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Network Properties:

how to measure a nhetwork?



Plan: Key Network Properties

* (1) Degree distribution P(k)
* (2) Path Length h
* (3) Clustering coefficient C

* (4) Connected components S
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(1) Degree Distribution

* Degree distribution P(k): probability that
a randomly chosen node has degree k

N, = # nodes with degree k

 Normalized histogram:
P(k) =N,/N - plot
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(2) Paths in a Graph

A path is a sequence of nodes in which
each node is linked to the next one

P,={i, I3, 15, ... ,i,.} oOr

Pn — {(io; il); (i1; iz); (i21 i3); cany (in—ll in);}

* A path can intersect itself
and pass trough the same
edge multiple times

- E.g. ACBDCDEG

- In a directed graph, a path
can only follow the direction
of the “arrow”
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Distance Iin a Graph

* Distance (shortest path, geodesic)
between a pair of nodes is defined
as the number of edges along the
shortest path connecting the nodes

- If the two nodes are not connected, the [ _,
. . . . . = B,D
distance is usually defined as infinite Ay =

O

* In directed graphs paths need to
follow the direction of the arrows

- Consequence: distance is
not symmetric: hg. # h¢g

hgc=1,hcg =2
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Network Diameter

* Diameter: The maximum (shortest path)
distance between any pair of nodes in a
graph

 Average path length for a connected
graph (component) or a strongly connected

(component of a) directed graph

— 1 Where h,.j IS the distance from node i to node j
h = Z i Ena IS max number of edges (total number of

ma

2Emax i,j#i node pairs) = n(n-1)/2

- Many times we compute the average only over
the connected pairs of nodes (that is, we ignore
“infinite”length paths)
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(3) Clustering Coefficient

* Clustering coefficient:
- What portion of I's neighbors are connected?
- Node i with degree k;
- C.€/0,1]

C.= 2 € where e, is the number of edges
: ki (ki_ 1) between the neighbors of node |

K M

G =1 Ci =1/2 C; =0

 Average clustering coefficient: CzﬁZ C.
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Clustering Coefficient

* Clustering coefficient:
- What portion of I's neighbors are connected?
- Node i with degree k;

2e. where e, is the number of edges

— Ci: : . .
between the neighbors of node i
ki (ki_ 1) J

k=2, es=1, C,=2/2=1
k=4, e =2, C,=4/12=1/3

Avg. Clustering: C = 0.33
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(4) Connectivity

* Size of the largest connected component

- Largest set where any two vertices can be
joined by a path

- Largest component = Giant component

How to find connected components:

e Start from random node and perform
Breadth First Search (BFS)

D F  Label the nodes BFS visited
I e If all nodes are visited, the network is connected
® H

 Otherwise find an unvisited node and repeat BFS
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Summary: Key Network Properties

* (1) Degree distribution P(k)
* (2) Path Length h
* (3) Clustering coefficient C

* (4) Connected components S
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Measuring these properties

in a Real World Graph
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Spatial Network: Geography
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Communication =» Connections

Network: 180M people, 1.3B edges
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Messaging as multigraph

Messaging as an
undirected graph

Edge (u,v) if users uand v
_ exchanged at least 1 msg
- Contact - Conversation N=180 million people

E=1.3 billion edges
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MSN: (1) Degree Distribution
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MSN: Log-Log Degree Distribution
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. Steps | #Nodes

MSN: (2) Diameter : 1
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MSN: (3) Clustering Coefficient
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MSN: (4) Connected Components
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MSN: Key Network Properties

» (1) Degree distribution R Ay

* (2) Path Length 6.6

» (3) Clustering coefficient 0.11

. giant
(4) Connected components component

Are these values “expected”?
Are they “surprising”?

To answer this we need a null-model!
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PPl Network

a. Undirected network

N=2,018 proteins as nodes
E=2,930 binding interactions as links.

b. Degree distribution:

Skewed. Average degree <k>=2.90
c. Diameter:

Avg. path length = 5.8

d. Clustering:

Avg. clustering =0.12
Connectivity: 185 components

the largest component 1,647
nodes (81% of nodes)
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Intermezzo: Network Datasets

The KONECT Project
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Intermezzo: Network Datasets

Network RepOSItory An Interactlve Sc,'enrrﬁc Network Data Repomtory
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Erdos-Renyi

Random Graph Model




Simplest Model of Graphs

u. m ON THE EVOLUTION OF RANDOM GRAPH
* Eraos-nenvi
P. ERDOS and A. RENYI

Dedicated rofessor P. Turdn at

his 50ch birikday.

Random Gra P hs T

nm ] { Our aim is to study the probable structure of a random graph I,
E rd O S Re n I 6 O ] which has »n given labelled vertices Py, I, ..., P, and N edges; we suppose
y that these N edges are chosen at random among the ‘?:' possible edges,

» G, ,: undirected graph on n nodes and each
(u,v) appears i.i.d. with probability p

* G, »: undirected graph with n nodes and m
uniformly at random picked edges

What kind of networks do

such models produce?
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Random Graph Model

 n and p do not uniquely determine the graph!
- The graph is a result of a random process

 We can have many different realizations given
the same n and p

S IS
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Properties of G,

* Degree distribution P(k)
» Clustering coefficient C
» Path Length h
 Connected components S

What are the values of

these properties for G,?
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.+ degree distribution

n,

 Fact: Degree Distribution of G, , is binomial

* Let P(k) denote the fraction of nodes with degree k

g s
1 ; | e
n k n—1-k g
P(k) = p (1-p) =5
k o : R
- Probability of o [ Y
Select k nodes F'ropability of missing the rest of o 10 Kk @
out of n-1 having k edges the n-1-k edges
1/2
Mean, variance of a binomial distribution UT — 1- P 1 ~ 1
]; = p(n—-1) k p (n-1) (n-1)"
o p n By the law of large numbers, as the network size
5 increases, the distribution becomes increasingly
O = p(l - P)(” - 1) narrow—we are increasingly confident that the degree

of a node is in the vicinity of k.
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Intermezzo: NetLogo

Home NetLogo is a multi-agent programmable modeling environment. It is used by many
Download hundreds of thousands of students, teachers, and researchers worldwide. It also

Help powers HubNet participatory simulations. It is authored by Uri Wilensky and developed
Resources at the CCL. You can download it free of charge. You can also try it online through
Extensions NetLogo Web.

Visualize some of the properties described in this course

https://ccl.northwestern.edu/netlogo/
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NetLogo: G, A and degree dist.

J

Edit

B +

"arc Button | I -

normal speed (/] view updates

Delete Add

|| GC size || av. deg

::aﬂ"a;a’éﬁél

o # of nodes

0

# neighbors 26

redo layout

> | Settings...
- continuous | ¥ I w

ticks: 1

layout options

—

= gl#of node 5

0

degree dist (log-log)

log{degree)  1.43
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G, : clustering coefficient

n,

e Remember: C.= 2e, where e. is the number of edges
k. (ki— 1) between the neighbors of node i

- Edges in G, , appear i.i.d. with prob. p

: ki(ki_l)
¢ S0, expected E[e;] is =P =
each pair is connected _number of distinpt pairs of
with prob. p neighbors of node i of degree k.
ki(ki—1) kK Kk
» Therefore E[C] = EX05 /= = ~ D
[ci k(k—-1) P n=1 n

Clustering coefficient of a random graph is small.
If we generate bigger and bigger graphs with fixed avg. degree k (that is we
set p = k - 1/n), then C decreases with the graph size n.
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Properties of G,

* Degree distribution P(k)=(”;Jp‘*(l—p)”“"
» Clustering coefficient CZpN%
» Path Length next!

 Connected components

What are the values of

these properties for G,?
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Definition: expansion
 Graph G(V,E) has expansion a: if VSCV:
# of edges leaving S=>a-min(|S|,|V\S|)
* Or equivalently:

#edges leaving S

2 =min

sy min(|.S,|PAST)
Vis
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Expansion: measures robustness

* Expansion is measure of robustness:
- to disconnect L nodes, we need to cut=>a-Ledges

* Low expansion M
» High Expansion @

e Social Networks:
- “communities”
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Expansion: G

np

* Fact: In a graph of n nodes with expansion a for all
pairs of nodes there is a path of length O((log n)/a).

 Random graph G, .:
For log n > np > ¢, diam(G,, ;) = O(log n /log (np))

- random graphs have good expansion, so it takes a
logarithmic number of steps for BFS to visit all nodes

J

S nodes S edges

S’ nodes a-S’ edges
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G, . average shortest path

n,

Erdos-Renyi Random Graphs can grow very
large but nodes will be just a few hops apart

- o

o™

15
|
0

|

average shortest path
5 10
I

| | | [ !
200000 400000 600000 800000 1000000

O — ODOOOODOGOGDOQO

num nodes Here n - p =constant
That is, avg deg k is const
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Properties of G,

* Degree distribution P(k)=(”;Jp‘*(l—p)”“"
» Clustering coefficient CZpN%
* Path Length O(log n)
 Connected components next!

What are the values of

these properties for G,?
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“Evolution” of a random graph

» Graph structure of G, ,as p changes

‘ Avg deg = 1 |
p=| | | | | |
1/(n-1) c/(n-1) log(n)/(n-1) 2*log(n)/(n-1)
0 Giant component  Avg. deg const. Fewer isolated  No isolated nodes.
Empty appears Lots[?{l;;zus!ated nodes. Complete
graph graph

* Emergence of a giant component
avg. degree k=2E/n or p=k/(n-1)

- k=1-¢: all components are of size Q(log n)

- k=1+¢: 1 component of size Q(n), others have size Q(log n)
 Each node has at least one edge in expectation
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G, , Simulation Experiment

Fraction of nodes in largest CC

Fraction of nodes in the
largest component

pk(n-1)

n,pr n=10s, /<=P(n-1) =05..3

e G
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NetlLogo: G,  and giant component

setup num-nodes 294
On |ayout?
go once 90 m Tﬂﬁ IOR
Giant component ...
redo layout
R g0
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1 " o
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£ .
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o /
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s |
o |
- .
c i
e |
3] f|
&
L |J
Il
8] Connections per node 14.7

) = GiantComponent.nlogo
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G, , - Erdos-Renyi Model

“When asked why are numbers
beautiful?]

It's like asking why is Ludwig van
Beethoven’s Ninth Symphony beautiful. If
| you don't see why, someone can't tell you.
| | know numbers are beautiful. If they
aren't beautiful, nothing is.”

— Paul Erdos

* G, , Is acool model!

But let’'s compare it to real world networks
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MSN vs Gn’ >

n=180M
n,p

Prafr| 15)
0.2
0.15 I o
0.1 i
0.05
12345676 6101112131415

e Avg. Clustering coef. 0.11 kin

MSN G

* Degree distribution

C=8.10°

* Path Length 6.6 O(log n) v,
h=8.2

» Largest Conn. Comp.  99% °-c eSS
k~14
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Real Networks vs G, |

* Are real networks like random graphs?

- Average Path Length €

- Giant Connected Component
- Degree Distribution €

- Clustering Coefficient €

* Problems with the random networks model:
- Degree distribution differs from that of real networks
- Clustering Coefficient is much lower than on real networks
- Glant component in most real network does NOT
emerge through a phase transition

 Most important: Are real networks random?
- The answer is simply: NO!
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Real Networks vs G, |

 If G, , Is wrong, why did we spend time on it?

- It is the reference model

- It will help us calculate many quantities, that can
then be compared to the real data

- It will help us understand to what degree is a
particular property the result of some random
process

So, while G, , is “WRONG”, it can turn out
to be extremely USEFUL!
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Intermezzo: Configuration Model

* Goal: Generate a random graph with a
given degree sequence k;, k,, ... kK

 Configuration Model:

—t 1 "
>

X o e T
\/Bi' 00— AT | c D £ s

Randomly pair up
“mini”-nodes

Nodes with spokes Resulting graph

e Useful as a “null” model of networks:

- We can compare the real network G and a “random
G’ which has the same degree sequence as G

144
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The Small World

Random Graph Model

Can we have high clustering while also having short paths?



The Small World Experiment

 What is the typical shortest path
length between any two persons?

- Experiment on the global friendship
network

« Can’'t measure, need to probe explicitly

« Small-world experiment The Small-World Problem
[Milgram’67] [Travers and Milgram '69] An Experimental Study of the
- Picked 296 people in Omaha, Nebraska T
and Wichita, Kansas Sireacd Uokredly

AND
STANLEY MILGRAM

- Ask them to get a letter to a stock-broker i cuivesis of Now vor
iIn Boston by passing it through friends

« How many steps did it take?
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The Small World Experiment

* 64 chains completed:
(i.e., 64 letters reached the target) 20

- It took 6.2 steps on the

average, thus
“6 degrees of separation”

[Travers and Milgram '69]

L4 ]

NUMBER OF CHAINS
o

e Further observations:

- People who owned stock
had shorter paths to the
stockbroker than random
people: 5.4 vs. 6.7

- People from the Boston
area have even closer paths: 4.4
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6 degrees: Should we be surprised?

 Assume each human is connected to 100 other people

Then:

Step 1: reach 100 people

Step 2: reach 100*100 = 10,000 people s
Step 3: reach 100*100*100 = 1M people

Step 4: reach 100*100*100*100 = 100M people

In 5 steps we can reach 10 billion people!

 What's wrong here? We ignore clustering!
- Not all edges point to new people

« 92% of FB friendships happen
through a friend-of-a-friend
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Clustering Implies Edge Locallty

MSN network has 7 orders of
magnitude larger clustering
than the corresponding G, ;!

Other Examples:

Actor Collaborations (IMDB): N = 225,226 nodes, avg. degree k = 61

Electrical power grid: N = 4,941 nodes, k = 2.67

Network of neurons: N = 282 nodes, k = 14

Network Nactual Nrandom  Cactual Crandom
Film actors 3.65 299 0.79 0.00027
Power Grid 18.70 12.40 | 0.080 0.005
C. elegans 2.65 2.25| 0.28 0.05

h ... Average shortest path length

C ... Average clustering coefficient

‘actual” ... real network

.. random graph with same avg. degree

“random”
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The “Controversy”

» Conseqgquence of expansion:
- Short paths: O(log n)

* This is the smallest diameter we can
get if we have a constant degree.

- But clustering is low!

Low diameter

e However, networks Low clustering coefficient
have “local” structure:

- Triadic closure:

* Friend of a friend is my friend

- High clustering but
diameter is also high

High clustering coefficient
High diameter

« How can we have both?
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Small-World: How?

* Could a network with high clustering also
be “small world” (log n diameter)?

- How can we at the same time have
high clustering and small diameter?

High clustering Low clustering
High diameter Low diameter

- Clustering implies edge “locality”
- Randomness enables “shortcuts”

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Solution: The Small-World Model

Small-World Model Collective dynamics of
[Watts-Strogatz ‘98] ‘small-world’ networks
Duncan J. Watts* & Steven H. Strogatz
Department o f Theoretical and Applied Mechanics, Kimball Hall,
Two components to the model: Cormek Universiy, Iihacs, N Esek: 146, TSA

« (1) Start with a low-dimensional regular lattice
- (In our case we are using a ring as a lattice)
- Has high clustering coefficient

* Now introduce randomness (“shortcuts”)
e (2) Rewire:

- Add/remove edges to create
shortcuts to join remote parts
of the lattice

- For each edge with prob. p move
the other end to a random node
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The Small World Model

REGULAR HETWIORK SMALL WORLD HETWORK RANHDOM HETLUJORK

P=0 s INCREASING RANDOMHESS ¥ P=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter

N 1 r
sapill A log N k
0g N

Rewiring allows us to “interpolate” between
a regular lattice and a random graph
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The Small World Model

| = Al R s o= | R AU Y —— Intuition: It takes a
e ™ lot of randomness to
- T ruin the clustering,
O but a very small
PN i —— mean vertex-vertex distance amount to create
—l e ——— clustering coefficient shortcuts.

N

Parameter region of high \
clustering and low path length

Clustering Coefficient, C =

(scaled) Average Path Length

0 1 IIIIII| | | IIIII]| - |
0.001 0.01 0.1 ]

Prob. of rewiring, p
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NetLogo: G, A and Small-World

initial setup

rewirg-once

vary rewiring prob. from 0.0 to 1.0

rewiring-probability 0.10
num-nodes 100
average-path-length | | clust-coeff
5.78 0.4223
do-layout o
Clustering coefficient a...
M cc
M av-path

= malized cc and avf —

4] rewiring-probability 1
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Small-World: Summary

* Could a network with high clustering be at
the same time a “small world”?

- Yes! You don’'t need more than a few random links

* The Watts-Strogatz Model:

- Provides insight on the interplay between clustering
and being “small-world”

- Captures the structure of many realistic networks
- Accounts for the high clustering of real networks @
- Does not lead to the correct degree distribution @

We usually call small world to networks which exhibit:

* Short avg. path length (log n)
* High clustering coefficient
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Power Laws and

Degree Distributions




Realistic Degree Distribution

Which interesting graph
properties do we observe
that need explaining?

 Small-world model:
- Avg. Path Length &
- Clustering coefficient @

« What about node degree distribution?
- What fraction of nodes has degree k (as a function of k)?

- Observation in real networks:
very often a power law: P(k)ock™“

- Small-World is similar to G, ,: pronounced peak at k
does not result in realistic distributions...
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P(k)

Realistic Degree Distribution

Expected based on G,

Found in data
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Example: Flickr

Y — T T T T T 1
~
J,L 0.6 = Plot: fraction of nodes N
&~ 05 — with degree k: -
I = [{uld, =k}
E 04 — N =]
¥ 0.3 —
Pary
5 02 - _ Flickr social
8 network
¥ 01 — n= 584,207
il anlanalus 1 1 (=EIRRER )
0 500 100015002000 2500300035004000
Degree, k

[Leskovec et al. KDD ‘08]
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Example: Flickr

0
10 o+ [ E]III[I| | T 1T i i _i;s T I T T 177170
< P(k) 0 K175 emmmm -
10! = .
Q'-I 4 L ‘x‘:‘ )
” 10 o .
i *, Slope &
= 103 L N
Q. N \ i
_;:3; 4T Flickr social y
E 10 i network 5
o | n=584,207, _
o) -5
= 10 i m=3,555,|115 &
10" 10! 10

Same plot, but now on log-log scale
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Intermezzo: exponential vs power-law

 How to distinguish:

- Exponential: P(k)cAe ™"
Vs
- Power-Law: P(k)ock “

0.4 T T
2%axp(-2%x) ——
0. 4¥xH+-3

0.35 |

0.3

0.25
0.2

0.15 |

0.1
0.05 |
0 . !

2 4 6 8 10 12 14 16 18 20

m plot [1:20] 2*exp(-2*x) It rgb "#0000aa" Iw 2, 0.4*x**-3 It rgb "#aa0000" lw 2

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Intermezzo: exponential vs power-law

* Exponential: p(k)ucie

VS
[ ] —a
 Power-Law: P(k)ck
1 I I I I I I -2*| 2% 3
- g — Ify = f(x) = x, then
log(y) = -a log(x)
0.0001
« .
110 On a log-log axis
o a power law
" looks like
1x10°10 ; a straight line
L1012 E g of slope -a .
1x10°14 Same plot, but now on log-log scale ;
1x10°16 :
1x10-18 : : : —
1 10
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Intermezzo: exponential vs power-law

* Exponential: p(k)ucie
AS)

- Power-Law: P(k)ck “

0.2 T

|
1.5%*-x
0.18 x##-1.5 5

e T

0.16

0.14
Above a certain x value,

the power law is
always higher than
A the exponential

0.12

0.1

0.08

0.06

0.04

0.02

18 20

m plot [4:20] 1.5**-x, x**-1.5, x**-2
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Intermezzo: power-law “slope”

 Power-Law: P(k)x<k “

0.1 X¥*+-2.5 ]
X3 e ]

0.01 -

0.001 3

0.0001 onver alpha (a)
: will mean less

1x10°5 pronounced slope

1x10°6
1x10°7 4

1108 .

1x10° S E— S —
1 10 100 1000

m plot [1:1000] x**-2 Iw 2, x**-2.5 lw 2, x**-3 Iw 2
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Example: Internet Autonomous Systems

First observed in Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Domain 2

o 10000

™ Domain 3 *371108.out"
/ exp(7.68585) * x ** ( -2.15632 )

@~ - ] Host
[;' [_ |_l LAN ® Router
) Domain 1 e ———
' 1 10 100

Internet domain topology

On Power-Law Relationships of the Internet Topology

Michalis Faloutsos Petros Faloutsos Christos Faloutsos *
U.C. Riverside U. of Toronto Carnegie Mellon Univ.
Dept. of Comp. Science Dept. of Comp. Science Dept. of Comp. Science
michalis@cs.ucr.edu pfal@cs.toronto.edu christos@cs.cmu.edun
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Example: World Wide Web

[Broder et al., 2000]

number of pages

In-degree (May 99, Oct 99> distr. Out-degree (May 99, Oct 99) distr.

le+18 T I 1 le+10 I I I

1e+089 | In-degree (May 99) 0B - 1e+89 | 39
1e+88 gr In-degree (Oct 99) + < . le+B8 [
1]
le+@? gt- le+87 -

m
le+86 L 1e+86
190000 S 100000 -
10600 E 10000 |
1006 § 1000 |
186 168
16 16 -
{ 1 1 1

1 18 188 10886

1 18 109 100000 out-degree

in-degree

Graph structure in the Web

Andrei Broder®, Ravi Kumar®*, Farzin Maghoul *, Prabhakar Raghavan ®,
Sridhar Rajagopalan b Raymie Stata “, Andrew Tomkins b Janet Wiener©

“ AltaVista Company, San Mateo, CA, USA
Y IBM Almaden Research Center, San Jose, CA, USA
¢ Compag Svstems Research Center, Pale Alto, CA, USA
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Other Examples

[Barabasi-Albert, 1999] Emergence of Scaling in
Random Networks

Albert-Laszloé Barabasi* and Réka Albert

10‘1 E 0 0
L 2 10 *\ 10 \1
£ L ‘.\ B l ¢ 'l.‘ C
10° ¢ Lo N
10° [ 107 F .
3 ' i 'x
,.--.,10 i : ‘m *‘
"'-E" L 10° | N 10° ¢ *
[ |
o 10 L \:\ ;\1
10° | 10" " 10° £ %
\ b
l\\ ;
10° L i 07 L 107 o
10 10 10 10 10° 10° 10° 10° 10° 10° 10’
K
Actor collaborations Web graph Power-grid
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Interpreting Power-Laws

Bell Curve - Power Law Distribution
® ~ - | 1
E : ._E. :- Very many nodes
~< N Most nodes have = % with only a few links
= *'. ./ the same number of links £ || 4
5 | 7 2 (40
5 »ad g |d\
LI . E
= No highly B4 A few hubs with
L ! : ’ runnr‘grrﬂ modes B U large number of links
< 4 O |e o
-
B ’ . s E ot . ¥ 3 \
g . 3= s - P . \ .
. " CR—. e ’ A Sl a A P~y y L.
Number of links (k) Number of links (k)
. -
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Power-Law Degree Exponent

* Power-law degree exponent is typically:

2<a<3
- Examples I~ 1

- Web graph: ' . T ::i ]

e a,, = 2.1, a,,, = 2.4 [Broder et al. 00] w g

- Autonomous systems: e
 a = 2.4 [Faloutsos 3, 99] u i | |
- Actor-collaborations: o pd ]
e =2.3 [Barabasi-AIbert OO] R ” o
- Citations to papers:

e a = 3 [Redner 98] % o : =
- Online social networks: ey ﬂ

e a = 2 [Leskovec et al. 07]
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Many real world networks are power-law

exponent o
(infout degree)

film actors 2.3
telephone call graph 2.1
email networks 1.5/2.0
sexual contacts 3.2
WWW 2.3/2.7
internet 2.5
peer-to-peer 2.1
metabolic network 2.2
protein interactions 2.4
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Power Laws are Everywhere

0 i L]
10° 0= 10’ & 10’ 0-Ox
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. i : ! \ Power-Law Distributions in
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% 10” ! X N Empirical Data*
-4 - 10~ o 8
:E—S o m—-i E m_; | o meLﬂbDliCI“\‘o Aaron Clauset!
. > : 3 Cosma Rohilla Shalizi*
10" 10" 10" 10" 10’ ORI T (! i o E."J_',f}ew;fr:g
0 (] i
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~ 107 4 .
E o \ 10 [Clauset, Shalizi, Newman, 2009]
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Power Laws are Everywhere
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Power-Law Distributions in
Empirical Data*
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Cosma Rohilla Shalizi*
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[Clauset, Shalizi, Newman, 2009]
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Some exponents for real world data

Xmin exponent o
frequency of use of words 1 2.20
number of citations to papers 100 3.04
number of hits on web sites 1 2.40
copies of books sold in the US 2 000 000 3.51
telephone calls received 10 2.22
magnitude of earthquakes 3.8 3.04
diameter of moon craters 0.01 3.14
intensity of solar flares 200 1.83
intensity of wars 3 1.80
net worth of Americans $600m 2.09
frequency of family names 10 000 1.94
population of US cities 40 000 2.30
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Not everyone likes Power Laws ®
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Scale Free Networks

 Networks with a power-law tail in their
degree distribution are often called

3

“scale-free networks”

e Where does the term scale-free com from?

- Scale invariance: there is no characteristic scale

 means laws do not change if scales of length, energy,
or other variables, are multiplied by a common factor

- Scale free function: f(Ax) = C(A) f(x) « f(x) < depends

e Power-law: f(x) = ax™®
f(Ax) = a(Ax)* =A% ax?) = A%f(x) « f(x)

Log() or Exp() are not scale free
f(Ax) = log(Ax) = log(A) + log(x) = log(A) + f(x)
f(Ax) = exp(Ax) = exp(x)* = f(x)’
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Random vs Scale Free

Random network

(Erdos-Renyi random graph)

A

Degree distribution is Binomial

e

= _..’_,.'-' 1=
#’ﬂf‘,ﬁrﬁ

Scale-free (power-law) network

. Degree
~ distribution is
. Power-law
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Preferential Attachment

Model




Rich Get Richer

* New nodes are more likely to link to nodes that
already have high degree

* Herbert Simon’s result:

ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS

- Power-laws arise from “Rich get richer” e T 4, SN0
(cumulative advantage)
 Examples:
= - . / Networks of Scientific Papers
- Citations [de Solla Price ‘65]: New L
Citations to a pa per are proportional to the nature of the scientific rescarch front.

Derek J. de Solla Price

the number it already has

 Herding: If a lot of people cite a paper, then it must be good,
and therefore | should cite it too

- Sociology: Matthew effect (http:/en.wikipedia.org/wiki/Matthew_effect)

* “For whoever has will be given more, and they will have an abundance.
Whoever does not have, even what they have will be taken from them.”

 Eminent scientists often get more credit than a comparatively unknown
researcher, even if their work is similar
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Model: Preferential Attachment

* Preferential attachment: Emergence of Scaling in

Random Networks

[Barabasi-Albert '99] (Barabasi-Albert model) s b anise aser
- Nodes arrive in order 1,2,...,n
- At step J, let d; be the degree of a previous node i

- A new node j arrives and creates m out-links

- Probability of j linking to a previous node i is
proportional to degree d; of node i

P(j—i)=

Zd

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Results for Simple Model

* \We analyze the following simple model: :’dl

- Nodes arrive in order 1,2,3, ..., n ‘\.X
o

- When node j is created it makes a
single out-link to an earlier node I chosen:

« 1) With prob. p, j links to I chosen uniformly at
random (from among all earlier nodes)

e 2) With prob. 1 — p, node j chooses i uniformly at
random & links to a random node v that i points to

- This is same as saying: With prob. 1 — p, node j links to
node v with prob. proportional to d, (the in-degree of v)

 OQur graph is directed: every node has out-degree 1
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Results for Simple Model

 Claim: The described model generates
networks where the fraction of nodes
with in-degree k scales as:

(14
Pd =k)ock ¢

where q=1-p

So we get power-law 1
degree distribution ¢y — 14

with exponent:

The model gives a power-law
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Preferential Attachment: The Good

* Preferential attachment gives
power-law in-degrees!

* Intuitively reasonable process

 Can tune model parameter p to get the
observed exponent

- On the web, P[node has in-degree k] ~ k**
- 2.1 =1+1/(1-p) » p~0.1

p=0 - P(d=k) ~ k? p=0.5 - P(d = k)~ k?
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Preferential Attachment: The Bad

* Preferential attachment is not so good at
predicting network structure

- Age-degree correlation
 Node degree is proportional to its age
* Possible Solution: Node fitness (virtual degree)

- Links among high degree nodes:

* On the web nodes sometimes avoid linking to each
other

 Further questions:

- What is a reasonable model for how people sample
network nodes and link to them?
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Origins of Preferential Attachment
* Link Selection Model: perhaps the

simplest example of a local or random NEW NODE
mechanism capable of generating
preferential attachment
- Growth: At each time step we add a new *—@
node to the network &
- Link selection: We select a link at random
and connect the new node to one of the @
nodes at the two ends of the selected link
@ ©
* This simple mechanism generates o

preferential attachment

- Why? Because nodes are picked with probability
proportional to their number of edges
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Origins of Preferential Attachment
 Copying Model:

— (a) Random Connection: with prob. p the new node
links to random node v
- (b) Copying: With prob. 1 — p randomly choose an outgoing

link of node v and connect the new node to the selected
link's target

« The new node “copies” one of the links of an earlier node
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Origins of Preferential Attachment

* Analysis of the copying model:
- (@) the probability of selecting a node is 1/N

- (b) is equivalent to selecting a node linked to a
randomly selected link. The probability of selecting a
degree-k node through the copying process of step (b)
IS k/2E for undirected networks

- Again, the likelihood that the new node will connect to
a degree-k node follows preferential attachment

 Examples:
- Social networks: Copy your friend’s friends.
- Citation Networks: Copy references from papers we read
- Protein interaction networks: gene duplication
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Many models lead to power-laws

Copying mechanism (directed network)
- Select a node and an edge of this node
- Attach to the endpoint of this edge

Walking on a network (directed network)

- The new node connects to a node, then to every first,
second, ... neighbor of this node

Attaching to edges
- Select an edge and attach to both endpoints of this edge

Node duplication
- Duplicate a node with all its edges
- Randomly prune edges of new node
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Ultra
small
world

- |
||
M

Small

Distances in Preferential Attachment

const

loglogn
log(a-1)

log n
loglogn

world

logn

Avg. path
length

o=2

2<a<3

1
('S

04

o>3

Degree
exponent

Size of the biggest hub is of order O(N). Most nodes can
be connected within two steps, thus the average path
length will be independent of the network size n.

The avg. path length increases slower than logarithmically
with n. In G,, all nodes have comparable degree, thus
most paths will have comparable length. In a scale-free
network vast majority of the paths go through the few high
degree hubs, reducing the distances between nodes.

Some models produce a = 3. This was first derived by
Bollobas et al. for the network diameter in the context of a
dynamical model, but it holds for the average path length
as well.

The second moment of the distribution is finite, thus in
many ways the network behaves as a random network.
Hence the average path length follows the result that we
derived for the random network model earlier.

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Scale-Free Networks: Overview

metabolic collaboration

internet
web web

J' actor 1 citation
| Ry !

>

(k?) finite

Average (k) finite

~ Utasmalwordbehavior  Smallworid

The scale-free behavior is Behaves like a
relevant random network
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Scale-Free Networks: Ingredients

* Nodes appear over time (growth)

* Nodes prefer to attach to nodes with many
connections (preferential attachment,
cumulative advantage)

A e
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NetLogo: Preferential Attachment
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Node
Centrality



Star Wars IV Network

= https://moviegalaxies.com/

s

 Tarkin |

Are all nodes “equal™? How to measure their importance?
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https://moviegalaxies.com/

Star Wars IV Network

Red . Gold
Leader Ch|ef Bartender Creature Leader Human

- Intercom
Tarkln Owen Technician 3= g00 #1111~

- Trooper Wedge
Threepio P Imperial | Second | p, o
TR Aunt... Dodonna

Death Star |

Intercom

Gantry irst ‘-’mce

Officer Office
Motti leer Red )
HETER

Degree | Closeness | Betweenness | Community

Size proportional to degree: is this the only way?
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Star Wars IV Network

Red
| eader

Ben

Tarkin Officer

Threepio fle Biggs H
Trooper =
| Intercom Voice
ENEN
Degree | Closeness | Betweenness | Community

Size proportional to betweenness
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Star Wars IV Network
: ks C d Beru
W|ngman Jabba Bartender Creature Human g?f:::g;

Death Star fa 2~ Iblelele]alal-] M
Intercom [EEEE—— Aunt

Voice Firs : Red NGIE:
Se Mot Beru BiggS | coer it

ACTRNNE] Willard

Fixer Owen .
. Ben Threepio
Imperial Gold

: Chief
Officer EaGlNIER R e .

: Second
SEE Officer L Luke

Degree [ Clogeness | Betweenness | Community

Size proportional to closeness
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Why degree is not enough
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Why degree is not enough

Stanford Social Web (ca. 1999)

network of personal homepages at Stanford
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Different notions of centrality

* Node Centrality measures “importance”

In each of the following networks, X has higher
centrality than Y according to a particular measure

Y
%Q O%é %O—OG
X
X
Y Y

Indegree outdegree = betweenness closeness

O

< O
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Node Degree

» Let’'s put some numbers to it

Undirected degree:
e.g. nodes with more friends are more central.

®

@ °©

®

Assumption: the connections that your friend has don't
matter, it is what they can do directly that does (e.g. go
have a beer with you, help you build a deck...)

0,

®
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Node Degree

* Normalization:
divide degree by the max. possible, i.e. (N-1)
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Node Degree

example financial trading networks

high in-centralization: low in-centralization:
one node buying from buying is more evenly
many others distributed
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What does degree not capture?

* In what ways does degree fail to capture
centrality in the following graphs?
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Brokerage not captured by degree
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Brokerage: Concept
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Brokerage: Concept
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Capturing Brokerage

- Betweenness Centrality:

intuition: how many pairs of individuals would have to
go through you in order to reach one another in the
minimum number of hops?

A—b——(o—d
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Betweenness: Definition

Cali)=y, 2

j<k gjk
Where:
g, = the number of shortest paths connecting nodes j and k
g,(1) = the number that node i/ is on.

Usually normalized by:

¢ (i) Cali
B n—1)(n—2)/2|~

number of pairs of vertices
excluding the vertex itself
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Betweenness: Toy Networks

* Non-normalized version:

©

.

®
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Betweenness: Toy Networks

* Non-normalized version:

@ @® © e o

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E

- C lies between 4 pairs of vertices: (A,D),(A,E),(B,D),(B,E)

* note that there are no alternate paths for these pairs
to take, so C gets full credit

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Betweenness: Toy Networks

* Non-normalized version:

© ©
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Betweenness: Toy Networks

* Non-normalized version:

@  why do C and D each have
betweenness 1?7
C * They are both on shortest

paths for pairs (A,E), and (B,E),
and so must share credit:
-12+1/2 =1
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Betweenness: Toy Networks

* Non-normalized version:

®

C

® @ What is the betweenness
of node E?
A B

®

D
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Betweenness: Real Example

* Social Network (facebook)
nodes are sized by degree, and colored by betweenness
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Betweenness: Question

* Find a node that has high betweenness
but low degree
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Betweenness: Question

* Find a node that has low betweenness but
high degree
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Closeness Centrality

 What if it's not so important to have
many direct friends?

e Or be “between” others

* But one still wants to be in the “middle”
of things, not too far from the center
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Closeness Centrality

* Need not be in brokerage position

. - .
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Closeness: Definition

* Closeness is based on the length of the
average shortest path between a node
and all other nodes in the network

Closeness Centrality:
. 1
Cc ( l ) —

> dli,j

Normalized Closeness Centrality:
) . Wh h big, th
C.(i)=C.(i)x(n—1) When graphs are big, the

we multiply by n
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Closeness: Toy Networks

@

N -1
Ed(A,]) _ o
C (A)=|2! _ 1+2+3+4 _ Q _04
‘ N-1 4 | |4 |
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Closeness: Toy Networks
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Closeness: Question

* Find a node which has relatively high degree
but low closeness

AN
0"“8 \17
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Closeness: Question

* Find a node which has low degree but
high closeness

AN
0"“8 \1\}9
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Closeness: unconnected graph

 What if the graph is not connected?

(o (o 1

Cc(i): N

> d(i,])
J=1
-
instead of null, we could also interpret

Wit il vooed T at wodes it as O if infinity is the distance
if the graph is not connected! between unconnected nodes
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Harmonic: Definition

* Replace the average distance with the harmonic
mean of all distances

Harmonic Centrality:
Culi)=Y, === ¥ =
j#i d(l:J) d(i,j)<o, j#i d(l,J)
- Strongly correlated to closeness centrality

- Naturally also accounts for nodes j that cannot reach i
- Can be applied to graphs that are not connected

Normalized Harmonic Centrality:
Cyli)=Cyli)/(n—1)
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Harmonic: Toy Networks

* Non-normalized version:

1 1 1 1 1
Charm:I 2+2+3+Z—25
&

2 ® O O
waa
SENOR0 O
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Closeness vs Harmonic

Closeness Centrality

1

> dli. )

j=1

Cc(i>:

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Eigenvector Centrality

« How “central” you are depends on how “central”
your neighbors are

Clc)=w:: Q)
W), ¢ d“)
Tw e, Qo)
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Eigenvector Centrality

Eigenvector Centrality:

N 1x .
CE(I)ZIZ AjiXCE(.])
i=1

where A is a constant and
A; the adjacency matrix (1 if (i,j) are connected, O otherwise)

(with a small rearrangement) this can we rewritten
In vector notation as in the eigenvector equation

AX=AX

where X is the eigenvector, and its i-th component is the centrality of node j

In general, there will be many different eigenvalues A for which a non-zero eigenvector solution exists. However,
the additional requirement that all the entries in the eigenvector be non-negative implies (by the Perron—Frobenius
theorem) that only the greatest eigenvalue results in the desired centrality measure
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Bonacich eigenvector centrality

also known as Bonacich Power Centrality

c.(p)= E(a +pc)A,

* o is a normalization constant

* 3 determines how important the centrality of your neighbors
IS

* A is the adjacency matrix (can be weighted)
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Bonacich eigenvector centrality

also known as Bonacich Power Centrality

small 3 =» high attenuation

only your immediate friends matter, and their
importance is factored in only a bit

high § =» low attenuation

global network structure matters (your friends,
your friends' of friends etc.)

B = o yields simple degree centrality

¢;(p) = 2(0‘ )A;
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Eigenvector Variants

* There are other variants of eigenvector
centrality, such as:

- PageRank

* (hnormalized eigenvector + random jumps)
[link analysis]

- Katz Centrality
* (connections with distant neighbors are penalized)

Craa(i) = 3.3 k()

k=1 j=1
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Centrality Iin Directed Networks

 Degree:
- In and out centrality

- Betweenness: |
- Consider only directed paths: CB(i):Z 9ﬂ<<l>

i=k 9k
- When normalizing take care of ordered pairs
()= Gl
N (Y Cor)] PRt S
 Closeness
- Consider only directed paths

 Eigenvector (already prepared)
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Centrality in Weighted Networks

* Degree:
- Sum weights (non-weighted equals weight=1 for all edges)

 Betweenness and Closeness:
- Consider weighted distance

 Eigenvector
- Consider weighted adjacency matrix
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Node Centralities: Conclusion

 There are other node centrality metrics,
but these are the “quintessential”

a e f )
Finding Dominant Nodes Using Graphlets bg W’ h‘%’
Gy 8 Gy k -

David Aparicio'®’, Pedro Ribeiro, Fernando Silva, and Jorge Silva d C
abced eefg hiijk
CRACS & INESC-TEC and the Department of Computer Science. al-T1]2]3 e[-]-T-]- h[-T1]2]3
Faculty of Sciences, University of Porto. 4169-007 Porto, Portugal bi-[-[1]2 el=l=1-1- 1jag-11g2
{daparicio,pribeiro,fds}@dcc.fc.up.pt, jorge.m.silva@inesctec.pt fl - l ; ]I ]I - l Llc l i — l
Do) = [ A % Z gr—dlew) | _ [ (1 - 1) x Z gk—d(o;.0) A subgraph-based ranking system for
o ET(o) I e professional tennis players

David Aparicio, Pedro Ribeiro and Fernando Silva

 Which one to use depends on what you want to
achieve or measure

- Worry about understanding the concepts
- They enlarge your graph vocabulary

Pedro Ribeiro - Introduction to the Analysis and Visualisation of Complex Networks



Node Centralities: Conclusion

Harmonic
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Node Centralities: Conclusion

All (major) network analysis packages provide them:

@neog]

The #1 Database for Connected Data

Centrality algorithms are used to determi

includes the following centrality algorithn

® Production-quality
¢ Page Rank

¢ Betweenness Centrality

® Alpha
© ArticleRank
¢ Closeness Centrality
¢ Harmonic Centrality
¢ Degree Centrality
© Eigenvector Centrality

& HITS

NetworkX

(® Network Analysis in Python

Centrality
Degree
degree_centrality (G) Compute the degree centrality for nodes.
in_degree_centrality (G) ‘Compute the in-degree centrality for nodes.
out_degree centrality (G) Compute the out-degree centrality for nodes.
Eigenvector
eigenvector_centrality (G[, max_iter, tol,..]) Compurte the eigenvector centrality for the graph e .
eigenvector_centrality_numpy (G[, weight, ..]) Compute the eigenvector centrality for the graph G.
katz_centrality (G, alpha, beta, max_iter, ...]) Compute the Katz centrality for the nodes of the graph C
katz_centrality numpy (G[, alpha, beta, ..]) Compute the Katz centrality for the graph G.
Closeness

closeness_centrality (G[, u, distance, ..]) Compute closeness centrality for nodes.

incremental closeness centrality (G, edgel, ..]) Incremental closeness centrality for nodes.
Current Flow Closeness

current_flow closeness_centrality (G[, ...]) Compute current-flow closeness centrality for nodes

information centrality (G[, weight, dtype, ...]) Compute current-flow closeness centrality for nodes.

(Shortest Path) Betweenness

betweenness_centrality (G[, k, normalized, ...]) Compute the shortest-path betweenness centrality for r

igraph

8. Centrality Measures

8.1. igraph_closeness — Closeness centrality calculations for some
vertices.

8.2. igraph_harmonic_centrality — Harmonic centrality for some
vertices.

8.3. igraph_betweenness — Betweenness centrality of some vertices.
8.4. igraph_edge betweenness — Betweenness centrality of the
edges.

8.5. igraph_pagerank_algo_t — PageRank algorithm implementation
8.6. igraph_pagerank — Calculates the Google PageRank for the
specified vertices.

8.7. igraph_personalized pagerank — Calculates the personalized
Google PageRank for the specified vertices.

8.8. igraph_personalized_pagerank_vs — Calculates the personalized
Google PageRank for the specified vertices.

8.9. igraph_constraint — Burt's constraint scores.

8.10. igraph_maxdegree — The maximum degree in a graph (or set of
vertices).

8.11. igraph_strength — Strength of the vertices, weighted vertex
degree in other words.

8.12. igraph_eigenvector_centrality — Eigenvector centrality of the
vertices

Also all (major) network analysis and visualization platforms:
Gephi

) makes graphs h:
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