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Circular Phenomena in Comp. Sci.
• Circularity has dogged Mathematics and Computer 

Science ever since Set Theory was first developed:
– The well known Russell’s Paradox: 

• R = { x | x is a set that does not contain itself}
Is R contained in R?  Yes and No

– Liar Paradox: I am a liar
– Hypergame paradox (Zwicker & Smullyan)

• All these paradoxes involve self-reference through 
some type of negation

• Russell put the blame squarely on circularity and 
sought to ban it from scientific discourse:

``Whatever involves all of the collection must not be one of 
the collection” -- Russell 1908
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Circularity in Computer Science
• Following Russell’s lead, Tarski proposed to ban self-

referential sentences in a language
• Rather, have a hierarchy of languages
• All this changed with Kripke’s paper in 1975 who 

showed that circular phenomenon are far more 
common and circularity can’t simply be banned.

• Circularity has been banned from automated theorem 
proving and logic programming through the occurs 
check rule:

An unbound variable cannot be unified with a term  
containing that variable

• What if we allowed such unification to proceed (as LP 
systems always did for efficiency reasons)?
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Circularity in Computer Science
• If occurs check is removed, we’ll generate 

circular (infinite) structures:
– X = [1,2,3 | X]

• Such structures, of course, arise in computing 
(circular linked lists), but banned in logic/LP.

• Subsequent LP systems did allow for such 
circular structures (rational terms), but they 
only exist as data-structures, there is no proof 
theory to go along with it. 
– One can hold the data-structure in memory within 

an LP execution, but one can’t reason about it.
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Circularity in Everyday Life
• Circularity arises in every day life

– Most natural phenomenon are cyclical
• Cyclical movement of the earth, moon, etc.
• Our digestive system works in cycles

– Social interactions are cyclical:
• Conversation = (1st speaker, (2nd Speaker, Conversation)
• Shared conventions are cyclical concepts

• Numerous other examples can be found 
elsewhere (Barwise & Moss 1996) 
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Circularity in Computer Science
• Circular phenomenon are quite common in 

Computer Science:
– Circular linked lists
– Graphs (with cycles)
– Controllers (run forever)
– Bisimilarity
– Interactive systems
– Automata over infinite strings/Kripke structures
– Perpetual processes

• Logic/LP not equipped to model circularity
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Coinduction
• Circular structures are infinite structures

X = [1, 2 | X]   is logically speaking X = [1, 2, 1, 2, ….] 
• Proofs about their properties are infinite-sized
• Coinduction is the technique for proving these 

properties
– first proposed by Peter Aczel in the 80s

• Systematic presentation of coinduction & its 
application to computing, math. and set theory: 

“Vicious Circles” by Moss and Barwise (1996)
• Our focus: inclusion of coinductive reasoning 

techniques into LP and theorem proving
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Induction vs Coinduction
• Induction is a mathematical technique for finitely 

reasoning about an infinite (countable) no. of things. 
• Examples of inductive structures:

– Naturals: 0, 1, 2, …
– Lists: [ ],   [X],    [X, X],     [X, X, X], …

• 3 components of an inductive definition: 
(1) Initiality, (2) iteration, (3) minimality
– for example, the set of lists is specified as follows:

[ ] – an empty list is a list (initialityinitialityinitialityinitiality) 
[H | T]  is a list if T is a list and H is an element (iterationiterationiterationiteration)
nothing else is a list (minimalityminimalityminimalityminimality)
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Induction vs Coinduction
• Coinduction is a mathematical technique for 

(finitely) reasoning about infinite things.
– Mathematical dual of induction
– If all things were finite, then coinduction would not be 

needed.
– Perpetual programs, automata over infinite strings

• 2 components of a coinductive definition: 
(1) iteration, (2) maximality
– for example, for a list:

[ H | T ] is a list if T is a list and H is an element (iterationiterationiterationiteration).
MaximalMaximalMaximalMaximal set that satisfies the specification of a list.

– This coinductive interpretation specifies all infinite sized 
lists
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Example: Natural Numbers
• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• N = µΓΝΝΝΝ

– where µΓ is least fixed-point.
• aka “inductive definition”

– Let N be the smallest set such that 
• 0 ∈ N
• x ∈ N   implies   x + 1  ∈ N

• Induction corresponds to Least Fix Point 
(LFP) interpretation.
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Example: Natural Numbers and Infinity

• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• ΓΝΝΝΝ unambiguously defines another set
• N’ = νΓΝΝΝΝ = N ∪ { ω }

– ω = succ( succ( succ( ... ) ) ) = succ( ω ) = ω + 1
– where νΓΝΝΝΝ is a greatest fixed-point

• Coinduction corresponds to Greatest Fixed 
Point (GFP) interpretation.
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Mathematical Foundations
• Duality provides a source of new mathematical tools 

that reflect the sophistication of tried and true 
techniques.

CorecursionCoinductionGreatest fixed point

RecursionInductionLeast fixed point

MappingMappingMappingMappingProofProofProofProofDefinitionDefinitionDefinitionDefinition

• Co-recursion: recursive def’n without a base case
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Applications of Coinduction
• model checking
• bisimilarity proofs
• lazy evaluation in FP
• reasoning with infinite structures
• perpetual processes
• cyclic structures
• operational semantics of “coinductive logic 

programming”
• Type inference systems for lazy functional 

languages
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Inductive Logic Programming
• Logic Programming 

– is actually inductive logic programming.
– has inductive definition.
– useful for writing programs for reasoning about 

finite things:
- data structures
- properties
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Infinite Objects and Properties
• Traditional logic programming is unable to reason 

about infinite objects and/or properties. 
• (The glass is only half-full)
• Example: perpetual binary streams  

– traditional logic programming cannot handle

bit(0).
bit(1).
bitstream( [ H | T ] ) :- bit( H ), bitstream( T ).
|?- X = [ 0, 1, 1, 0 | X ], bitstream( X ).

• Goal: Combine traditional LP with coinductive LP
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Overview of Coinductive LP
• Coinductive Logic Program is 

a definite program with maximal co-Herbrand model 
declarative semantics.

• Declarative Semantics: across the board dual of 
traditional LP:
– greatest fixed-points
– terms: co-Herbrand universe Ucocococo(P)
– atoms: co-Herbrand base Bcocococo(P)
– program semantics: maximal co-Herbrand model Mcocococo(P).
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Coinductive LP: An Example
• Let P1111 be the following coinductive program.

:- coinductive from/2.                        from(x) = x cons from(x+1)
from( N, [ N | T ] ) :- from( s(N), T ).
|?- from( 0, X ).

• co-Herbrand Universe: Ucocococo(P1111) = N ∪ Ω ∪ L  where 
N=[0, s(0), s(s(0)), ... ], Ω={ s(s(s( . . . ) ) ) }, and L is the the set 
of all finite and infinite lists of elements in N, Ω and L.

• co-Herbrand Model: 
Mcocococo(P1111)={ from(t, [t, s(t), s(s(t)), ... ]) | t ∈ Ucocococo(P1111) }

• from(0, [0, s(0), s(s(0)), ... ]) ∈ Mcocococo(P1111) implies the query holds
• Without “coinductive” declaration of from, Mcocococo(P1111’)=∅

This corresponds to traditional semantics of LP with infinite trees.
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Operational Semantics: co-SLD
• nondeterministic state transition system
• states are pairs of

– a finite list of syntactic atoms [resolvent] (as in Prolog)
– a set of syntactic term equations of the form x = f(x) or x = t

• For a program  p :- p.  => the query |?- p.  will succeed.
• p( [ 1 | T ] ) :- p( T ).  => |?- p(X)  to succeed with X= [ 1 | X ].

• transition rules
– definite clause rule
– “coinductive hypothesis rule”

• if a coinductive goal Q is called, 
and Q unifies with a call made earlier (e.g., P :- Q)

then Q succeeds. 
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Correctness
• Theorem (soundness).  If atom A has a 

successful co-SLD derivation in program P, 
then E(A) is true in program P, where E is the 
resulting variable bindings for the derivation.

• Theorem (completeness). If A ∈ Mcocococo(P) has a 
rational proof, then A has a successful co-
SLD derivation in program P.
– Completeness only for rational/regular proofs
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Implementation
• Search strategy: hypothesis-first, leftmost, depth-first
• Meta-Interpreter implementation.

query(Goal) :- solve([],Goal).

solve(Hypothesis, (Goal1,Goal2)) :-
solve( Hypothesis, Goal1), solve(Hypothesis,Goal2).

solve( _ , Atom) :- builtin(Atom), Atom.

solve(Hypothesis,Atom):- member(Atom, Hypothesis).

solve(Hypothesis,Atom):- notbuiltin(Atom), 
clause(Atom,Atoms),

solve([Atom|Hypothesis],Atoms).

• A more efficient implem. atop YAP also available
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Example: Number Stream
:- coinductive stream/1.
stream( [ H | T ] ) :- num( H ), stream( T ).
num( 0 ).
num( s( N ) ) :- num( N ).

|?- stream( [ 0, s( 0 ), s( s ( 0 ) )   |   T ] ).
1. MEMO: stream( [ 0, s( 0 ), s( s ( 0 ) ) | T ] )
2. MEMO: stream( [ s( 0 ), s( s ( 0 ) ) | T ] )
3. MEMO: stream( [ s( s ( 0 ) ) | T ] )

Answers:
T = [ 0, s(0), s(s(0)), s(s(0)) | T ]
T = [ 0, s(0), s(s(0)), s(0), s(s(0)) | T ]
T = [ 0, s(0), s(s(0)) | T ]   . . .. . .. . .. . .
T = [ 0, s(0), s(s(0)) | X ]     (where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)
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Example: Append
:- coinductive append/3.
append( [ ], X, X ).
append( [ H | T ], Y, [ H | Z ] ) :- append( T, Y, Z ).

|?- Y = [ 4, 5, 6 | Y ], append( [ 1, 2, 3 ], Y, Z).
Answer: Z = [ 1, 2, 3 | Y ], Y=[ 4, 5, 6 | Y]

|?- X = [ 1, 2, 3  | X ], Y = [ 3, 4 | Y ], append( X, Y, Z).
Answer: Z = [ 1, 2, 3 | Z ].

|?- Z = [ 1, 2 | Z ], append( X, Y, Z ).
Answer: X = [ ], Y = [ 1, 2 | Z ] ;        X = [1, 2 | X], Y = _

X = [ 1 ], Y = [ 2 | Z ] ;
X = [ 1, 2 ], Y = Z;  …. ad infinitum
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Example:  Comember
member(H, [ H | T ]).
member(H, [ X | T ]) :- member(H, T).

?- L = [1,2 | L], member(3, L) succeeds.     Instead:

:- coinductive comember/2.    %drop/3 is inductive
comember(X, L) :- drop(X, L, R), comember(X, R).
drop(H, [ H | T ], T).
drop(H, [ X | T ], T1) :- drop(H, T, T1).

?- X=[ 1, 2, 3 | X ], comember(2,X).           ?- X = [1,2 | X], comember(3, X).
Answer: yes.                                                  Answer: no

?- X=[ 1, 2, 3, 1, 2, 3], comember(2, X).
Answer: no.

?- X=[1, 2, 3 | X], comember(Y, X).
Answer: Y = 1; 

Y = 2;
Y = 3;  
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Example: Sieve of Eratosthenes
• Lazy evaluation can be elegantly incorporated in LP
:- coinductive sieve/2, filter/3, comember/2.
primes(X) :- generate_infinite_list(I),sieve(I,L),comember(X,L).
sieve([H|T],[H,R]) :- filter(H,T,F),sieve(F,R).
filter(H,[ ],[ ]).
filter(H,[K | T],[K | T1]):- R is K mod H, R>0,filter(H,T,T1).
filter(H,[K | T],T1) :- 0 is K mod H, filter(H,T,T1).
:-coinductive int/2
int(X,[X | Y]) :- X1 is X+1, int(X1,Y).
generate_infinite_list(I) :- int(2,I).
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Co-Logic Programming
• combines both halves of logic programming:

– traditional logic programming
– coinductive logic programming

• syntactically identical to traditional logic 
programming, except predicates are labeled: 
– Inductive, or 
– coinductive

• and stratification restriction enforced where:
– inductive and coinductive predicates cannot be mutually 

recursive. e.g.,
p :- q.

q :- p.
Program rejected, if p coinductive & q inductive

• Implementation on top of YAP available.
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Application: Model Checking
• automated verification of hardware and software 

systems
• ω-automata

– accept infinite strings
– accepting state must be traversed infinitely often

• requires computation of lfp and gfp
• co-logic programming provides an elegant framework 

for model checking
• traditional LP works for safety property (that is based 

on lfp) in an elegant manner, but not for liveness .
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Verification of Properties

• Types of properties: safety and liveness
• Search for counter-example
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Safety versus Liveness
• Safety

– “nothing bad will happen”
– naturally described inductively
– straightforward encoding in traditional LP

• liveness
– “something good will eventually happen”
– dual of safety
– naturally described coinductively
– straightforward encoding in coinductive LP
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Finite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([ ], St) :- final(St).

trans(s0, a, s1).     trans(s1, b, s2).         trans(s2, c, s3). 
trans(s3, d, s0).     trans(s2, 3, s0).         final(s2).

?- automata(X,s0).
X=[ a, b];
X=[ a, b, e, a, b];
X=[ a, b, e, a, b, e, a, b];
……
……
……
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Infinite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(s0,a,s1).     trans(s1,b,s2).         trans(s2,c,s3). 
trans(s3,d,s0).     trans(s2,3,s0).         final(s2).

?- automata(X,s0).
X=[ a, b, c, d | X ];
X=[ a, b, e | X ];
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Verifying Liveness Properties
• Verifying safety properties in LP is relatively easy: 

safety modeled by reachability
• Accomplished via tabled logic programming
• Verifying liveness is much harder: a counterexample 

to liveness is an infinite trace
• Verifying liveness is transformed into a safety check 

via use of negations in model checking and tabled LP
– Considerable overhead incurred

• Co-LP solves the problem more elegantly:
– Infinite traces that serve as counter-examples are easily 

produced as answers
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Verifying Liveness Properties
• Consider Safety:

– Question: Is an unsafe state, Su, reachable (safe)?
– If answer is yes, the path to Su is the counter-ex.

• Consider Liveness, then dually
– Question: Is a state, D, that should be dead, live?
– If answer is yes, the infinite path containing D is 

the counter example
• Co-LP will produce this infinite path as the answer

• Checking for liveness is just as easy as 
checking for safety
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Counter

sm1(N,[sm1|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.
s0(N,[s0|T]) :- N1 is N+1 mod 4, s1(N1,T), N1>=0.
s1(N,[s1|T]) :- N1 is N+1 mod 4, s2(N1,T), N1>=0.
s2(N,[s2|T]) :- N1 is N+1 mod 4, s3(N1,T), N1>=0.
s3(N,[s3|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.
?- sm1(-1,X),comember(sm1,X).

No.   (because sm1 does not occur in X infinitely often).
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Nested Finite and Infinite Automata

:- coinductive state/2.
state(s0, [s0,s1 | T]):- enter, work,      

state(s1,T).
state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(s0,T).
state(s0, [s0 | T]):- error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(s0,T).
work.       enter. repeat. exit. error.
work :- work.  
|?- state(s0,X), absent(s2,X).

X=[ s0, s3 | X ]
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Verification of Real-Time Systems
“Train, Controller, Gate”

• ω-automata w/ time constrained transitions & stopwatches
• straightforward encoding into CLP(R) + Co-LP

Timed Automata
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Verification of Real-Time Systems
“Train, Controller, Gate”

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X, up, X, T1,T2,T2).        % up=idle
train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.
train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2}
train(s2,out,s3,T1,T2,T3).
train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}.
train(X,lower,X,T1,T2,T2).
train(X,down,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2).
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Verification of Real-Time Systems
“Train, Controller, Gate”

contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).
contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).
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Verification of Real-Time Systems
“Train, Controller, Gate”

gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).
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Verification of Real-Time Systems
:- coinductive driver/9.
driver(S0,S1,S2, T,T0,T1,T2, [ X | Rest ], [ (X,T) | R ]) :-

train(S0,X,S00,T,T0,T00),  contr(S1,X,S10,T,T1,T10),
gate(S2,X,S20,T,T2,T20), {TA > T}, 
driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).

|?- driver(s0,s0,s0,T,Ta,Tb,Tc,X,R).
R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),   

(raise,G), (up,H) | R ],
X=[approach, lower, down, in, out, exit, raise, up | X] ;
R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G), 

(approach,H),(up,I)|R],
X=[approach,lower,down,in,out,exit,raise,approach,up | X] ;
%  where A, B, C, ... H, I are the corresponding wall clock time of events generated.
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Goal-directed execution of ASP
• Answer set programming (ASP) is a popular 

formalism for non monotonic reasoning
• Applications in real-world reasoning, planning, etc.
• Semantics given via lfp of a residual program 

obtained after “Gelfond-Lifschitz” transform
• Popular implementations: Smodels, DLV, etc.

1. No goal-directed execution strategy available
2. ASP limited to only finitely groundable programs

• Co-logic programming solves both these problems.
• Also provides a goal-directed method to check if a 

proposition is true in some model of a prop. formula
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Why Goal-directed ASP?
• Most of the time, given a theory, we are interested in 

knowing if a particular goal is true or not.
• Top down goal-directed execution provides operational 

semantics (important for usability) 
• Execution more efficient. 

– Tabled LP vs bottom up Deductive Deductive Databases
• Why check the consistency of the whole 

knowledgebase?
– Inconsistency in some unrelated part will scuttle the whole 

system
• Most practical examples anyway add a constraint to 

force the answer set to contain a certain goal.  
– E.g. Zebra puzzle:            ::::---- not not not not satisfied....

• Answer sets of non-finitely groundable programs 
computable & Constraints incorporated in Prolog style.
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Negation in Co-LP
• Given a clause such as 

p :- q, not p.
?- p. fails coinductively when not p is encountered

• To incorporate negation in coinductive reasoning, need a 
negative coinductive hypothesis rule: 
– In the process of establishing not(p), if not(p) is seen again in the 

resolvent, then not(p) succeeds
• Also, not not p reduces to p.
• Answer set programming makes the “glass completely full” by 

taking into account failing computations:
– p :- q, not p.   is consistent if p = false and q = false

• However, this takes away monotonicity: q can be constrainted to 
false, causing q to be withdrawn, if it was established earlier.
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ASP
• Consider the following program, A:

p :- not q.                    t.         r :- t, s.
q :- not p.                    s.
A has 2 answer sets: {p, r, t, s} & {q, r, t, s}.

• Now suppose we add the following rule to A:
h :- p, not h.      (falsify p)

Only one answer set remains: {q, r, t, s} 
• Gelfond-Lifschitz Method:

– Given an answer set S, for each p ∈ S, delete all rules whose 
body contains “not p”; 

– delete all goals of the form “not q” in remaining rules
– Compute the least fix point, L, of the residual program
– If S = L, then S is an answer set
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Goal-directed ASP
• Consider the following program, A’:

p :- not q.                    t.         r :- t, s.
q :- not p, r.                 s.        h :- p, not h. 

• Separate into constraint and non-constraint rules:  
only 1 constraint rule in this case.

• Execute the query under co-LP, candidate answer 
sets will be generated.

• Keep the ones not rejected by the constraints.
• Suppose the query is ?- q. Execution:   q � not p, r 

� not not q, r � q, r � r � t, s � s � success.        
Ans = {q, r, t, s}

• Next, we need to check that constraint rules will not 
reject the generated answer set.
– (it doesn’t in this case)
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Goal-directed ASP
• In general, for the constraint rules of p as head,              

p1111:- B1111.  p2222:- B2222. ... pnnnn :- Bnnnn.,  generate rule(s) of the form: 
chk_p1111 :- not(p1111), B1111.
chk_p2222 :- not(p2222), B2222.
...
chk_pnnnn :- not(p), Bnnnn.

• Generate: nmr_chk :- not(chk_p1111), ... , not(chk_pnnnn).
• For each pred. definition, generate its negative version: 

not_p :- not(B1111), not(B2222), ... , not(Bnnnn).
• If you want to ask query Q, then ask ?- Q, nmr_chk.
• Execution keeps track of atoms in the answer set (PCHS) 

and atoms not in the answer set (NCHS).
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Goal-directed ASP
• Consider the following program, P1:

(i) p :(i) p :(i) p :(i) p :---- not q.       (ii) q:not q.       (ii) q:not q.       (ii) q:not q.       (ii) q:---- not r.      (iii) r :not r.      (iii) r :not r.      (iii) r :not r.      (iii) r :---- not p.     (iv)  q :not p.     (iv)  q :not p.     (iv)  q :not p.     (iv)  q :---- not p.not p.not p.not p.
P1 has 1 answer set: {q, r}.

• Separate into: 3 constraint rules (i, ii, iii)
2 non-constraint rules (i, iv).

p :- not(q). q :- not(r). r :- not(p). q :- not(p).
chk_p :- not(p), not(q). chk_q :- not(q), not(r). chk_r :- not(r), 
not(p). nmr_chk :- not(chk_p), not(chk_q), not(chk_r).
not_p :- q.     not_q :- r, p. not_r :- p.

Suppose the query is ?- r. 
Expand as in co-LP:  r � not p � not not q � q ( � not r 
� fail, backtrack) � not p � success.  Ans={r, q} which 
satisfies the constraint rules of nmr_chk.
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Next Generation of LP System
• Lot of research in LP resulting in advances:

– CLP, Tabled LP, Parallelism, Andorra, ASP, now co-LP

• However, no “one stop shop” system
• Dream: build this “one stop shop” system

Next Generation

Prolog System
Andorra

CLPOr-Parallelism

Tabled LP

ASP

Rule selection Goal selection
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Conclusion
• Circularity is a common concept in everyday life and 

computer science:
• Logic/LP is unable to cope with circularity
• Solution: introduce coinduction in Logic/LP

– dual of traditional logic programming
– operational semantics for coinduction
– combining both halves of logic programming

• applications to verification, non monotonic reasoning, 
negation in LP, web services, theorem proving, 
propositional satisfiability.
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