link to them?
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Origins of Preferential Attachment 
● Link Selection Model: perhaps the 

simplest example of a local or random 
mechanism capable of generating 
preferential attachment
– Growth: At each time step we add a new 

node to the network
– Link selection: We select a link at random 

and connect the new node to one of the 
nodes at the two ends of the selected link

● This simple mechanism generates 
preferential attachment
– Why? Because nodes are picked with probability 

proportional to their number  of edges
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Origins of Preferential Attachment 
● Copying Model:

– (a) Random Connection: with prob. p the new node 
links to random node v

– (b) Copying: With prob. 1 − p randomly choose an outgoing 
link of node v and connect the new node to the selected 
link's target

● The new node “copies” one of the links of an earlier node



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Origins of Preferential Attachment 
● Analysis of the copying model:

– (a) the probability of selecting a node is 1/N
– (b) is equivalent to selecting a node linked to a 

randomly selected link. The probability of selecting a 
degree-k node through the copying process of step (b) 
is k/2E for undirected networks

– Again, the likelihood that the new node will connect to 
a degree-k node follows preferential attachment

● Examples:
– Social networks: Copy your friend’s friends.
– Citation Networks: Copy references from papers we read
– Protein interaction networks: gene duplication
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Many models lead to power-laws
● Copying mechanism (directed network)

– Select a node and an edge of this node
– Attach to the endpoint of this edge

● Walking on a network (directed network)
– The new node connects to a node, then to every first, 

second, ... neighbor of this node

● Attaching to edges
– Select an edge and attach to both endpoints of this edge

● Node duplication
– Duplicate a node with all its edges
– Randomly prune edges of new node
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Distances in Preferential Attachment 
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Scale-Free Networks: Overview
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Scale-Free Networks: Ingredients
● Nodes appear over time (growth)

● Nodes prefer to attach to nodes with many 
connections (preferential attachment, 
cumulative advantage)
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NetLogo: Preferential Attachment

RAndPrefAttachment.nlogo



  

Node
Centrality
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Star Wars IV Network
https://moviegalaxies.com/

Are all nodes “equal”? How to measure their importance?

https://moviegalaxies.com/
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Star Wars IV Network

Size proportional to degree: is this the only way?
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Star Wars IV Network

Size proportional to betweenness
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Star Wars IV Network

Size proportional to closeness
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Why degree is not enough
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Why degree is not enough
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Different notions of centrality
● Node Centrality measures “importance”
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Node Degree
● Let’s put some numbers to it

Undirected degree:
e.g. nodes with more friends are more central.

Assumption: the connections that your friend has don't
matter, it is what they can do directly that does (e.g. go
have a beer with you, help you build a deck...)
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Node Degree
● Normalization:

divide degree by the max. possible, i.e. (N-1)
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Node Degree

example financial trading networks

high in-centralization:
one node buying from
many others

low in-centralization:
buying is more evenly
distributed
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What does degree not capture?
● In what ways does degree fail to capture 

centrality in the following graphs?
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Brokerage not captured by degree
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Brokerage: Concept
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Brokerage: Concept
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Capturing Brokerage
● Betweenness Centrality:

intuition: how many pairs of individuals would have to 
go through you in order to reach one another in the 
minimum number of hops?
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Betweenness: Definition

Where:
   g

jk
 = the number of shortest paths connecting nodes j and k

   g
 jk

(i) = the number that node i is on.

Usually normalized by:

CB(i)=∑
j<k

g jk (i)

g jk

CB
'
(i)=

CB(i)

(n−1)(n−2)/2
number of pairs of vertices
excluding the vertex itself
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Betweenness: Toy Networks
● Non-normalized version:
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Betweenness: Toy Networks
● Non-normalized version:

– A lies between no two other vertices

– B lies between A and 3 other vertices: C, D, and E

– C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)
● note that there are no alternate paths for these pairs 

to take, so C gets full credit
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Betweenness: Toy Networks
● Non-normalized version:
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Betweenness: Toy Networks
● Non-normalized version:

● why do C and D each have 
betweenness 1?

● They are both on shortest 
paths for pairs (A,E), and (B,E), 
and so must share credit:

- 1⁄2+1/2 = 1
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Betweenness: Toy Networks
● Non-normalized version:

What is the betweenness 
of node E?
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Betweenness: Real Example
● Social Network (facebook)

nodes are sized by degree, and colored by betweenness



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Betweenness: Question
● Find a node that has high betweenness 

but low degree
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Betweenness: Question
● Find a node that has low betweenness but 

high degree



Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

Closeness Centrality

● What if it’s not so important to have 
many direct friends?

● Or be “between” others

● But one still wants to be in the “middle” 
of things, not too far from the center
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Closeness Centrality
● Need not be in brokerage position  
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Closeness: Definition
● Closeness is based on the length of the 

average shortest path between a node 
and all other nodes in the network

Closeness Centrality:

Normalized Closeness Centrality:

CC (i)=
1

∑
j=1

N

d (i , j)

CC
'
(i)=CC (i)×(n−1) When graphs are big, the 

-1 can be discarded and 
we multiply by n
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Closeness: Toy Networks
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Closeness: Toy Networks
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Closeness: Question
● Find a node which has relatively high degree 

but low closeness
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Closeness: Question
● Find a node which has low degree but

high closeness
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Closeness: unconnected graph
● What if the graph is not connected?

instead of null, we could also interpret 
it as 0 if infinity is the distance 
between unconnected nodes

CC (i)=
1

∑
j=1

N

d (i , j)
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Harmonic: Definition
● Replace the average distance with the harmonic 

mean of all distances

Harmonic Centrality:

– Strongly correlated to closeness centrality

– Naturally also accounts for nodes j that cannot reach i

– Can be applied to graphs that are not connected

Normalized Harmonic Centrality:

CH (i)=∑
j≠i

1
d (i , j)

= ∑
d(i , j)<∞ , j≠i

1
d (i , j)

CH
'
(i)=CH (i)/(n−1)
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Harmonic: Toy Networks
● Non-normalized version:
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Closeness vs Harmonic

Closeness Centrality Harmonic Centrality

CH (i)=∑
j≠i

1
d (i , j)

CC(i)=
1

∑
j=1

N

d (i , j)
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Eigenvector Centrality
● How “central” you are depends on how “central”

your neighbors are 
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Eigenvector Centrality
Eigenvector Centrality:

where λ is a constant and
Aij the adjacency matrix (1 if (i,j) are connected, 0 otherwise)

(with a small rearrangement) this can we rewritten
in vector notation as in the eigenvector equation

where x is the eigenvector, and its i-th component is the centrality of node i

CE(i)=
1
λ ∑
j=1

n

A ji×CE( j)

Ax=λ x

In general, there will be many different eigenvalues λ for which a non-zero eigenvector solution exists. However, 
the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron–Frobenius 

theorem) that only the greatest eigenvalue results in the desired centrality measure
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Bonacich eigenvector  centrality
also known as Bonacich Power Centrality
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Bonacich eigenvector  centrality
also known as Bonacich Power Centrality
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Eigenvector Variants
● There are other variants of eigenvector 

centrality, such as:

– PageRank
● (normalized eigenvector + random jumps)

[link analysis]

– Katz Centrality
● (connections with distant neighbors are penalized)
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Centrality in Directed Networks
● Degree:

– in and out centrality

● Betweenness:
– Consider only directed paths:

– When normalizing take care of ordered pairs

● Closeness
– Consider only directed paths

● Eigenvector (already prepared)

CB
'
(i)=

CB(i)

(n−1)(n−2) number of ordered pairs is 
2x the number of unordered

CB(i)=∑
j≠k

g jk(i)

g jk
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Centrality in Weighted Networks

● Degree:
– Sum weights (non-weighted equals weight=1 for all edges)

● Betweenness and Closeness:
– Consider weighted distance

● Eigenvector
– Consider weighted adjacency matrix
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Node Centralities: Conclusion
● There are other node centrality metrics,

but these are the “quintessential” 

● Which one to use depends on what you want to 
achieve or measure
– Worry about understanding the concepts
– They enlarge your graph vocabulary
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Node Centralities: Conclusion

Betweenness Closeness Eigenvector

Degree Harmonic Katz
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Node Centralities: Conclusion
● All (major) network analysis packages provide them:

● Also all (major) network analysis and visualization platforms:
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