
Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 1

University of Texas at Dallas

Coinductive Logic Programming
and its Applications

Gopal Gupta
Luke Simon, Ajay Bansal, Ajay Mallya, Richard Min.

Applied Logic, Programming-Languages
and Systems (ALPS) Lab

The University of Texas at Dallas, Richardson, Texas, USA

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 2

University of Texas at Dallas

Circular Phenomena in Comp. Sci.
• Circularity has dogged Mathematics and Computer

Science ever since Set Theory was first developed:
– The well known Russell’s Paradox:

• R = { x | x is a set that does not contain itself}
Is R contained in R? Yes and No

– Liar Paradox: I am a liar
– Hypergame paradox (Zwicker & Smullyan)

• All these paradoxes involve self-reference through
some type of negation

• Russell put the blame squarely on circularity and
sought to ban it from scientific discourse:

``Whatever involves all of the collection must not be one of
the collection” -- Russell 1908

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 3

University of Texas at Dallas

Circularity in Computer Science
• Following Russell’s lead, Tarski proposed to ban self-

referential sentences in a language
• Rather, have a hierarchy of languages
• All this changed with Kripke’s paper in 1975 who

showed that circular phenomenon are far more
common and circularity can’t simply be banned.

• Circularity has been banned from automated theorem
proving and logic programming through the occurs
check rule:

An unbound variable cannot be unified with a term
containing that variable

• What if we allowed such unification to proceed (as LP
systems always did for efficiency reasons)?

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 4

University of Texas at Dallas

Circularity in Computer Science
• If occurs check is removed, we’ll generate

circular (infinite) structures:
– X = [1,2,3 | X]

• Such structures, of course, arise in computing
(circular linked lists), but banned in logic/LP.

• Subsequent LP systems did allow for such
circular structures (rational terms), but they
only exist as data-structures, there is no proof
theory to go along with it.
– One can hold the data-structure in memory within

an LP execution, but one can’t reason about it.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 5

University of Texas at Dallas

Circularity in Everyday Life
• Circularity arises in every day life

– Most natural phenomenon are cyclical
• Cyclical movement of the earth, moon, etc.
• Our digestive system works in cycles

– Social interactions are cyclical:
• Conversation = (1st speaker, (2nd Speaker, Conversation)
• Shared conventions are cyclical concepts

• Numerous other examples can be found
elsewhere (Barwise & Moss 1996)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 6

University of Texas at Dallas

Circularity in Computer Science
• Circular phenomenon are quite common in

Computer Science:
– Circular linked lists
– Graphs (with cycles)
– Controllers (run forever)
– Bisimilarity
– Interactive systems
– Automata over infinite strings/Kripke structures
– Perpetual processes

• Logic/LP not equipped to model circularity

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 7

University of Texas at Dallas

Coinduction
• Circular structures are infinite structures

X = [1, 2 | X] is logically speaking X = [1, 2, 1, 2, ….]
• Proofs about their properties are infinite-sized
• Coinduction is the technique for proving these

properties
– first proposed by Peter Aczel in the 80s

• Systematic presentation of coinduction & its
application to computing, math. and set theory:

“Vicious Circles” by Moss and Barwise (1996)
• Our focus: inclusion of coinductive reasoning

techniques into LP and theorem proving

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 8

University of Texas at Dallas

Induction vs Coinduction
• Induction is a mathematical technique for finitely

reasoning about an infinite (countable) no. of things.
• Examples of inductive structures:

– Naturals: 0, 1, 2, …
– Lists: [], [X], [X, X], [X, X, X], …

• 3 components of an inductive definition:
(1) Initiality, (2) iteration, (3) minimality
– for example, the set of lists is specified as follows:

[] – an empty list is a list (initialityinitialityinitialityinitiality)
[H | T] is a list if T is a list and H is an element (iterationiterationiterationiteration)
nothing else is a list (minimalityminimalityminimalityminimality)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 9

University of Texas at Dallas

Induction vs Coinduction
• Coinduction is a mathematical technique for

(finitely) reasoning about infinite things.
– Mathematical dual of induction
– If all things were finite, then coinduction would not be

needed.
– Perpetual programs, automata over infinite strings

• 2 components of a coinductive definition:
(1) iteration, (2) maximality
– for example, for a list:

[H | T] is a list if T is a list and H is an element (iterationiterationiterationiteration).
MaximalMaximalMaximalMaximal set that satisfies the specification of a list.

– This coinductive interpretation specifies all infinite sized
lists

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 10

University of Texas at Dallas

Example: Natural Numbers
• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• N = µΓΝΝΝΝ

– where µΓ is least fixed-point.
• aka “inductive definition”

– Let N be the smallest set such that
• 0 ∈ N
• x ∈ N implies x + 1 ∈ N

• Induction corresponds to Least Fix Point
(LFP) interpretation.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 11

University of Texas at Dallas

Example: Natural Numbers and Infinity

• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• ΓΝΝΝΝ unambiguously defines another set
• N’ = νΓΝΝΝΝ = N ∪ { ω }

– ω = succ(succ(succ(...))) = succ(ω) = ω + 1
– where νΓΝΝΝΝ is a greatest fixed-point

• Coinduction corresponds to Greatest Fixed
Point (GFP) interpretation.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 12

University of Texas at Dallas

Mathematical Foundations
• Duality provides a source of new mathematical tools

that reflect the sophistication of tried and true
techniques.

CorecursionCoinductionGreatest fixed point

RecursionInductionLeast fixed point

MappingMappingMappingMappingProofProofProofProofDefinitionDefinitionDefinitionDefinition

• Co-recursion: recursive def’n without a base case

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 13

University of Texas at Dallas

Applications of Coinduction
• model checking
• bisimilarity proofs
• lazy evaluation in FP
• reasoning with infinite structures
• perpetual processes
• cyclic structures
• operational semantics of “coinductive logic

programming”
• Type inference systems for lazy functional

languages

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 14

University of Texas at Dallas

Inductive Logic Programming
• Logic Programming

– is actually inductive logic programming.
– has inductive definition.
– useful for writing programs for reasoning about

finite things:
- data structures
- properties

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 15

University of Texas at Dallas

Infinite Objects and Properties
• Traditional logic programming is unable to reason

about infinite objects and/or properties.
• (The glass is only half-full)
• Example: perpetual binary streams

– traditional logic programming cannot handle

bit(0).
bit(1).
bitstream([H | T]) :- bit(H), bitstream(T).
|?- X = [0, 1, 1, 0 | X], bitstream(X).

• Goal: Combine traditional LP with coinductive LP

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 16

University of Texas at Dallas

Overview of Coinductive LP
• Coinductive Logic Program is

a definite program with maximal co-Herbrand model
declarative semantics.

• Declarative Semantics: across the board dual of
traditional LP:
– greatest fixed-points
– terms: co-Herbrand universe Ucocococo(P)
– atoms: co-Herbrand base Bcocococo(P)
– program semantics: maximal co-Herbrand model Mcocococo(P).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 17

University of Texas at Dallas

Coinductive LP: An Example
• Let P1111 be the following coinductive program.

:- coinductive from/2. from(x) = x cons from(x+1)
from(N, [N | T]) :- from(s(N), T).
|?- from(0, X).

• co-Herbrand Universe: Ucocococo(P1111) = N ∪ Ω ∪ L where
N=[0, s(0), s(s(0)), ...], Ω={ s(s(s(. . .))) }, and L is the the set
of all finite and infinite lists of elements in N, Ω and L.

• co-Herbrand Model:
Mcocococo(P1111)={ from(t, [t, s(t), s(s(t)), ...]) | t ∈ Ucocococo(P1111) }

• from(0, [0, s(0), s(s(0)), ...]) ∈ Mcocococo(P1111) implies the query holds
• Without “coinductive” declaration of from, Mcocococo(P1111’)=∅

This corresponds to traditional semantics of LP with infinite trees.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 18

University of Texas at Dallas

Operational Semantics: co-SLD
• nondeterministic state transition system
• states are pairs of

– a finite list of syntactic atoms [resolvent] (as in Prolog)
– a set of syntactic term equations of the form x = f(x) or x = t

• For a program p :- p. => the query |?- p. will succeed.
• p([1 | T]) :- p(T). => |?- p(X) to succeed with X= [1 | X].

• transition rules
– definite clause rule
– “coinductive hypothesis rule”

• if a coinductive goal Q is called,
and Q unifies with a call made earlier (e.g., P :- Q)

then Q succeeds.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 19

University of Texas at Dallas

Correctness
• Theorem (soundness). If atom A has a

successful co-SLD derivation in program P,
then E(A) is true in program P, where E is the
resulting variable bindings for the derivation.

• Theorem (completeness). If A ∈ Mcocococo(P) has a
rational proof, then A has a successful co-
SLD derivation in program P.
– Completeness only for rational/regular proofs

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 20

University of Texas at Dallas

Implementation
• Search strategy: hypothesis-first, leftmost, depth-first
• Meta-Interpreter implementation.

query(Goal) :- solve([],Goal).

solve(Hypothesis, (Goal1,Goal2)) :-
solve(Hypothesis, Goal1), solve(Hypothesis,Goal2).

solve(_ , Atom) :- builtin(Atom), Atom.

solve(Hypothesis,Atom):- member(Atom, Hypothesis).

solve(Hypothesis,Atom):- notbuiltin(Atom),
clause(Atom,Atoms),

solve([Atom|Hypothesis],Atoms).

• A more efficient implem. atop YAP also available

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 21

University of Texas at Dallas

Example: Number Stream
:- coinductive stream/1.
stream([H | T]) :- num(H), stream(T).
num(0).
num(s(N)) :- num(N).

|?- stream([0, s(0), s(s (0)) | T]).
1. MEMO: stream([0, s(0), s(s (0)) | T])
2. MEMO: stream([s(0), s(s (0)) | T])
3. MEMO: stream([s(s (0)) | T])

Answers:
T = [0, s(0), s(s(0)), s(s(0)) | T]
T = [0, s(0), s(s(0)), s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)) | X] (where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 22

University of Texas at Dallas

Example: Append
:- coinductive append/3.
append([], X, X).
append([H | T], Y, [H | Z]) :- append(T, Y, Z).

|?- Y = [4, 5, 6 | Y], append([1, 2, 3], Y, Z).
Answer: Z = [1, 2, 3 | Y], Y=[4, 5, 6 | Y]

|?- X = [1, 2, 3 | X], Y = [3, 4 | Y], append(X, Y, Z).
Answer: Z = [1, 2, 3 | Z].

|?- Z = [1, 2 | Z], append(X, Y, Z).
Answer: X = [], Y = [1, 2 | Z] ; X = [1, 2 | X], Y = _

X = [1], Y = [2 | Z] ;
X = [1, 2], Y = Z; …. ad infinitum

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 23

University of Texas at Dallas

Example: Comember
member(H, [H | T]).
member(H, [X | T]) :- member(H, T).

?- L = [1,2 | L], member(3, L) succeeds. Instead:

:- coinductive comember/2. %drop/3 is inductive
comember(X, L) :- drop(X, L, R), comember(X, R).
drop(H, [H | T], T).
drop(H, [X | T], T1) :- drop(H, T, T1).

?- X=[1, 2, 3 | X], comember(2,X). ?- X = [1,2 | X], comember(3, X).
Answer: yes. Answer: no

?- X=[1, 2, 3, 1, 2, 3], comember(2, X).
Answer: no.

?- X=[1, 2, 3 | X], comember(Y, X).
Answer: Y = 1;

Y = 2;
Y = 3;

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 24

University of Texas at Dallas

Example: Sieve of Eratosthenes
• Lazy evaluation can be elegantly incorporated in LP
:- coinductive sieve/2, filter/3, comember/2.
primes(X) :- generate_infinite_list(I),sieve(I,L),comember(X,L).
sieve([H|T],[H,R]) :- filter(H,T,F),sieve(F,R).
filter(H,[],[]).
filter(H,[K | T],[K | T1]):- R is K mod H, R>0,filter(H,T,T1).
filter(H,[K | T],T1) :- 0 is K mod H, filter(H,T,T1).
:-coinductive int/2
int(X,[X | Y]) :- X1 is X+1, int(X1,Y).
generate_infinite_list(I) :- int(2,I).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 25

University of Texas at Dallas

Co-Logic Programming
• combines both halves of logic programming:

– traditional logic programming
– coinductive logic programming

• syntactically identical to traditional logic
programming, except predicates are labeled:
– Inductive, or
– coinductive

• and stratification restriction enforced where:
– inductive and coinductive predicates cannot be mutually

recursive. e.g.,
p :- q.

q :- p.
Program rejected, if p coinductive & q inductive

• Implementation on top of YAP available.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 26

University of Texas at Dallas

Application: Model Checking
• automated verification of hardware and software

systems
• ω-automata

– accept infinite strings
– accepting state must be traversed infinitely often

• requires computation of lfp and gfp
• co-logic programming provides an elegant framework

for model checking
• traditional LP works for safety property (that is based

on lfp) in an elegant manner, but not for liveness .

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 27

University of Texas at Dallas

Verification of Properties

• Types of properties: safety and liveness
• Search for counter-example

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 28

University of Texas at Dallas

Safety versus Liveness
• Safety

– “nothing bad will happen”
– naturally described inductively
– straightforward encoding in traditional LP

• liveness
– “something good will eventually happen”
– dual of safety
– naturally described coinductively
– straightforward encoding in coinductive LP

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 29

University of Texas at Dallas

Finite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).

trans(s0, a, s1). trans(s1, b, s2). trans(s2, c, s3).
trans(s3, d, s0). trans(s2, 3, s0). final(s2).

?- automata(X,s0).
X=[a, b];
X=[a, b, e, a, b];
X=[a, b, e, a, b, e, a, b];
……
……
……

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 30

University of Texas at Dallas

Infinite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(s0,a,s1). trans(s1,b,s2). trans(s2,c,s3).
trans(s3,d,s0). trans(s2,3,s0). final(s2).

?- automata(X,s0).
X=[a, b, c, d | X];
X=[a, b, e | X];

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 31

University of Texas at Dallas

Verifying Liveness Properties
• Verifying safety properties in LP is relatively easy:

safety modeled by reachability
• Accomplished via tabled logic programming
• Verifying liveness is much harder: a counterexample

to liveness is an infinite trace
• Verifying liveness is transformed into a safety check

via use of negations in model checking and tabled LP
– Considerable overhead incurred

• Co-LP solves the problem more elegantly:
– Infinite traces that serve as counter-examples are easily

produced as answers

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 32

University of Texas at Dallas

Verifying Liveness Properties
• Consider Safety:

– Question: Is an unsafe state, Su, reachable (safe)?
– If answer is yes, the path to Su is the counter-ex.

• Consider Liveness, then dually
– Question: Is a state, D, that should be dead, live?
– If answer is yes, the infinite path containing D is

the counter example
• Co-LP will produce this infinite path as the answer

• Checking for liveness is just as easy as
checking for safety

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 33

University of Texas at Dallas

Counter

sm1(N,[sm1|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.
s0(N,[s0|T]) :- N1 is N+1 mod 4, s1(N1,T), N1>=0.
s1(N,[s1|T]) :- N1 is N+1 mod 4, s2(N1,T), N1>=0.
s2(N,[s2|T]) :- N1 is N+1 mod 4, s3(N1,T), N1>=0.
s3(N,[s3|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.
?- sm1(-1,X),comember(sm1,X).

No. (because sm1 does not occur in X infinitely often).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 34

University of Texas at Dallas

Nested Finite and Infinite Automata

:- coinductive state/2.
state(s0, [s0,s1 | T]):- enter, work,

state(s1,T).
state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(s0,T).
state(s0, [s0 | T]):- error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(s0,T).
work. enter. repeat. exit. error.
work :- work.
|?- state(s0,X), absent(s2,X).

X=[s0, s3 | X]

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 35

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

• ω-automata w/ time constrained transitions & stopwatches
• straightforward encoding into CLP(R) + Co-LP

Timed Automata

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 36

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X, up, X, T1,T2,T2). % up=idle
train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.
train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2}
train(s2,out,s3,T1,T2,T3).
train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}.
train(X,lower,X,T1,T2,T2).
train(X,down,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 37

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).
contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 38

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 39

University of Texas at Dallas

Verification of Real-Time Systems
:- coinductive driver/9.
driver(S0,S1,S2, T,T0,T1,T2, [X | Rest], [(X,T) | R]) :-

train(S0,X,S00,T,T0,T00), contr(S1,X,S10,T,T1,T10),
gate(S2,X,S20,T,T2,T20), {TA > T},
driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).

|?- driver(s0,s0,s0,T,Ta,Tb,Tc,X,R).
R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),

(raise,G), (up,H) | R],
X=[approach, lower, down, in, out, exit, raise, up | X] ;
R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G),

(approach,H),(up,I)|R],
X=[approach,lower,down,in,out,exit,raise,approach,up | X] ;
% where A, B, C, ... H, I are the corresponding wall clock time of events generated.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 40

University of Texas at Dallas

Goal-directed execution of ASP
• Answer set programming (ASP) is a popular

formalism for non monotonic reasoning
• Applications in real-world reasoning, planning, etc.
• Semantics given via lfp of a residual program

obtained after “Gelfond-Lifschitz” transform
• Popular implementations: Smodels, DLV, etc.

1. No goal-directed execution strategy available
2. ASP limited to only finitely groundable programs

• Co-logic programming solves both these problems.
• Also provides a goal-directed method to check if a

proposition is true in some model of a prop. formula

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 41

University of Texas at Dallas

Why Goal-directed ASP?
• Most of the time, given a theory, we are interested in

knowing if a particular goal is true or not.
• Top down goal-directed execution provides operational

semantics (important for usability)
• Execution more efficient.

– Tabled LP vs bottom up Deductive Deductive Databases
• Why check the consistency of the whole

knowledgebase?
– Inconsistency in some unrelated part will scuttle the whole

system
• Most practical examples anyway add a constraint to

force the answer set to contain a certain goal.
– E.g. Zebra puzzle: ::::---- not not not not satisfied....

• Answer sets of non-finitely groundable programs
computable & Constraints incorporated in Prolog style.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 42

University of Texas at Dallas

Negation in Co-LP
• Given a clause such as

p :- q, not p.
?- p. fails coinductively when not p is encountered

• To incorporate negation in coinductive reasoning, need a
negative coinductive hypothesis rule:
– In the process of establishing not(p), if not(p) is seen again in the

resolvent, then not(p) succeeds
• Also, not not p reduces to p.
• Answer set programming makes the “glass completely full” by

taking into account failing computations:
– p :- q, not p. is consistent if p = false and q = false

• However, this takes away monotonicity: q can be constrainted to
false, causing q to be withdrawn, if it was established earlier.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 43

University of Texas at Dallas

ASP
• Consider the following program, A:

p :- not q. t. r :- t, s.
q :- not p. s.
A has 2 answer sets: {p, r, t, s} & {q, r, t, s}.

• Now suppose we add the following rule to A:
h :- p, not h. (falsify p)

Only one answer set remains: {q, r, t, s}
• Gelfond-Lifschitz Method:

– Given an answer set S, for each p ∈ S, delete all rules whose
body contains “not p”;

– delete all goals of the form “not q” in remaining rules
– Compute the least fix point, L, of the residual program
– If S = L, then S is an answer set

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 44

University of Texas at Dallas

Goal-directed ASP
• Consider the following program, A’:

p :- not q. t. r :- t, s.
q :- not p, r. s. h :- p, not h.

• Separate into constraint and non-constraint rules:
only 1 constraint rule in this case.

• Execute the query under co-LP, candidate answer
sets will be generated.

• Keep the ones not rejected by the constraints.
• Suppose the query is ?- q. Execution: q � not p, r

� not not q, r � q, r � r � t, s � s � success.
Ans = {q, r, t, s}

• Next, we need to check that constraint rules will not
reject the generated answer set.
– (it doesn’t in this case)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 45

University of Texas at Dallas

Goal-directed ASP
• In general, for the constraint rules of p as head,

p1111:- B1111. p2222:- B2222. ... pnnnn :- Bnnnn., generate rule(s) of the form:
chk_p1111 :- not(p1111), B1111.
chk_p2222 :- not(p2222), B2222.
...
chk_pnnnn :- not(p), Bnnnn.

• Generate: nmr_chk :- not(chk_p1111), ... , not(chk_pnnnn).
• For each pred. definition, generate its negative version:

not_p :- not(B1111), not(B2222), ... , not(Bnnnn).
• If you want to ask query Q, then ask ?- Q, nmr_chk.
• Execution keeps track of atoms in the answer set (PCHS)

and atoms not in the answer set (NCHS).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 46

University of Texas at Dallas

Goal-directed ASP
• Consider the following program, P1:

(i) p :(i) p :(i) p :(i) p :---- not q. (ii) q:not q. (ii) q:not q. (ii) q:not q. (ii) q:---- not r. (iii) r :not r. (iii) r :not r. (iii) r :not r. (iii) r :---- not p. (iv) q :not p. (iv) q :not p. (iv) q :not p. (iv) q :---- not p.not p.not p.not p.
P1 has 1 answer set: {q, r}.

• Separate into: 3 constraint rules (i, ii, iii)
2 non-constraint rules (i, iv).

p :- not(q). q :- not(r). r :- not(p). q :- not(p).
chk_p :- not(p), not(q). chk_q :- not(q), not(r). chk_r :- not(r),
not(p). nmr_chk :- not(chk_p), not(chk_q), not(chk_r).
not_p :- q. not_q :- r, p. not_r :- p.

Suppose the query is ?- r.
Expand as in co-LP: r � not p � not not q � q (� not r
� fail, backtrack) � not p � success. Ans={r, q} which
satisfies the constraint rules of nmr_chk.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 47

University of Texas at Dallas

Next Generation of LP System
• Lot of research in LP resulting in advances:

– CLP, Tabled LP, Parallelism, Andorra, ASP, now co-LP

• However, no “one stop shop” system
• Dream: build this “one stop shop” system

Next Generation

Prolog System
Andorra

CLPOr-Parallelism

Tabled LP

ASP

Rule selection Goal selection

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 48

University of Texas at Dallas

Related Publications
1. L. Simon, A. Mallya, A. Bansal, and G. Gupta.

Coinductive logic programming. In ICLP’06 .
2. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-

Logic programming: Extending logic programming
with coinduction. In ICALP’07.

3. ICLP’07 Proceedings (this tutorial)
4. A. Bansal, R. Min, G. Gupta. Goal-directed Execution

of ASP. Internal Report, UT Dallas
5. R. Min, A. Bansal, G. Gupta. Goal-directed Execution

of ASP with General Predicates. Forthcoming.
6. A. Bansal, R. Min, G. Gupta. Resolution Theorem

Proving with Coinduction. Internal Report, UT Dallas

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 49

University of Texas at Dallas

Conclusion
• Circularity is a common concept in everyday life and

computer science:
• Logic/LP is unable to cope with circularity
• Solution: introduce coinduction in Logic/LP

– dual of traditional logic programming
– operational semantics for coinduction
– combining both halves of logic programming

• applications to verification, non monotonic reasoning,
negation in LP, web services, theorem proving,
propositional satisfiability.

• Acknowledgemt.: V. Santos Costa, R. Rocha, F. Silva
(for help with implementation of co-LP)

