
Maratona Inter-Universitária
de Programação
Instituto Superior Técnico - 9 de outubro de 2021

Maratona Inter–Universitária de

Programação 2021

Teams from the following universities

CONTENTS

Page

Information 3
Scientific Committee . 3
Local Organization Committee . 3
Languages and Compilers . 4

Limits . 4
Input/Output . 5
IDEs and Editors . 5
Documentation . 5

Problems 7
Problem A: Rectangulon . 8
Problem B: Where to Sit . 12
Problem C: House of Cards . 15
Problem D: Pizza for Dinner . 17
Problem E: Chemical Names . 19
Problem F: Reverse the Numbers . 24
Problem G: World War Viruses . 26
Problem H: Triangles . 29
Problem I: Hill, the Climber . 31
Problem J: Palm Island Neighbors . 34
Problem K: The Rotten Paper Chase Industry . 36

1

MIUP 2021, October 9, Instituto Superior Técnico 2 of 40

INFORMATION

Scientific Committee

• André Restivo, FEUP / Universidade do Porto

• Fábio Marques, Universidade de Aveiro

• Filipe Araújo, Universidade de Coimbra

• Lúıs M. S. Russo, IST / Universidade de Lisboa

• Margarida Mamede, FCT / Universidade Nova de Lisboa

• Mário Pereira, FCT / Universidade Nova de Lisboa

• Mikoláš Janota, Czech Technical University in Prague (Coordinator)

• Pedro Guerreiro, Universidade do Algarve

• Pedro Mariano, ISCTE

• Pedro Ribeiro, FCUP / Universidade do Porto

• Rui Maranhão, FEUP / Universidade do Porto

• Rui Mendes, Universidade do Minho

• Simão Melo de Sousa, Universidade da Beira Interior

• Vasco Pedro, Universidade de Évora

Local Organization Committee

• Alexandre Francisco, IST / Universidade de Lisboa

• Arlindo Oliveira, IST / Universidade de Lisboa

• Francisco Santos, IST / Universidade de Lisboa

• Francisco Miguel Diońısio, IST / Universidade de Lisboa

• João F. Ferreira, IST / Universidade de Lisboa (Coordinator)

• José Carlos Monteiro, IST / Universidade de Lisboa

• Lúıs Guerra e Silva, IST / Universidade de Lisboa

• Pedro T. Monteiro, IST / Universidade de Lisboa

• Vasco Manquinho, IST / Universidade de Lisboa

3

Languages and Compilers

I. Files *.c are assumed to be C code and are compiled with gcc 8.3.0 with the command

gcc -std=gnu17 -Wall name.c -lm

and then executed with the command

./a.out

II. Files *.cpp are assumed to be C++ code and are compiled with gcc 8.3.0 with the command

g++ -std=gnu++17 -Wall name.cpp -lm

and then executed with the command

./a.out

III. Files *.java are assumed to be Java code and are compiled with OpenJDK 11.0.12 with the
command

javac -encoding utf8 name.java

and then executed with the command

java -Xmx256M -Xss32M -classpath . name

IV. Files *.py are assumed to be Python 3 code and are executed with Python 3.7.3 with the com-
mand

python3 name.py

Limits

Attention: The use of pragmas is explicitly prohibited in C/C++ solutions (such as modifying opti-
mization level). Solutions containing pragmas will be considered invalid.

Compilation: The compilation process can take at most 60 seconds and the maximum source code
size is 100 KB. Every program/solution must be submitted in a single file. For Java submissions, the
file must have the same name as the class that contains the main method. There is no limit for the
number of classes to be contained in that file.

Runtime Although the maximum runtime is defined individually for each problem, the overall limit
is 2 seconds.

MIUP 2021, October 9, Instituto Superior Técnico 4 of 40

Input/Output

All programs should read the input from the standard input, and write the output to the standard
output. All lines (both in the input and output) should end with the newline character (\n). Except
when explicitly stated, single space is used as a separator. No line starts or ends with any kind of white
space.

IDEs and Editors

• KDevelop

• Code::Blocks

• PyCharm Professional

• WebStorm

• IntelliJ Ultimate

• Wing IDE 101

• Eclipse IDE for Enterprise Java Developers

– GitHub Mylyn Connector

– FindBugs

– M2Eclipse

• Apache Maven (in /opt/)

• Android Studio

– Android SDK API 29 (in /opt/Android/Sdk/)

– KVM (equivalent to Intel HAXM)

• Jupyter Notebook

• Vim

• SublimeText 4

• Visual Studio Code

• emacs

Documentation

Language documentation is available. Man pages are also available in your workstation as usual, just
use the command man.

MIUP 2021, October 9, Instituto Superior Técnico 5 of 40

MIUP 2021, October 9, Instituto Superior Técnico 6 of 40

PROBLEMS

7

Problem A: Rectangulon

They called it the “Battle of the Red Sea,” for it was the bloodiest and most massive battle
the isle of Rectangulon had ever seen.

Rectangulon, an island with many kingdoms, was peaceful for as long as the ancient ones
can remember. However, power and greed changed all that. Each kingdom raised an army
and was ready for battle, no matter the cost!

Nevertheless, there was still some dignity left in this darkest of times, as all kingdoms
decided to abide by the ancient rules of battle:

1. Whoever has the largest army on the island attacks first.

2. Always attack your weakest neighbor.

3. If two armies have the same size, north then west always takes precedence.

4. After a battle, the winning army must all move into the defeated army’s position.

Which will be the last army standing?

MIUP 2021, October 9, Instituto Superior Técnico 8 of 40

Task

Given the sizes of all armies in Rectangulon, calculate the place of origin and ending size of
the last standing army of the “Battle of the Red Sea.”

In each turn, the largest army is selected. If two armies are tied, the one that is further
north is selected. If both are at the same latitude, the one further west is selected.

3 5 5

2 5 2

1 3 4

Then, the attacker chooses his weakest neighbor by looking into the four cardinal direc-
tions (north, west, east, and south). If two armies are tied, the one that is further north is
selected. If both are at the same latitude, the one further west is selected.

3 5 5

2 5 2

1 3 4

The result of the battle is the difference between the sizes of both armies. If the attacking
army has size s1, and the defending army has size s2, then the size of the attacking army
will become s1 − s2, and the defending army will be destroyed (notice that s1 ≥ s2 is always
true). If both armies have the same size, both are destroyed. Otherwise, the remaining units
of the attacking army move into the defender’s army position.

2 0 5

2 5 2

1 3 4

If the selected army has no one to attack, then one of its units deserts due to boredom.

The last army standing wins the Battle of the Red Sea. Unless there are no survivors!

Input

The first line contains two integers, w and h, representing the width and height of the island.

The next h lines, each contain w integers representing the size, s, of each army.

MIUP 2021, October 9, Instituto Superior Técnico 9 of 40

Constraints

1 ≤ w, h ≤ 100 Dimensions of the island

1 ≤ s ≤ 1000 Size of each army (number of units)

Output

A single line containing the string “none wins” if the last two armies destroy each other.

Otherwise, a single line containing three integers. The first two represent the original coor-
dinates (row, column) of the last standing army, and the third represents the size of that
army at the end of the battle. The origin of the map is the most northwestern kingdom with
coordinates (0, 0).

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

column

ro
w

Sample Input 1

3 3

3 5 5

2 5 2

1 3 4

Sample Output 1

2 1 1

Sample Explanation 1

The following is a pictorial explanation of this sample input.

The grayed out square represents the kingdom that eventually wins the battle as it moves
through the island.

Each 3 × 3 grid represents a step in the battle. The red arrow shows a battle between the
largest army and its weaker neighbor. The red circle represent the largest army getting bored
and losing a unit.

MIUP 2021, October 9, Instituto Superior Técnico 10 of 40

3 5 5

2 5 2

1 3 4

2 - 5

2 5 2

1 3 4

2 - -

2 5 3

1 3 4

2 - -

3 - 3

1 3 4

2 - -

3 - 1

1 3 -

2 - -

- - 1

2 3 -

2 - -

- - 1

1 - -

1 - -

- - 1

1 - -

- - -

- - 1

1 - -

- - -

- - -

1 - -

As you can see, the winning army ended at coordinates (2, 0), but what we want are its
starting coordinates, in this case (2, 1).

Sample Input 2

3 3

5 10 5

5 5 5

10 5 10

Sample Output 2

none wins

MIUP 2021, October 9, Instituto Superior Técnico 11 of 40

Problem B: Where to Sit

The new school year is starting, and John is very excited to see his colleagues and friends
again. However, he faces a dilemma. Whom is he going to sit next to?

John decided that he would sit at the same distance, using the Manhattan distance, from
each of his best friends, and so he decided to create a little program that would allow him
to determine where he should sit.

Task

Your task is to determine where John should sit. To achieve this, consider that the room
has tables distributed on an m×n grid (m represents the rows and n the columns) and that
tables in the room are at the same distance from each other, both vertically and horizontally,
and that seats are numbered from left to right and from top to bottom starting at 1 (top
left) and ending at m× n (bottom right), see Figure 1.

Figure 1: Example of a classroom distribution (m = 3 and n = 5)

Input

The input has the following format. In the first line, we have two integers, m rows and n
columns, representing the grid dimension. In the second line, a single integer k represents the
number of John’s best friends. In each of the remaining k rows, a single integer si indicates
the place where the ith John’s best friend sits. There are no repetitions.

MIUP 2021, October 9, Instituto Superior Técnico 12 of 40

Constraints

1 ≤ m,n ≤ 100 Number of rows and columns

2 ≤ k ≤ min{10,m× n− 1} Number of John’s best friends
1 ≤ si ≤ m× n and 1 ≤ i ≤ k table where the ith John’s best friend sits

Output

The output consists of a positive number, between 1 and m×n, representing the table where
John should sit, or −1 if there is no possible solution. If there is more than one table at
which John can sit, the one with the lowest number should be chosen.

Sample Input 1

5 5

4

25

5

21

1

Sample Output 1

13

Sample Input 2

4 4

4

4

1

16

13

Sample Output 2

-1

MIUP 2021, October 9, Instituto Superior Técnico 13 of 40

Sample Input 3

4 6

5

4

9

21

14

6

Sample Output 3

17

MIUP 2021, October 9, Instituto Superior Técnico 14 of 40

Problem C: House of Cards

Ahhhh, lockdown, too much spare time. Alice wants to build houses of cards. For a house
with a single level, she only needs two cards, as depicted in Figure 1(a). For a house with
two levels, she needs seven cards, and for a house with three levels, she needs fifteen cards,
as we can see in Figure 1(b) and Figure 1(c), respectively.

(a) One level (b) Two levels (c) Three levels

Figure 1: Houses of cards with different levels.

Task

If we give Alice N cards, how many complete levels will her house of cards have?

Input

The input contains a single integer N representing the total number of cards given to Alice.

Constraints

1 ≤ N ≤ 1015 Number of cards

Output

One integer corresponding to the highest number of levels of the built house with at most
N cards.

Sample Input 1

15

MIUP 2021, October 9, Instituto Superior Técnico 15 of 40

Sample Output 1

3

Sample Input 2

17

Sample Output 2

3

MIUP 2021, October 9, Instituto Superior Técnico 16 of 40

Problem D: Pizza for Dinner

Alan and Ben are happy: There’s pizza for dinner! They will play again! A few months
ago, their parents devised some rules for sharing a pizza, putting an end to the unpleasant
complaints of “His slice is always bigger than mine!”.

Mum and Dad remove the first two slices for themselves and decide which son plays first.
In each play, a child takes a slice of pizza and chooses who eats it.

• If the slice is for himself, his brother plays next.

• If the slice is given to the brother, it must be one of the largest available slices, but
the (same) child is the next to play.

Of course slices have to be removed in a polite order: once Mum takes the first slice, opening
a hole in the pizza, the available slices are those adjacent to the hole.

Ben, who is the youngest, almost never wins. Alan ends up eating more pizza. So, today
he will try a new strategy: he will always take a largest slice, alternating between eating it
and giving it to his brother. In his first play, he will eat the slice, in his second play, he will
give the slice to Alan, in his third play, he will go back to eating the slice, and so on.

Task

Write a program that, given the sizes of the pizza slices, computes the maximum amount
of pizza Ben can eat today (always taking a largest slice, and alternating between eating it
and giving it to his brother), considering that Alan plays optimally (i.e. he always ends up
eating the maximum possible amount of pizza). Notice that Mum can pick any slice, Dad
can remove one of the two slices adjacent to that of Mum’s, and the parents can choose Alan
or Ben to play first.

Input

The input first line has a single integer, N , representing the number of pizza slices. The
second line contains N integers, S1 S2 . . . SN , which denote the sizes of the slices. Notice
that the pizza is circular, that is, slices 1 and N are adjacent to each other.

MIUP 2021, October 9, Instituto Superior Técnico 17 of 40

Constraints

4 ≤ N ≤ 2500 Number of pizza slices

1 ≤ Si ≤ 100 Size of a pizza slice (for i = 1, 2, . . . , N)

Output

The output consists of a single line with an integer, representing the maximum amount of
pizza Ben can eat if he always takes a largest slice, alternating between eating it and giving
it to his brother, and Alan plays optimally.

Sample Input

7

30 25 36 35 16 20 35

Sample Output

66

Sample Explanation

Ben eats the maximum amount of pizza when Mum removes the smallest slice, Dad picks
the (adjacent) slice of size 35, Ben plays first, and the sequence of moves is the following:

1. Ben removes and eats the slice of size 36 (because this is his first play and 36 > 20).

2. Alan (who plays optimally) decides to take the slice of size 20 for himself.

3. Then, Ben removes the slice of size 35 and gives it to Alan.

4. In his third play, Ben takes the larger slice (of size 30) for himself.

5. Alan takes (and eats) the only remaining slice (of size 25).

MIUP 2021, October 9, Instituto Superior Técnico 18 of 40

Problem E: Chemical Names

The other day I received an email from a colleague of the department of chemistry. In the
signature section there was this nice little image:

It took me a moment or two to understand. The image is made up by the three little
squares of the elements, aluminium, vanadium and einsteinium, taken from the periodic
table. The symbols for those elements, Al, V and Es, make up "Alves", which is the surname
of my colleague.

How cool is that?!

I immediately tried to find the elements that compose my own name, "Valente", with
symbols of elements but, alas, it is not possible. I am not a chemist, but I am a programmer.
I rushed to write a program that, given a name, computes the sequence of elements whose
symbols make up that name, when that is possible.

Task

Please write a program that, given a sequence of names, displays for each of those names all
the sequences of elements whose symbols make up the name.

MIUP 2021, October 9, Instituto Superior Técnico 19 of 40

Input

The first line of the input contains a positive integer, N , representing the number of names
to be processed. N lines follow, each containing one name.

Constraints

1 ≤ N ≤ 100 Number of names

1 ≤ li ≤ 15 Length of each name

c Characters used: each name in the input uses only lowercase Latin letters,
without diacritics.

Output

For each name read, the program shall write one line echoing the name, followed by one
line for each sequence of elements whose symbols compose that name. In each sequence the
elements are represented by their names (not their symbols), each separated from the next
by one space. The names shall be written in capitalised form, as they appear in the periodic
table. Each group of lines, following the line that echoes the name that was read, shall be
lexicographically sorted by the atomic weights.

Sample Input

6

alves

valente

costa

mcclane

biden

backus

Sample Output

alves

Aluminium Vanadium Einsteinium

valente

costa

Carbon Oxygen Sulfur Tantalum

Carbon Osmium Tantalum

Cobalt Sulfur Tantalum

mcclane

Moscovium Carbon Lanthanum Neon

biden

MIUP 2021, October 9, Instituto Superior Técnico 20 of 40

backus

Boron Actinium Potassium Uranium Sulfur

Barium Carbon Potassium Uranium Sulfur

Periodic Table

For your convenience, the periodic table is given below in text format (feel free to copy from
the HTML version):

1 H Hydrogen

2 He Helium

3 Li Lithium

4 Be Beryllium

5 B Boron

6 C Carbon

7 N Nitrogen

8 O Oxygen

9 F Fluorine

10 Ne Neon

11 Na Sodium

12 Mg Magnesium

13 Al Aluminium

14 Si Silicon

15 P Phosphorus

16 S Sulfur

17 Cl Chlorine

18 Ar Argon

19 K Potassium

20 Ca Calcium

21 Sc Scandium

22 Ti Titanium

23 V Vanadium

24 Cr Chromium

25 Mn Manganese

26 Fe Iron

27 Co Cobalt

28 Ni Nickel

29 Cu Copper

30 Zn Zinc

31 Ga Gallium

32 Ge Germanium

33 As Arsenic

34 Se Selenium

MIUP 2021, October 9, Instituto Superior Técnico 21 of 40

35 Br Bromine

36 Kr Krypton

37 Rb Rubidium

38 Sr Strontium

39 Y Yttrium

40 Zr Zirconium

41 Nb Niobium

42 Mo Molybdenum

43 Tc Technetium

44 Ru Ruthenium

45 Rh Rhodium

46 Pd Palladium

47 Ag Silver

48 Cd Cadmium

49 In Indium

50 Sn Tin

51 Sb Antimony

52 Te Tellurium

53 I Iodine

54 Xe Xenon

55 Cs Caesium

56 Ba Barium

57 La Lanthanum

58 Ce Cerium

59 Pr Praseodymium

60 Nd Neodymium

61 Pm Promethium

62 Sm Samarium

63 Eu Europium

64 Gd Gadolinium

65 Tb Terbium

66 Dy Dysprosium

67 Ho Holmium

68 Er Erbium

69 Tm Thulium

70 Yb Ytterbium

71 Lu Lutetium

72 Hf Hafnium

73 Ta Tantalum

74 W Tungsten

75 Re Rhenium

76 Os Osmium

MIUP 2021, October 9, Instituto Superior Técnico 22 of 40

77 Ir Iridium

78 Pt Platinum

79 Au Gold

80 Hg Mercury

81 Tl Thallium

82 Pb Lead

83 Bi Bismuth

84 Po Polonium

85 At Astatine

86 Rn Radon

87 Fr Francium

88 Ra Radium

89 Ac Actinium

90 Th Thorium

91 Pa Protactinium

92 U Uranium

93 Np Neptunium

94 Pu Plutonium

95 Am Americium

96 Cm Curium

97 Bk Berkelium

98 Cf Californium

99 Es Einsteinium

100 Fm Fermium

101 Md Mendelevium

102 No Nobelium

103 Lr Lawrencium

104 Rf Rutherfordium

105 Db Dubnium

106 Sg Seaborgium

107 Bh Bohrium

108 Hs Hassium

109 Mt Meitnerium

110 Ds Darmstadtium

111 Rg Roentgenium

112 Cn Copernicium

113 Nh Nihonium

114 Fl Flerovium

115 Mc Moscovium

116 Lv Livermorium

117 Ts Tennessine

118 Og Oganesson

MIUP 2021, October 9, Instituto Superior Técnico 23 of 40

Problem F: Reverse the Numbers

4329581 - 1859234 = ??
Chris likes puzzles and is asking for your help with this problem: given a set of digits,

how should he arrange the digits such that the absolute difference between the number and
the same digits in reverse order is minimized? For example, with the digits 123 in this order,
the absolute difference between the reverse and the original number is 321− 123 = 198. But
this is not the best answer, as Chris could use the same three digits to form the number 132
and get a difference of 231 − 132 = 99, which is smaller.

Task

Your task is to compute the smallest possible absolute difference between a number and the
reverse, for a given set of digits.

Input

The input starts with the number n of digit sequences to evaluate. Then, each of the following
n lines has a number in base 10, determining the base b, followed by a sequence of digits in
this base b that you should arrange in any order to form the number (0 is allowed in the
beginning). Each digit can show up at most once and each sequence has at least 2 digits.
To represent digits up to base 36, we consider the following table:

Digit Value in base 10

0 0
1 1
· · · · · ·
9 9
A 10
B 11
C 12
· · · · · ·
V 31
W 32
X 33
Y 34
Z 35

Constraints

1 ≤ n ≤ 10 Number of sequences to evaluate

2 ≤ b ≤ 36 Base of the sequence

MIUP 2021, October 9, Instituto Superior Técnico 24 of 40

Output

For each of the n digit sequences, you should output the smallest absolute difference, between
a number using all the provided digits and its reverse. You should output one difference per
line in base 10.

Sample Input 1

1

10 123

Sample Output 1

99

Sample Input 2

4

20 91EG30DHBF7I2C8A5

9 063145

27 4ACENHFL6J1BIK2Q739O0MDP

30 690EQN125PO4H

Sample Output 2

38123661317534838759

17144

2468597412173626904442202983104

56241373350406379

MIUP 2021, October 9, Instituto Superior Técnico 25 of 40

Problem G: World War Viruses

The battle of our age is upon us. Viruses against anti-bodies! The two armies will meet in
an epic encounter to determine the faith of the world as we know it. Each army is composed
of fearless soldiers who will defend their cause at any cost. The micro-organisms follow the
Roman discipline and fight using very accurate tactics. What will be the outcome of this
historical confrontation?

Task

Your task is to determine whether there will be an army which emerges victorious, the fight
goes on forever, or the strife ends up in a draw. The rules are simple: initially both armies
have the same number of elements, each one disposing of a fighting power represented by
an integer value. The fight is very disciplined. The soldiers form a line and only the first
elements of each army fight between them. One of three things can happen:

1. The anti-body has a higher fighting power than its opponent. In such a case, the virus
is converted into an anti-body conserving its original fighting power. At the end of the
round, both the victorious anti-body and the newly converted anti-body return to the
tail of their army, in this order.

2. The virus has a higher fighting power than its opponent, hence everything happens
inversely when compared with the previous case. The only exception is the order in
which the soldiers return to the tail of the army: first, the newly converted virus and
only then the original virus.

3. The two fighters have the same fighting power. In such a case, the armies will use the
tower strategy: the two original fighters stay in the base of the structure, a new virus
and a new anti-body climb into the shoulders of their respective friend and finally
a third soldier from each army climbs into the top of the tower. At this point, we
compare the fighting power of those on top. If the anti-body wins, step (1) applies and
both towers are appended to the anti-body army; if the virus wins, step (2) applies

MIUP 2021, October 9, Instituto Superior Técnico 26 of 40

(again, both towers are appended to the victorious army); finally, if both have the
same power, we repeat step (3). The tower-formation process ends as soon as one of
the armies runs out of soldiers, in which case the other army wins the war, or if they
both run out of soldiers, in which case a draw is declared.

Input

The first line contains N , the number of elements in each army, followed by 2N lines. The
second line of the input represents the fighting power of the first anti-body, the third line
of the input represents the fighting power of the second anti-body, and so on. Line N + 2
represents the fighting power of the first virus, line N + 3 represents the fighting power of
the second anti-body, and so on. The last N lines contain the fighting power of viruses.

Constraints

0 ≤ N ≤ 1000 Number of soldiers in each army

0 ≤ ABi ≤ 1000 Fighting power of each anti-body

0 ≤ Vi ≤ 1000 Fighting power of each virus

Output

A single line containing the result of the battle:

• ANTI-BODY means the anti-bodies win;

• VIRUS means the viruses have won;

• DRAW means the battle ends as a draw;

• INFINITE means the battle goes on forever;

Sample Input 1

3

1

4

1

2

3

1

Sample Output 1

ANTI-BODY

MIUP 2021, October 9, Instituto Superior Técnico 27 of 40

Sample Input 2

3

2

3

2

2

1

2

Sample Output 2

DRAW

MIUP 2021, October 9, Instituto Superior Técnico 28 of 40

Problem H: Number of Triangles

Charles and Diane love to defy themselves with mathematical challenges. This time,
Diane gave the following challenge to Charles: If I give you a box with M matches of the
same size, how many different triangles can you make using them? You don’t need to use
all the matches. Charles couldn’t find a general solution for this problem and asked for your
help. Can you create a program that is capable of solving this problem?

Each side of the triangle can use one or more matches. For instance, given 7 matches,
you can create a triangle with two sides using 3 matches and the remaining one using 1
match or one side with 3 matches and the other two with 2 matches. Of course there are
more solutions if you don’t use all the matches:

• 3 3 1
• 3 2 2
• 2 2 2
• 2 2 1
• 1 1 1

Thus, there are 5 different ways of using up to 7 matches for creating triangles.

Task

Your task is to write a program that is capable of answering this question.

Input

Your program accepts the number of matches M .

Constraints

3 ≤ M ≤ 10000 Number of matches

MIUP 2021, October 9, Instituto Superior Técnico 29 of 40

Output

Your program should print the number of valid triangles that can be made with up to M
matches.

Sample Input 1

3

Sample Output 1

1

Sample Input 2

19

Sample Output 2

64

MIUP 2021, October 9, Instituto Superior Técnico 30 of 40

Problem I: Hill, the Climber

Hill, the Climber, likes to climb up everything. From chairs to buildings, from lamp posts to
cliff walls, you name it, Hill climbs it. But Hill is a thoughtful and careful climber. Before
starting to climb anything, Hill maps it and chooses the course to take up to the top. There
is nothing worse than discovering that there is no route to the top when you are halfway up
a mountain.

To plan a course for a climb, Hill precisely identifies and maps all the points which may
be used as holds, during the ascent, sometimes with the aid of a drone. Afterwards, taking
into account the distance between holds, Hill chooses a route to the summit. The best routes
are those that pass through the least possible hold points.

The figure on the right depicts one such map (not
completely to scale), of a 3.5 m high wall, where 14
hold points have been identified, whose coordinates
are shown in centimetres.

The routes Hill may follow when climbing depend
on Hill’s reach, which is 90 cm. This means that Hill
may only move from one hold point to another if they
are 90 cm or less apart. For the same reason, the first
hold point used must not be higher than 90 cm, and
the last one must be located 90 cm or less from the
top of the climb.

A
(60, 50)

B
(240, 60)

C
(90, 95)

D
(265, 100)

E
(40, 110)

F
(175, 125)

G
(280, 160)

H
(90, 130)

I
(270, 190)

J
(190, 210)

K
(100, 185)

L
(60, 200)

M
(90, 200)

N
(90, 255)

O
(210, 260)

Given these constraints, Hill must start the climb up this wall at either hold point A or
hold point B, and the final hold point must be O, which is the only one from which Hill is
able to reach the top of the wall. In this case, Hill’s sole best route starts at hold point A,
and then passes through hold points H, F, J and O, before finally reaching the top, a total
of 5 hold points.

MIUP 2021, October 9, Instituto Superior Técnico 31 of 40

Task

Your task is to help Hill compute the number of hold points on a best route for a climb to
the top, given the height of the climb, the coordinates of all the hold points, and Hill’s reach.

Input

The first line contains three integers, N , H and C, representing, respectively, the number of
hold points, the height of the climb, in centimetres, and the number of test cases.

The following N lines contain a pair of integers standing for the (x, y) coordinates of
the hold points, also in centimetres. The first coordinate of a hold point corresponds to its
distance to some arbitrary reference line to the left of all hold points, and the second to its
height, with respect to the base of the climb.

The final C lines contain one integer each, which represents the reach R of the climber,
for each test case, in centimetres. You may assume that no more than around one hundred
hold points are reachable from any hold point.

Constraints

1 ≤ N ≤ 30 000 Number of hold points

2 ≤ H ≤ 40 000 Height of the climb

(0, 1) ≤ (x, y) ≤ (10 000, H − 1) Coordinates of the hold points

1 ≤ C ≤ 20 Number of test cases

1 ≤ R ≤ 200 Climber’s reach

Output

The output consists of one line for each of the test cases, containing either a single integer,
denoting the number of hold points on a best route for the climb, or the word unreachable,
if the given reach does not allow the climber to reach the top of the climb.

Sample Input

15 350 2

60 50

240 60

90 95

265 100

40 110

175 125

280 160

90 130

270 190

MIUP 2021, October 9, Instituto Superior Técnico 32 of 40

190 210

100 185

60 200

90 200

90 255

210 260

90

89

Sample Output

5

unreachable

MIUP 2021, October 9, Instituto Superior Técnico 33 of 40

Problem J: Palm Island Neighbours

The Palm Jumeirah is a man-made archipelago in Dubai. It is located on the coast of
Dubai, United Arab Emirates. The shape of the island makes it so that two inhabitants
close in geographical space still need to traverse a large path to visit each other. Unless they
travel by boat, which is not allowed in this problem. We shall only consider paths that can
be traversed on foot or by car. Preferably by car, because Dubai is usually extremely hot
and it is unpleasant to go anywhere without air conditioning.

The exact distances are also not very relevant. We are only interested in how many
neighbours we need to pass by until we reach a specific one. Note that the street connecting
two neighbours always works both ways. Thus good neighbours make a huge difference in
the quality of life.

Task

To determine how exotic the topology of this island is our goal is to compute what is the
largest smallest path between two inhabitants. The input describes the topology of the
island.

Input

The first input line contains the number n of inhabitants. The inhabitants are numbered
from 1 to n. Each of the remaining n− 1 lines has two different inhabitants, which indicates
that there is a connection between them. Note that the island topology can not contain
cycles, since it is a palm tree. Also, there is always a path between any two inhabitants,
since each input considers only an island not the archipelago.

Constraints

1 ≤ n ≤ 50 000 Number of inhabitants

MIUP 2021, October 9, Instituto Superior Técnico 34 of 40

Output

The output has a single integer, representing the number of connections on the shortest path
between two inhabitants that are furthest away.

Sample Input 1

12

4 10

10 5

5 1

9 3

1 3

3 7

7 12

7 6

6 2

6 8

8 11

Sample Output 1

8

Sample Input 2

1

Sample Output 2

0

MIUP 2021, October 9, Instituto Superior Técnico 35 of 40

Problem K: The Rotten Paperchase Industry

In the time we rediscover the outside world, adherence to outdoor social games exploded.
Socializing in large spaces is the new normal. A good paper chase is so post-confinement !

In a post-confinement paper chase, contestants take a challenge notebook with all the
necessary information for the possible routes and challenges. For each successful challenge,
contestants are given a colorful ticket. At the finish line, contestants present the colored
tickets in the order in which they won them. If this sequence corresponds to a valid config-
uration (a sequence of colors that ensures that the contestants have completed a complete
victorious course), the contestants have successfully completed the race and the sequence is
called a winning sequence.

A paper chase game is represented as a directed graph with N nodes and with labeled
edges. The depart line is node 0 and the finish line is node N − 1. Each edge is a geograph-
ically located challenge. A label c from, say, a node A to a node B is the ticket to win when
the contestants try to go from A to B. If they are able to solve the challenge they get the
ticket c, reach node B and can now proceed from B.

Unfortunately, competition between daytime entertainment companies is fierce and some
of them try to lower organization costs by proposing recycled or unoriginal routes.

Examples are routes that validate the same configurations as in previous games, saving
costs in the checking process in the finish line. Thus, a malicious competitor, taking advan-
tage of this knowledge, can simply, at no risk, present the tickets earned in previous editions
and unfairly win the paper-chase.

Two paper-chase games are equivalent (and share the same checking process) if any
winning sequence of tickets in one paper-chase is also a winning sequence in the other, and
vice-versa.

Task

When asked to help the organization, you were assigned the task to write a program that
decides whether two given games are equivalent.

MIUP 2021, October 9, Instituto Superior Técnico 36 of 40

Input

The input is constituted by the two graphs. The nodes of the graphs are integers, the tickets
are lowercase letters. For each graph, the starting vertex is 0 and the finish line vertex is
the vertex with the highest (integer) identifier.

The first graph is introduced as follow:

• The first line introduces the number N1 of nodes of the graph. The nodes of this graph
are then numbered from 0 to N1 − 1.

• The second line introduces the number E1 of edges of the graph.

• The following E1 lines introduce an edge each, using the following format n c m, where
n and m are the nodes (0 ≤ n,m < N1) and c is the ticket to win, represented as a
lowercase letter (from ’a’ to ’z’).

The second graph is then introduced in the same way (N2, E2 and the E2 lines).

Some details:

• given two nodes n1 and n2, one can have zero, one or more than one challenge. If
there is more than one challenge (several edges between n1 and n2), the tickets are all
distinct;

• two edges (say, from n1 to n2 and from v1 to v2) can share the same ticket (the same
label) as soon as n1 6= v1 or n2 6= v2.

• a game always has a departing point and an arrival point and every path leads and
ends to the arrival node.

Constraints

2 ≤ Ni ≤ 150 Number of nodes in graph i ∈ {1, 2}
0 ≤ Ei ≤ 500 Number of edges in graph i ∈ {1, 2}
c Each ticket is represented by a single ASCII lowercase letter ∈ [a− z]

Output

A single line with the word PROBLEM, if the two games are equivalent, or with the sentence
NO PROBLEM, otherwise.

Example 1

Consider the following two games (Figures 1 and 2), involving 8 nodes.
The two games are in fact equivalent. Each winning sequence of tickets in one game is

also a winning sequence in the other.

MIUP 2021, October 9, Instituto Superior Técnico 37 of 40

0 1 2 3 4

5 6

7
d

b

a

b

b

a

b

b
a b c

a

bb

Figure 1: First game (Example 1)

0

1 2

3 4 5

6 7

d

d

b

b

a

b

b

a

b

b

a

b

b

c

Figure 2: Second game (first example)

MIUP 2021, October 9, Instituto Superior Técnico 38 of 40

Example 2

On the contrary, the following two games (Figures 3 and 4) are not the same.

0 1 2 3 4

5 6

7
d

b

a

b
a

b

b

b c

a

bb

Figure 3: First game (second example)

0

1 2

4 5

6

3 7
d

d

b

a

b

a

b

b

c

b

a

b

b

b

Figure 4: Second game (Example 2)

Sample Input

8

14

0 d 1

1 b 1

1 a 2

1 b 5

1 a 6

2 b 3

MIUP 2021, October 9, Instituto Superior Técnico 39 of 40

3 b 3

3 b 4

4 c 7

5 a 6

6 b 3

6 b 6

8

14

0 d 1

0 d 4

1 b 2

1 b 3

2 a 5

2 b 1

2 b 3

3 c 7

4 a 5

4 b 3

5 b 6

6 a 5

6 b 1

6 b 3

Sample Output

NO PROBLEM

MIUP 2021, October 9, Instituto Superior Técnico 40 of 40

	Information
	Scientific Committee
	Local Organization Committee
	Languages and Compilers
	Limits

	Input/Output
	IDEs and Editors
	Documentation

	Problems
	Problem A: Rectangulon
	Problem B: Where to Sit
	Problem C: House of Cards
	Problem D: Pizza for Dinner
	Problem E: Chemical Names
	Problem F: Reverse the Numbers
	Problem G: World War Viruses
	Problem H: Triangles
	Problem I: Hill, the Climber
	Problem J: Palm Island Neighbors
	Problem K: The Rotten Paper Chase Industry

