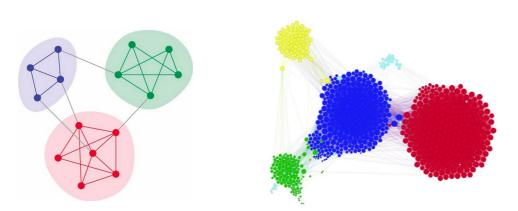
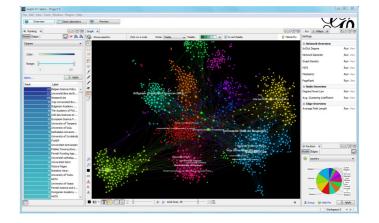
Introduction to the Analysis and Visualisation of Complex Networks

PORTO FC FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC)



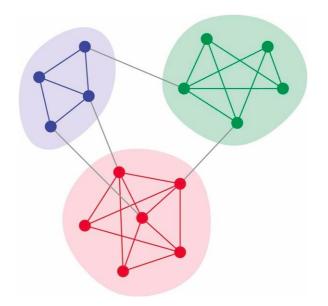


(this part includes some slides heavily based on material from Jure Leskovec and Lada Adamic @ Stanford University + Gonzalo Mateos @ Rochester University)

Community Structure

Network Communities

 Empirical data (and theory) supports the notion that networks are composed of tightly connected sets of edges



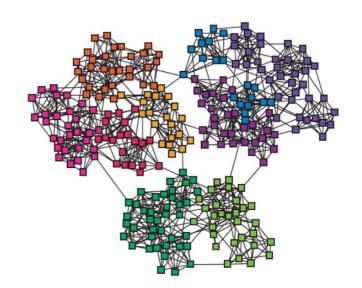
Communities, clusters, groups, modules

Network Communities

 Sets of nodes with lots of internal connections and few external ones (to the rest of the network)

Finding Network Communities

 How to automatically find such densely connected groups of nodes?

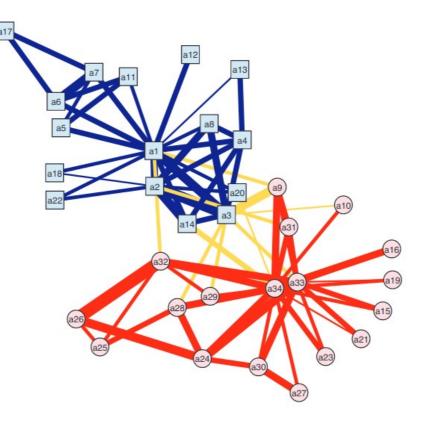


Communities, clusters, groups, modules

• Ideally, such discovered clusters would correspond to real groups. For example:

Zachary's Karate Club

• Social interactions among members of a karate club in the 70s



- Zachary witnessed the club split in two during his study
 - Toy network, yet canonical for community detection algorithms
 - Offers "ground truth" community membership (a rare luxury)

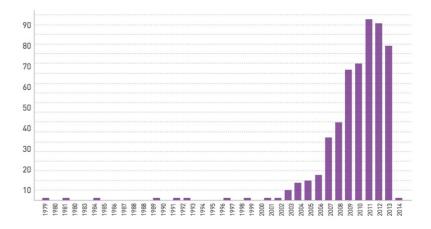
Zachary's Karate Club

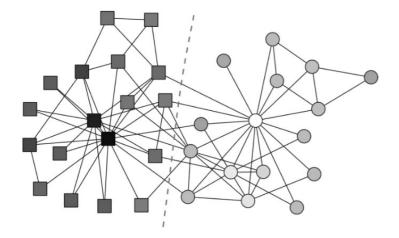
An Information Flow Model for Conflict and Fission in Small Groups¹

WAYNE W. ZACHARY

Data from a voluntary association are used to construct a new formal model for a traditional anthropological problem, fission in small groups. The process leading to fission is viewed as an unequal flow of sentiments and information across the ties in a social network. This flow is unequal because it is uniquely constrained by the contextual range and sensitivity of each relationship in the network. The subsequent differential sharing of sentiments leads to the formation of subgroups with more internal stability than the group as a whole, and results in fission. The Ford-Fulkerson labeling algorithm allows an accurate prediction of membership in the subgroups and of the locus of the fission to be made from measurements of the potential for information flow across each edge in the network. Methods for measurement of potential information flow are discussed, and it is shown that all appropriate techniques will generate the same predictions.

Citation history of the Zachary's Karate club paper

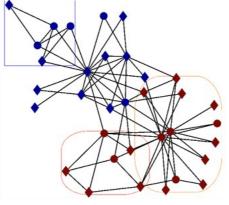




An information flow model for conflict and fission in small groups WW Zachary - Journal of anthropological research, 1977 - journals.uchicago.edu ... group, a university-based karate club, in which a factional ... karate club was observed for a period of three years, from 1970 to 1972. In addition to direct observation, the history of the club ... ☆ Save 切 Cite Cited by 5585 Related articles All 11 versions

Zachary's Karate Club

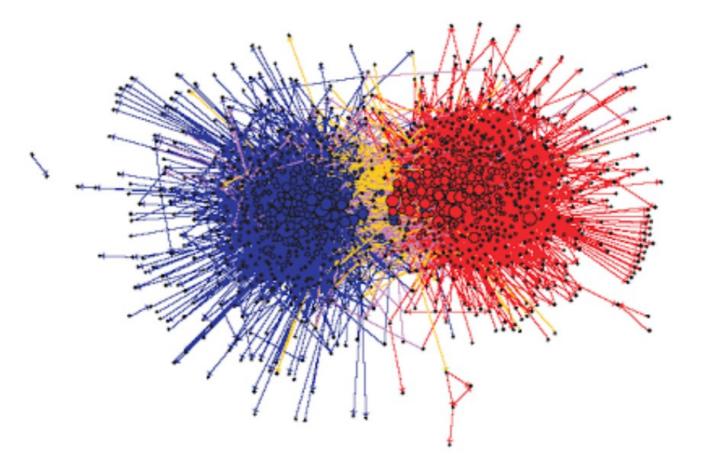
The first scientist at any conference on networks who uses Zachary's karate club as an example is inducted into the Zachary Karate Club Club, and awarded a prize.



If you can't get it right on this network, then go home

Political Blogs

• The political blogosphere for the US 2004 presidential election



- Community structure of liberal and conservative blogs is apparent
 - People have a stronger tendency to interact with "equals"

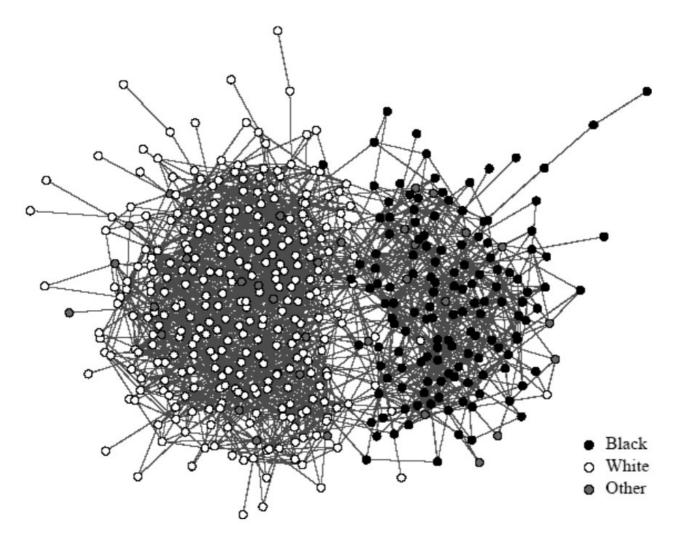
Electrical Power Grid

• Split power network into areas with minimum inter-area interactions

- Applications
 - Decide control areas for distributed power system state estimation
 - Parallel computation of power flow
 - Controlled islanding to prevent spreading of blackouts

High School Students

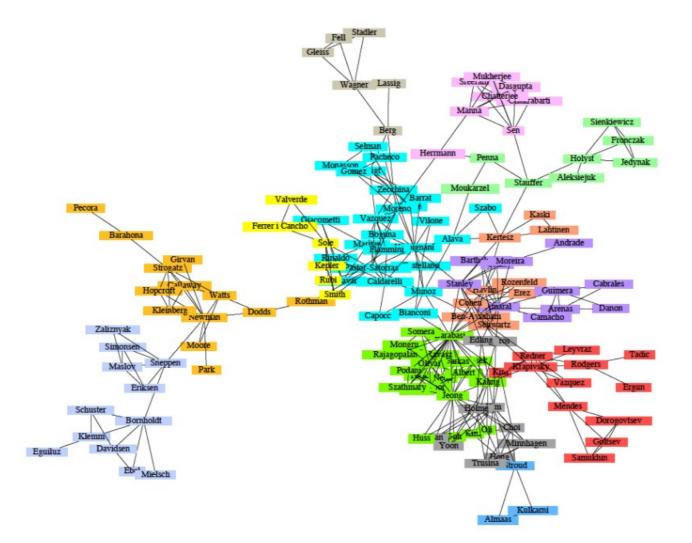
• Network of social interactions among high-school students



• Strong assortative mixing, with race as latent characteristic

Physicists working on Network Science

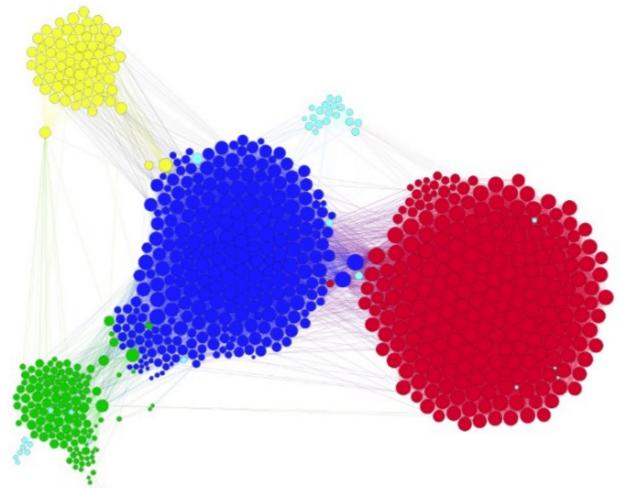
• Coauthorship network of physicists publishing networks' research



• Tightly-knit subgroups are evident from the network structure

Facebook Friendships

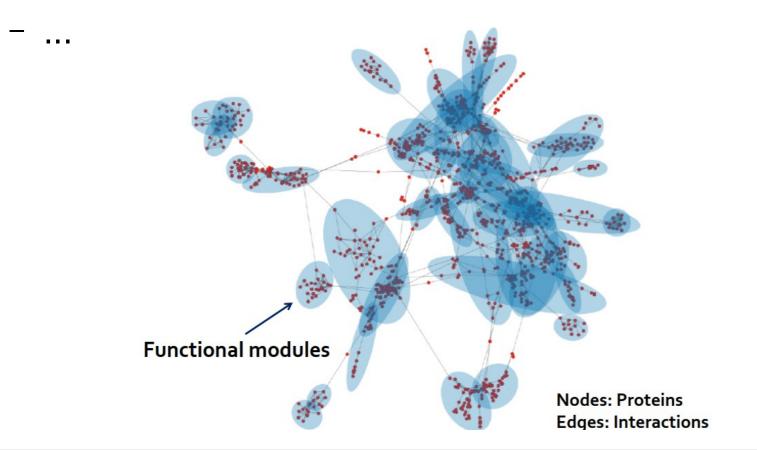
• Facebook egonet with 744 vertices and 30K edges



- Asked "ego" to identify social circles to which friends belong
 - Company, high-school, basketball club, squash club, family

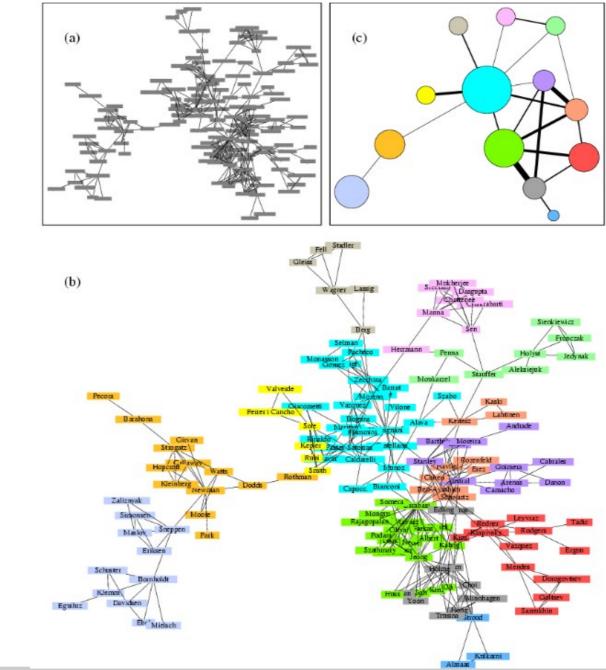
Why do it: gain understanding

- Gain understanding of networks
 - Discover communities in practice
 - Measure isolation of groups
 - Understand opinion dynamics / adoption



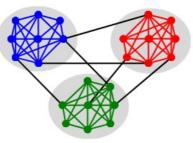
Why do it: visualize

• Communities help to "aggregate" network data



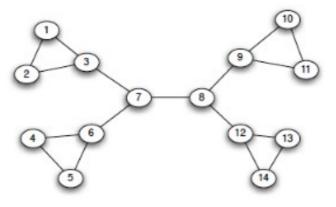
Community Discovery

- Community discovery is a challenging computational problem
 - No consensus on the structural definition of community
 - Node subset selection often intractable
 - Lack of ground-truth for validation
- Number and sizes of groups most often unspecified in community detection
 - Identify the *natural fault lines* along which a network separates

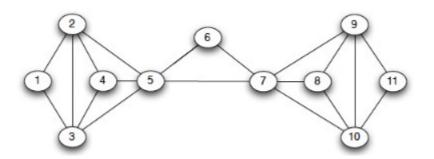


Bridges and Communities

• Local bridges connect weakly interacting parts of the network



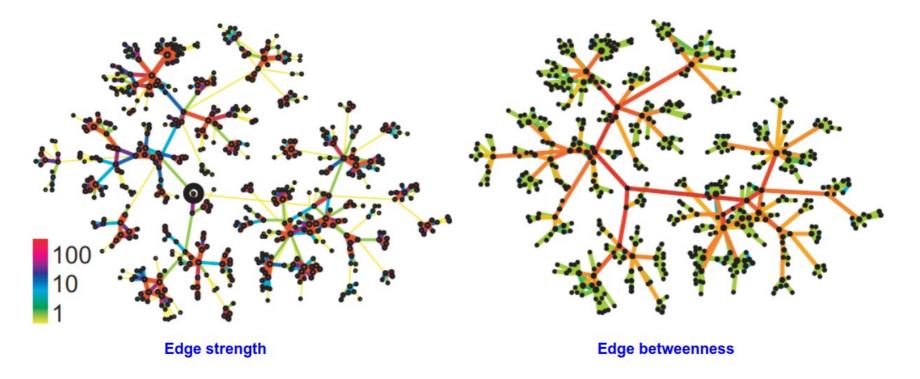
• What about removing those to reveal communities?



- Some challenges
 - Multiple local bridges. Some better that others? Which one first?
 - There might be no local bridge, yet an apparent natural division

Edge Betweenness Centrality

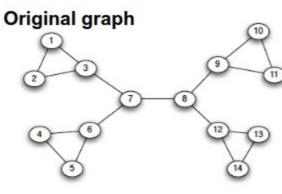
- Idea: high edge betweenness centrality to identify weak ties
 - High $c_{Be}(e)$ edges carry large traffic volume over shortest paths
 - Position at the interface between tightly-knit groups
- Ex: cell-phone network with colored edge strength and betwenness

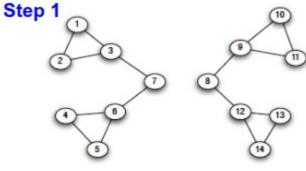


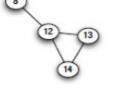
Girvan-Newman's method

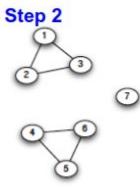
- Girvan-Newmann's method extremely simple conceptually
 - \Rightarrow Find and remove "spanning links" between cohesive subgroups
- Algorithm: Repeat until there are no edges left
 - \Rightarrow Calculate the betweenness centrality $c_{Be}(e)$ of all edges
 - \Rightarrow Remove edge(s) with highest $c_{Be}(e)$
- Connected components are the communities identified
 - Divisive method: network falls apart into pieces as we go
 - Nested partition: larger communities potentially host denser groups
 - Recompute edge betweenness in O(N_v N_e)-time per step
- M. Girvan and M. Newman, "Community structure in social and biological networks," PNAS, vol. 99, pp. 7821-7826, 2002

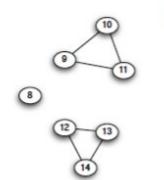
Girvan-Newman in action

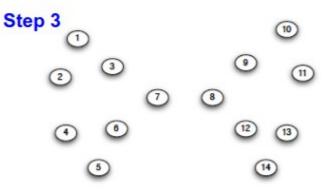




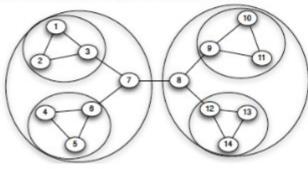








Nested graph decomposition



Hierarchical Clustering

Greedy approach to iteratively modify successive candidate partitions

- Agglomerative: successive coarsening of partitions through merging
- Divisive: successive refinement of partitions through splitting

Per step, partitions are modified in a way that minimizes a cost

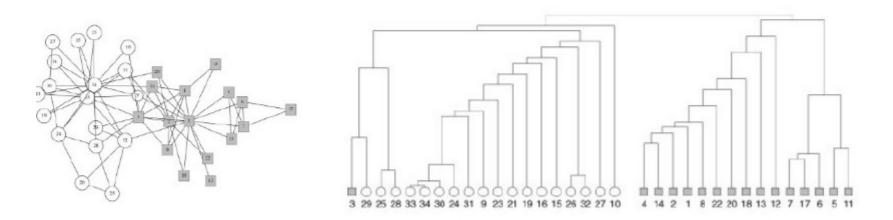
- Measures of (dis)similarity x_{ij} between pairs of vertices v_i and v_j
- Ex: Euclidean distance dissimilarity

$$x_{ij} = \sqrt{\sum_{k \neq i,j} (A_{ik} - A_{jk})^2}$$

► Method returns an entire hierarchy of nested partitions of the graph ⇒ Can range fully from {{v₁},..., {v_{N_v}}} to V

Hierarchical Clustering and Dendograms

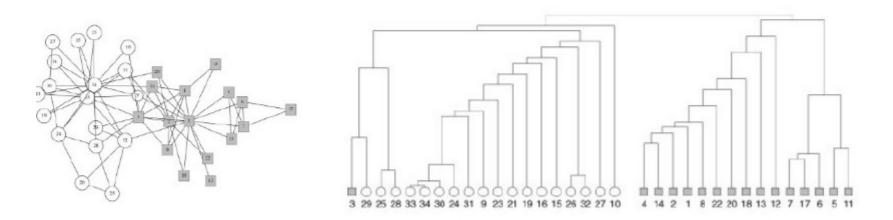
- Hierarchical partitions often represented with a dendrogram
- Shows groups found in the network at all algorithmic steps
 ⇒ Split the network at different resolutions
- Ex: Girvan-Newman's algorithm for the Zachary's karate club



- Q: Which of the divisions is the most useful/optimal in some sense?
- A: Need to define metrics of graph clustering quality

Hierarchical Clustering and Dendograms

- Hierarchical partitions often represented with a dendrogram
- Shows groups found in the network at all algorithmic steps
 ⇒ Split the network at different resolutions
- Ex: Girvan-Newman's algorithm for the Zachary's karate club



- Q: Which of the divisions is the most useful/optimal in some sense?
- A: Need to define metrics of graph clustering quality

Modularity

- ► Size of communities typically unknown ⇒ Identify automatically
- Modularity measures how well a network is partitioned in communities
 - Intuition: density of edges in communities higher than expected
- Consider a graph G and a partition into groups $s \in S$. Modularity:

 $Q(G,S) \propto \sum_{s \in S} [(\# \text{ of edges within group } s) - \mathbb{E} [\# \text{ of such edges}]]$

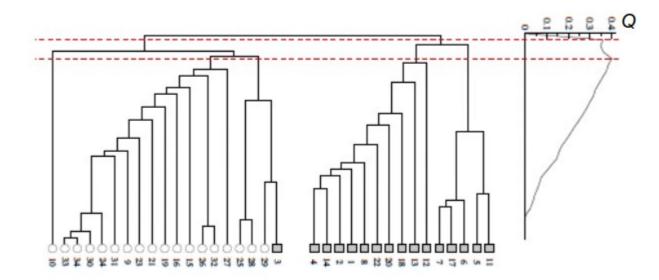
▶ Formally, after normalization such that $Q(G, S) \in [-1, 1]$

$$Q(G,S) = \frac{1}{2N_e} \sum_{s \in S} \sum_{i,j \in s} \left[A_{ij} - \frac{d_i d_j}{2N_e} \right]$$

 \Rightarrow Null model: randomize edges, preserving degree distribution

Assessing clustering quality

- Ex: Girvan-Newman's algorithm for the Zachary's karate club



• Q: Why not optimize Q(G, S) directly over possible partitions S?

Louvain Algorithm

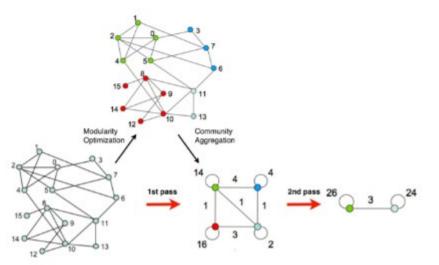
Greedy algorithm for community detection

- O(n log n) run time
- Supports weighted graphs
- Provides hierarchical partitions
- Widely utilized to study large networks because:
 - Fast
 - Rapid convergence properties
 - High modularity output (i.e., "better communities")

Louvain Algorithm Overview

- Louvain algorithm greedily maximizes modularity
- Each pass is made of 2 phases:
 - Phase 1: Modularity is optimized by allowing only local changes of communities
 - Phase 2: The identified communities are aggregated in order to build a new network of communities
 - Goto Phase 1

The passes are repeated iteratively until no increase of modularity is possible!



Louvain Algorithm: 1st Phase

- Put each node in a graph into a distinct community (one node per community)
- For each node *i*, the algorithm performs two calculations:
 - Compute the modularity gain (ΔQ) when putting node *i* into the community of some neighbor *j*
 - Move i to a community of node j that yields the largest gain ΔQ

The loop runs until no movement yields a gain

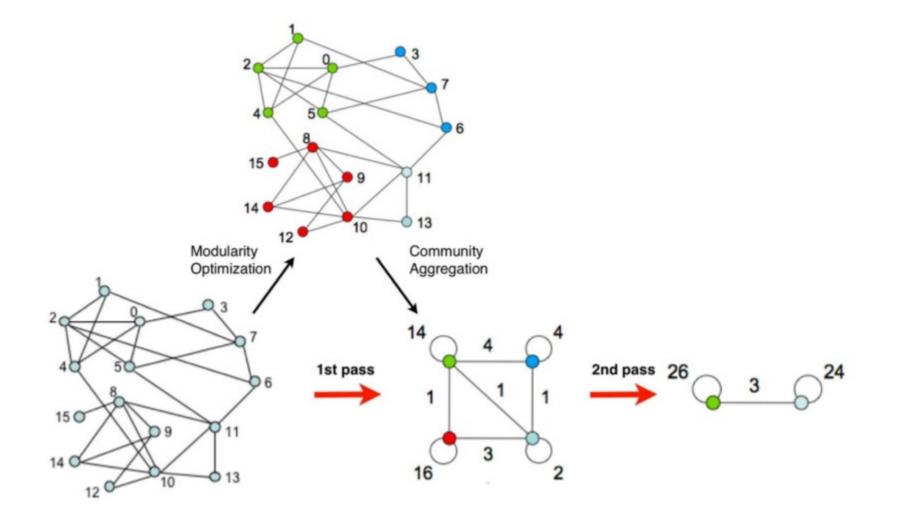
Louvain Algorithm: 2nd Phase

- The partitions obtained in the first phase are contracted into super-nodes, and the network is created accordingly
 - Super-nodes are connected if there is at least one edge between nodes of the corresponding partitions
 - The weight of the edge between the two supernodes is the sum of the weights from all edges between their corresponding partitions
- The loop runs until the community configuration does not change anymore

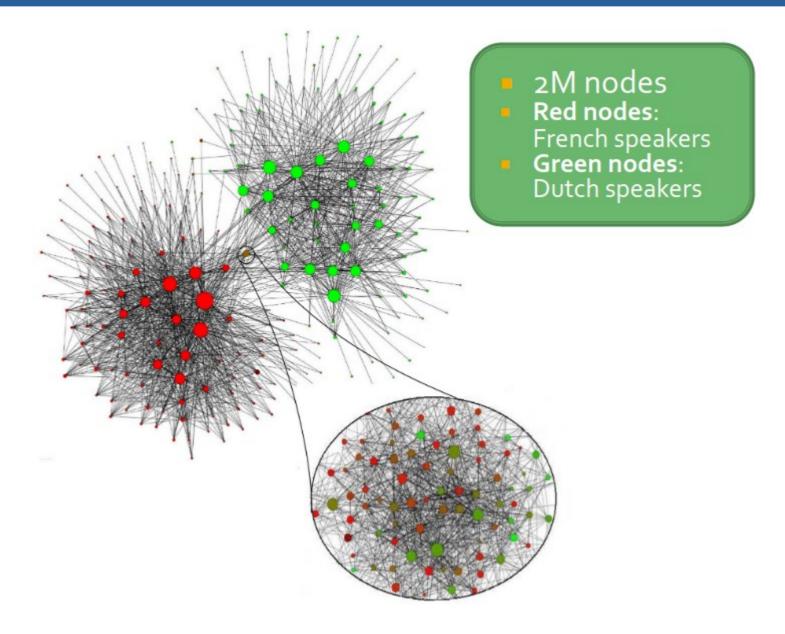
Louvain Algorithm: 2nd Phase

- The partitions obtained in the first phase are contracted into super-nodes, and the network is created accordingly
 - Super-nodes are connected if there is at least one edge between nodes of the corresponding partitions
 - The weight of the edge between the two supernodes is the sum of the weights from all edges between their corresponding partitions
- The loop runs until the community configuration does not change anymore

Louvain Algorithm: 2nd Phase



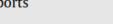
Belgian Phone Network



Community Discovery Algorithms

Contents lists available at ScienceDirect

Physics Reports



journal homepage: www.elsevier.com/locate/physrep

Community detection in graphs

Santo Fortunato*

Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I, Italy

ARTICLE INFO

ABSTRACT

Article history: Accepted 5 November 2009 Available online 4 December 2009 editor: I. Procaccia

Keywords: Graphs Clusters Statistical physics

The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i.e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e.g., the tissues or the organs in the human body. Detecting communities is of grarat importance in sociolaeva.

vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e.g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

© 2009 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physrep.2009.11.002

Community detection in networks: A user guide

Santo Fortunato ^{a,b,*}, Darko Hric^b

^a Center for Complex Networks and Systems Research, School of Informatics and Computing, and Indiana University Network Science Institute (IUNI), Indiana University, Bloomington, USA

ABSTRACT

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

^b Department of Computer Science, Aalto University School of Science, P.O. Box 15400, FI-00076, Finland

ARTICLE INFO

Article history: Accepted 26 September 2016 Available online 6 October 2016 editor: I. Procaccia

Keywords: Networks Communities Clustering Community detection in networks is one of the most popular topics of modern network science. Communities, or clusters, are usually groups of vertices having higher probability of being connected to each other than to members of other groups, though other patterns are possible. Identifying communities is an ill-defined problem. There are no universal protocols on the fundamental ingredients, like the definition of community itself, nor on other crucial issues, like the validation of algorithms and the comparison of their performances. This has generated a number of confusions and misconceptions, which undermine the progress in the field. We offer a guided tour through the main aspects of the problem. We also point out strengths and weaknesses of popular methods, and give directions to their use.

© 2016 Elsevier B.V. All rights reserved.

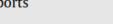
https://doi.org/10.1016/j.physrep.2016.09.002

There are many possible algorithms and definitions

Community Discovery Algorithms

Contents lists available at ScienceDirect

Physics Reports



journal homepage: www.elsevier.com/locate/physrep

Community detection in graphs

Santo Fortunato*

Complex Networks and Systems Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I, Italy

ARTICLE INFO

ABSTRACT

Article history: Accepted 5 November 2009 Available online 4 December 2009 editor: I. Procaccia

Keywords: Graphs Clusters Statistical physics

The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i.e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e.g., the tissues or the organs in the human body. Detecting communities is of grarat importance in sociolaeva.

vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e.g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

© 2009 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physrep.2009.11.002

Community detection in networks: A user guide

Santo Fortunato ^{a,b,*}, Darko Hric^b

^a Center for Complex Networks and Systems Research, School of Informatics and Computing, and Indiana University Network Science Institute (IUNI), Indiana University, Bloomington, USA

ABSTRACT

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

^b Department of Computer Science, Aalto University School of Science, P.O. Box 15400, FI-00076, Finland

ARTICLE INFO

Article history: Accepted 26 September 2016 Available online 6 October 2016 editor: I. Procaccia

Keywords: Networks Communities Clustering Community detection in networks is one of the most popular topics of modern network science. Communities, or clusters, are usually groups of vertices having higher probability of being connected to each other than to members of other groups, though other patterns are possible. Identifying communities is an ill-defined problem. There are no universal protocols on the fundamental ingredients, like the definition of community itself, nor on other crucial issues, like the validation of algorithms and the comparison of their performances. This has generated a number of confusions and misconceptions, which undermine the progress in the field. We offer a guided tour through the main aspects of the problem. We also point out strengths and weaknesses of popular methods, and give directions to their use.

© 2016 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physrep.2016.09.002

There are many possible algorithms and definitions

A paper on community discovery

FastStep: Scalable Boolean Matrix Decomposition

Miguel Araujo^{1,2}, Pedro Ribeiro¹, and Christos Faloutsos²

 ¹ Cracs/INESC-TEC and University of Porto, Porto, Portugal pribeiro@dcc.fc.up.pt
 ² Computer Science Department, Carnegie Mellon University, Pittsburgh, USA {maraujo,christos}@cs.cmu.edu

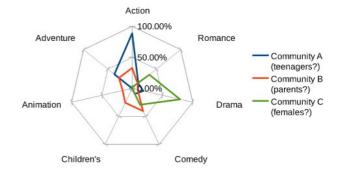


Fig. 5: MovieLens genre separation

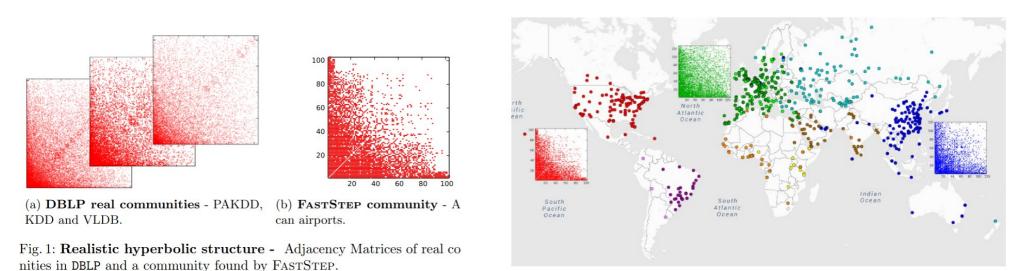
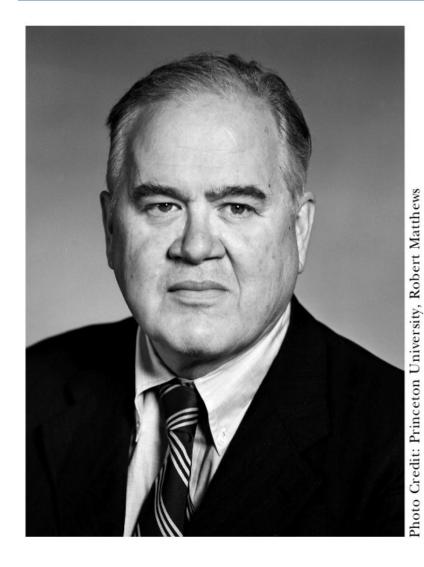


Fig. 2: Intuitive non-block communities - Communities automatically found in the Airports dataset from flight records. (best viewed in color)

Network Visualization and Exploration with Gephi

Why Visualization?



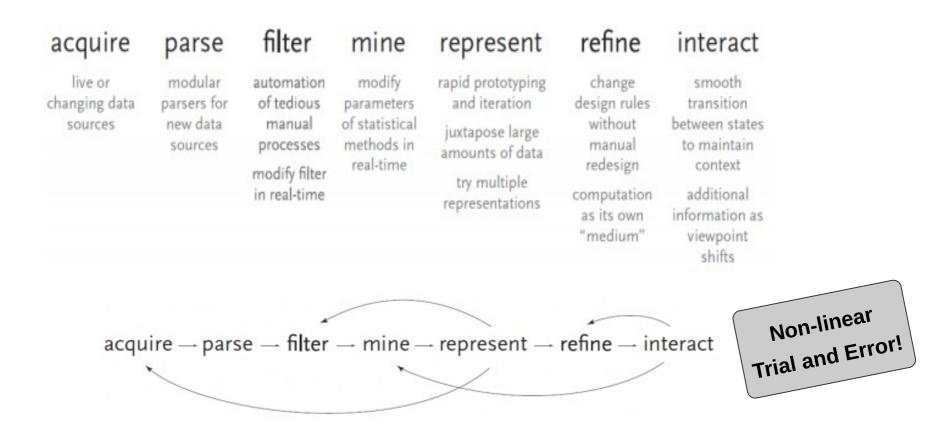
"The greatest value of a picture is when it forces to notice what we never expected to see"

John W. Tubey

Exploratory Data Analysis

Visualization alone is not enough

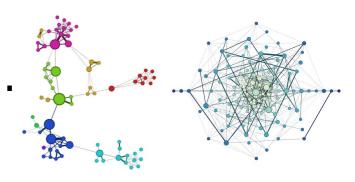
- Part of a larger process to extract insight
- Data process chain



Images: Ben Fry, 2004

Exploring a Network

- 1) See the network
 - Draw using a certain layout, .



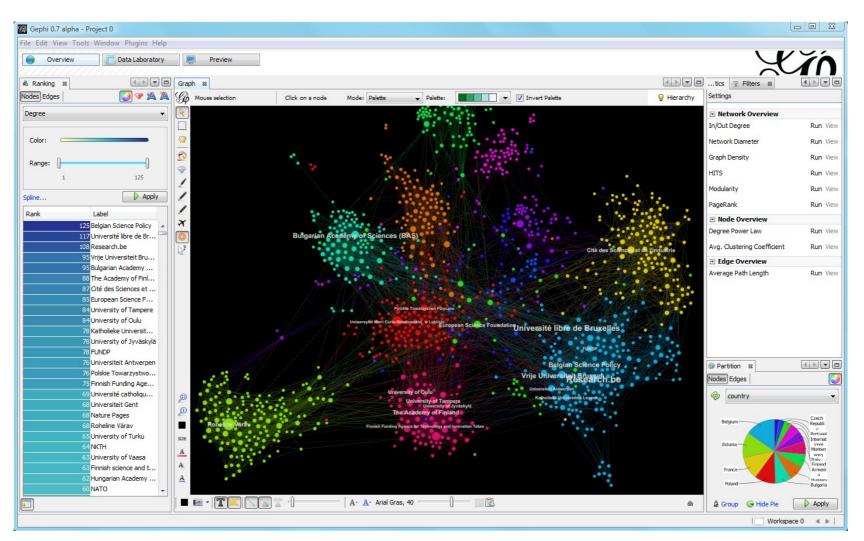
- 2) Interact in real time
 - Group, filter, compute metrics

Size of nodes, thickness of edge
 colors, ...

Exploring Graphs

• Today we are going to use Gephi

- Open-Source Network **Analysis** and **Visualization** Platform (written in Java)



Why Gephi?

- Because it has a large community
- Because it has history (and will continue to have)
 - Started at 1998
 - Maintained by a consortium (long-term vision)
- Because it is extensible with plugins
 - Gephi marketplace

• Limitations:

- Still in beta version so there are a few rough edges
- Not prepared to handle very large networks (depending on the infrastructure RAM mostly
 can manage up to 100 000 nodes)

Gephi

There are other options:

 The main concepts and ideas we will show can be used on any other visualization tool

Goals of this activity

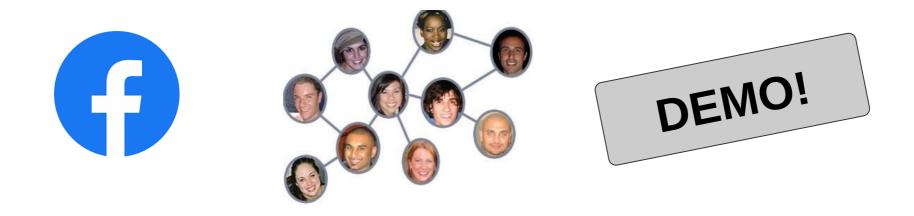
 Consolidate the main concepts and techniques learned by performing a network analysis of a real world network

• Specific Goals:

- Perform an empirical analysis of the network
- Loading Networks (opening, importing raw data, ...)
- Computing Metrics (centralities, degrees, distances, communities, ...)
- Filtering (main operators, selecting, ranges, combining, ...)
- Create a clear and simple to understand visualisation of the network (color or size of the nodes and edges according to a metric or partition, ...)

Facebook Network

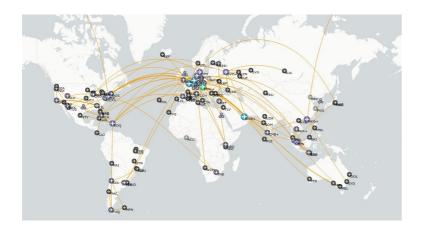
- My own facebook (ego) network facebook.gephi
 - Nodes are users and links represent friendships (undirected graph)
 - Ego Network: all nodes connected to me and their connections (without myself)
 - Collected automatically (there used to be plugins for that)
 - 356 persons, 4,365 connections



Flights Network

- Flights Data (OpenFights) airports.csv and routes.csv
 - http://openflights.org/data.html
 - Compiled (also) by Open Flights website users
 - 3,154 airports, 66,500 routes from 538 airlines
 - Made for showing GeoLayout

Open**Flights**.org



More Resources

More datasets to toy with

Movie Galaxies (5 known movies in course resources)
 [Blade Runner] [Pulp Fiction] [The Godfather II] [Starwars IV] [LOTR: Return of the King]

- Konect project: http://konect.cc/
- Network Data repository: https://networkrepository.com/

	Name	Attributes	n	m
SC	South African companies	🗹 🔽 🛑 B 💻	11	13
Sw	Southern women (small)	🗹 🔽 🌑 B 💻	10	14
HI	HIV	🔽 🔽 🛑 U 🗕 🖬 🔀	40	41
ZA	Zachary karate club	🗹 🗹 🌑 🗉 💻	34	78
нт	Highland tribes	🔽 🔽 🌑 🗉 \pm	16	58
MT	Taro exchange	🗹 🔽 🌑 🗖 💳	22	78
SW	Southern women (large)	🗹 🔽 🌑 B 🗕 🖬 🕅	32	89
MZ	Zebra	🔽 🔽 🛑 🗉 🚍	27	111
BM	Corporate club memberships	🔽 🔽 🛑 B 💻	40	95
BC	Corporate leaderships	🔽 🔽 🛑 B 💻	44	99
MK	Kangaroos	V V 🔵 U 🕂	17	91

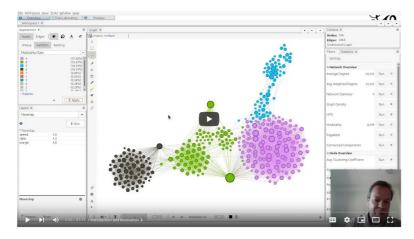
Networks

Pedro Ribeiro – Introduction to the Analysis and Visualisation of Complex Networks

KONECT -

More Resources

 Tutorial in Video (by myself) https://youtu.be/rnCTpzY2xUM



- Other Tutorials
 - https://gephi.org/users/

Official Tutorials

Gephi is really easy to handle if you learn the basics. Let's follow these tutorials to quickly manage the main features!

How to Import Spreadsheet (Excel) Data // video

How to Import Dynamic Data

- https://github.com/kateto/Gephi-0.9-Tutorial/
- http://www.martingrandjean.ch/gephi-introduction/