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Abstract—Given an heterogeneous social network, can we
forecast its future? Can we predict who will start using a given
hashtag on twitter? Can we leverage side information, such as
who retweets or follows whom, to improve our membership
forecasts? We present TENSORCAST, a novel method that fore-
casts time-evolving networks more accurately than current state
of the art methods by incorporating multiple data sources in
coupled tensors. TENSORCAST is (a) scalable, being linearithmic
on the number of connections; (b) effective, achieving over
20% improved precision on top-1000 forecasts of community
members; (c) general, being applicable to data sources with
different structure. We run our method on multiple real-world
networks, including DBLP and a Twitter temporal network with
over 310 million non-zeros, where we predict the evolution of the
activity of the use of political hashtags.

I. INTRODUCTION

If a group has been discussing the #elections on Twitter,
with interest steadily increasing as election day comes, can
we predict who is going to join the discussion next week?
Intuitively, our forecast should take into account other hashtags
(#) that have been used, but also user-user interactions such
as followers and retweets.

Similarly, can we predict who is going to publish on a given
conference next year? We should be able to make use of, not
only the data about where each author previously published,
but also co-authorship data and keywords that might indicate
a shift in interests and research focus.

Today’s data sources are often heterogeneous, characterized
by different types of entities and relations that we should
leverage in order to enrich our datasets. In order to predict
the evolution of some of these interactions, we propose to
model these heterogeneous graphs as Coupled Tensors that,
jointly, generate better predictions than when considered in-
dependently.

In particular, we will show how the evolution of user
to user connections can be used to forecast user to entity
relations, e.g. information about who retweets whom improves
the prediction of who is going to use a given hashtag, and
co-authorship information improves the prediction of who is
going to publish at a given venue.

Informal Problem. Forecasting Interactions
Given historical interaction records between different users

and between users and entities.

Find interactions likely to occur in the future efficiently.

Using a naive approach, one would have to individually
forecast every pair of users and entities - a prohibitively
big number that quadratically explodes. How can one avoid
quadratic explosion during forecasting? How can we obtain
the K likely interactions without iterating through them all?

As a summary of our results, Figure 1a shows that TENSOR-
CAST is able to achieve 20% more precision than competing
methods on the task of predicting who is going to publish
on which venue in 2015 using DBLP data. Figure 1b shows
TENSORCAST scaling to hundreds of millions of non-zeros
on TWITTER data.

We underline our main contributions:
1) Effectiveness: TensorCast achieves over 20% higher pre-

cision in top-1000 queries and double the precision when
finding new relations than comparable alternatives.

2) Scalability : TENSORCAST scales well (E + N logN )
with the input size and is tested in datasets with over
300M interactions.

3) Context-awareness: we show how different data sources
can be included in a principled way.

4) Tensor Top-K: we show how to quickly find the K
biggest elements of sums of three-way vector outer prod-
ucts under realistic assumptions.

II. BACKGROUND

Notation. As common in the literature, we denote vectors
by boldface lowercase letters (e.g., a), matrices by boldface
uppercase letters (e.g., A) and tensors by boldface caligraphic
letters (e.g., X ). For convenience, we refer to the f -th column
of A as af and to the (i, j, k) entry of 3-mode tensor X
as X ijk. Please refer to Table I for operators and additional
symbols we use throughout the paper.

A. Tensor Factorizations

Tensors are multidimensional arrays that generalize the
concept of matrices. As a consequence, they are a popular
choice when representing time-evolving relations, such as
Facebook interactions [1], sensor networks [2] or EEG data for
detecting the origin of epilepsy seizures [3]. When properly
applied, tensor factorizations identify the underlying low-
dimensional latent structure of the data. The latent factors are
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Fig. 1. TENSORCAST is effective and scalable.

TABLE I
SYMBOLS AND DEFINITIONS

Symbols Definitions
‖X‖F Frobenius norm of tensor X
X (k) Mode-k matricization
Mt Matrix transpose
◦ Vector outer product
� Khatri-rao product
⊗ Hadamard (entrywise) product
� Hadamard (entrywise) division

then used to identify anomalies, to estimate missing values or
to understand how the data was generated in the first place.
The PARAFAC [4] (also called CP) decomposition is one
of the most popular among the many tensor factorizations
flavors [5], as it factorizes a tensor into a sum of rank-
1 tensors. In three modes, the problem is usually framed
as finding factor matrices A , B and C that minimize
the squared error between X and the reconstructed tensor:

minA,B,C

∥∥∥X −∑f af ◦ bf ◦ cf
∥∥∥2
F

.

B. Coupled Factorizations

We are often interested in analyzing real-world tensors when
additional information is available from distinct sources. For
example, in a simple recommendation task with user×movie
ratings, we might have user demographics data available which
we wish to incorporate when predicting future ratings.

Coupled Matrix-Tensor Factorizations and Coupled Tensor-
Tensor Factorizations are a natural extension to the standard
tensor factorization formulation. For instance, the factorization
of a third-order tensor X coupled with a matrix M on its first
mode can be obtained by minimizing

min
A,B,C,D

∥∥∥X − X̂∥∥∥2
F
+ α

∥∥∥M − M̂
∥∥∥2
F

(1)

where α is a parameter representing the strength of the
coupling for this task, i.e., how important M is to improve
the prediction.

X M A

B

C
◦X̂ ≈ M̂ ≈

A

D◦

Fig. 2. A simple Coupled Matrix-Tensor Factorization.

The matrix part of the Coupled Matrix-Tensor Factorization
depicted in Figure 2 is useful to model additional static
information about one of the modes of the tensor of interest.
Whenever the side information available is dynamic (time-
evolving), a model where two tensors are coupled along (at
least) one of the dimensions is more appropriate, as the time
component can be preserved:

min
A,B,C,T

∥∥∥X − X̂∥∥∥2
F
+ α

∥∥∥Y − Ŷ∥∥∥2
F

(2)

where:

X̂ =
∑
f

af ◦ bf ◦ tf

Ŷ =
∑
f

af ◦ cf ◦ tf

Many techniques have been proposed to solve this non-
negative optimization problem, such as projected Stochastic
Gradient Descent (SGD) [6] (i.e., additive update rules) and
multiplicative update rules. Most of this work extends Lee and
Seung’s multiplicative matrix updates formulae [7] for matri-
ces, notably the simple extension for tensors [8] and the many
coupled extensions, e.g. Generalized Tensor Factorization [9],
[10]. Update equations can be found in Appendix A.

C. Skewed building blocks

When factorizing real-life graph data, the scores of the non-
negative factors are not uniformly distributed but decrease



sharply. For instance, it has been shown that the internal degree
distribution of big communities can be well approximated by
a power-law across several domains [11], that eigenvectors
of Kronecker graphs exhibit a multinomial distribution [12,
theorem 3] and multiple generative models where power-
law communities arise have been proposed [13], [14], [15].
TENSORCAST leverages this property in order to speed-up
its computation of Top-K elements without reconstructing the
forecasted tensor.

To further strengthen the ubiquity of these structures, Figure
3 shows the scores of 4 factors of the venue component of a
non-negative factorization of the DBLP author × venue
× year tensor we use in the experiments section. Note the
skewness of the these scores and that they can be upper-
bounded by a power-law.
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Fig. 3. Scores of the factor vectors are highly skewed. Non-negative
factorization of the DBLP author × venue × year tensor. Note the
logarithmic scale in both axis.

III. RELATED WORK

A. Top-K elements in Matrix Products

Given the widespread applications of matrix factorizations,
finding the top-K elements of a matrix product is an impor-
tant problem with several use cases, from personalized user
recommendations to document retrieval.

The problem can be stated as, given matrices A and B
of sizes N × F and M × F , respectively, find the top
K (i, j) pairs of the ABt matrix product. Note that the
naive solution requires O(NMF ) operations, iterating over
the (originally) implicitly defined reconstruction matrix. Some
attention has been given to this problem, since Ram and
Gray [16] proposed the use of Cone Trees to speed-up this
search. Other approaches map this problem into smaller sets
of cosine-similarity searches [17], a related but easier problem
given the unit-length of the vectors. Approximate methods
have also been tried, such as transforming the problem in
a near-neighbor search and using locality sensitive hashing
(LSH) [18], [19]. However, this is a non-convex optimization
problem in general.

B. Link Prediction

A large body of literature on link prediction has been created
since its introduction [20]. In structural link prediction, the

original problem, the goal is to predict which links are more
likely to appear in the future given a current snapshot of the
network under analysis. This setting, where it is typical to
assume that links are never or seldom removed, has found
multiple applications in predicting interactions in protein-
protein networks, social networks (e.g., friendship relations)
and recommendation problems. The Netflix challenge sprung
the creation of several latent factor models with differing
structure and/or regularization terms for this task [21], [22], but
there were also several approaches which showed that using
the age of the link could lead to improved predictions [23].

On the other hand, given the increased availability of
dynamic or time-evolving graphs (frequently used to model
evolving relationships between entities over time), temporal
link prediction methods have been developed to predict future
snapshots. In this setting where links are not guaranteed to
persist over time, we distinguish methods that rely on collaps-
ing (matricizing) the input data (e.g., exponential decay of
edge weights [24], [25]) from methods that deal directly with
the increased dimensionality, such as tensor-based methods.
CP Forecasting [26] finds a low-rank PARAFAC factorization
and forecasts the time-component in order to incorporate
seasonality. TriMine [27] similarly factorizes the input tensor,
but then applies probabilistic inference in order to identify
hidden topics that connect users and entities, which it then
draws from in order to generate realistic sequences of future
events. These methods are not able to integrate contextual
information on their predictions. Other approaches integrate
structure and content in the same prediction task, e.g. Gao
et al [25] suggest a coupled matrix factorizations and graph
regularization technique to obtain the latent factors after an
exponential decay of the temporal network.

However, none of these methods fulfills all the requirements
for forecasting when contextual information is considered.
Table II contrasts TENSORCAST against the state of the art
competitors on key specs: (a) linear scalability with sparse
data; (b) interpretability of the underlying model; (c) time-
awareness for forecasting periodic, growing and/or decaying
relations; (d) ability to deal with additional contextual in-
formation; (e) the ability to forecast the disappearance of
existing relations; and (f) the ability of providing an ordered
ranking of future events by likelihood of occurrence.

IV. PROPOSED: TENSORCAST

We assume a coupled-tensors setting where multiple tensors,
possibly with different dimensions, are related by common
modes. We will assume that at least one of these tensors is
our tensor of interest: it is a 3-dimensional binary tensor and
one of the modes corresponds to a time component which we
would like to forecast.

There are many scenarios that can be instantiated under this
setting: imagine the existence of membership records of the
form (user, topic, time), with N unique users and M unique
topics (or communities) over T unique time intervals encoded
in a 3rd-order tensorX ∈ {0, 1}N×M×T . Maybe we also have
available an additional collection of user interaction records of



TABLE II
TENSORCAST INTEGRATES CONTEXT AND TIME-AWARENESS.
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the form (user, user, time), similarly encoded in a 3rd-order
tensor Y ∈ {0, 1}N×N×T . One possible forecasting problem
could be framed as predicting which users will interact with
which topics in the future, taking advantage of the information
from both sources1.

We are interested in the following general problem:

Problem 1. Forecasting Tensor Evolution
Given two coupled tensors (X and Y), a number of K relations
and S time-steps.
Forecast, for the next S time-steps, the ranked list of K likely
non-zero elements of X .

While Problem 1 is interesting by itself, accurate top-K
predictions can often be made by identifying which non-zeros
constantly appear in the tensor of interest. In the previous
example, these would correspond to users that have constantly
discussed the same topics over time. Therefore, we define the
following related problem:

Subproblem 1. Forecasting Novel Relations
Given two coupled tensors (X and Y), a number of K relations
and S time-steps.
Forecast, for the next S time-steps, the ranked list of K likely
new relations of X .

We define a new or novel relation as a non-zero that does
not exist in the tensor of interest when the time component
is collapsed. We argue that subproblem 1 is more useful in
many realistic scenarios where predicting who is joining or
leaving a community is more relevant than predicting who is
staying. For instance, in the elections example, members who
recently joined the discussion are probably easier to influence,
while forecasting clients likely to stop doing business with a
company is one of the key problems in customer relations.

Overview. TENSORCAST is comprised of three successive
steps, described in more detail in the following subsections:

1) Non-negative Coupled Factorization: the factorization
will tie together the various input tensors and identify

1One of the experiments in Section V deals with this scenario.

their rank-1 components.
2) Forecasting: given the low dimensional space identified,

we use standard techniques to forecast the time compo-
nent.

3) Top-K elements: we exploit the factorization structure
and identify the top elements without having to recon-
struct the prohibitively big future tensor.

Figure 4 illustrates the intuition of our method.

A. Non-negative Coupled Factorization

Consider that the tensor of interest, X , is a 3-dimensional
N ×M ×T dataset and that the time component corresponds
to the last index of the tensor. Then, naively, the number of
elements to be forecasted (S×N×M ) is a prohibitive number
when we consider X to be big and sparse.

Therefore, factorizing the input data achieves a two-fold
objective: not only does it reduces the number of elements
to be forecasted, but perhaps more importantly, it co-clusters
similar elements together enabling generalization. A careful
factorization will allow the forecast of previously unseen
relations. We opted for a non-negative coupled factorization
in order to improve the interpretability of the model; the im-
portance of this feature will be clear when analyzing empirical
evidence in Section V.

We explore how user interactions can be leveraged to
improve forecasts of future user-entity relations. Under this
assumption, the problem is better modeled as two coupled
tensors where tensor Y is a N ×N × T symmetric tensor. In
order to guarantee convergence, we modify the update of the
symmetric factor matrix to

A← A⊗ 3

√
X (1)(B � T ) + αY(1)(A� T )

A(B � T )t(B � T ) + αA(A� T )t(A� T )

See Appendix A for further details.

B. Forecasting

Let T be the T×F factor matrix obtained from the previous
step that corresponds to the time component. It consists of a
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Fig. 4. Overview of TENSORCAST.

small set of F dense factor vectors, hence easy to forecast,
that will provide an approximation X̂ of the next time-step.

The most appropriate forecasting mechanism is data-
dependent. We forecast using basic exponential smoothing
(Holt’s method), but other methods can be applied, e.g. Holt-
Winters double exponential smoothing when seasonality is
present.

C. Tensor Top-K elements

The forecast of the next time-step is a N ×M × S tensor
represented as

∑
f

af ◦ bf ◦ sf where A is N × F , B is

M × F and S is S × F .
We extend the literature on the retrieval of maximum entries

in a matrix product to the tensor case, leveraging the fact that
the factorization was not performed on random data but on a
graph that follows typical properties. The goal is to identify
the K (i, j, k) positions with highest value∑

f

AifBjfSkf

We’ll start by showing how this could be achieved if the X̂
tensor was rank-1 and how multiple factors can be combined
while preserving performance guarantees. We assume that the
number of forecasted time-steps is significantly smaller than
the number of users or topics (i.e., S � N,M ) and that the
number of topics is of the same order of magnitude but smaller
than the number of users (i.e., M < N ).

Top-K of single factor. We start by creating a data structure
that lets us obtain the next biggest element in O(log(SM))
time, with only O(S logS + M logM + N logN + SM)
preprocessing.

Firstly, we sort the three vectors (s, a and b) in decreasing
order. Note that, now, not only do we know that the biggest
element is given by a1b1s1, but also that an element aibjsk
only needs to be considered after ai−1bjsk, aibj−1sk and
aibjsk−1 have all been identified as one of the biggest K 2.
Hence, we can create a priority queue which only holds, at
most, O(SM) elements at a time.

2For instance, we know that the second biggest element is one of a2b1s1,
a1b2s1 or a1b1s2.

Combining multiple factors. The major hurdle is handling
the interaction between multiple factors. We propose a greedy
Top-K selection algorithm that, under realistic scenarios, effi-
ciently achieves this goal. Algorithm 1 illustrates the pseudo
code of this procedure.

We keep a list (R) of the K biggest positions evaluated so
far and Fi.next represents the next element not yet considered
in factor’s i priority queue, as described in the previous
section. In each iteration, we consider the element with the
highest score in one of the factors and add it to the list after
evaluating it across all the factors. We terminate when the sum
of the next best scores on each factor becomes smaller than
the Kth biggest element in R.

input : F - priority queues of factors
input : K - number of elements
output: R - set of biggest elements

1 while
∑
i Fi.next.factorScore ≤ R.last.Score do

2 f ← argmaxi(Fi.next.factorScore)
3 element ← Ff .next
4 Ff .pop
5 R← R ∪ element.fullScore
6 if R.size > K then
7 R← R− argmin(R)
8 end
9 end

10 return R
Algorithm 1: TENSORCAST Top-K Elements

In the following, we prove the correctness and upper bounds
on the overall number of elements that need to be evaluated.

Theorem 1. Algorithm 1 always returns the correct set of
Top-k elements.

Proof. Consider an element x that should be included in R
but was never considered. As the algorithm has terminated, it
follows that x’s score is lower than the sum of all the individual
factor scores of elements at the top of each priority queue.
However, we know that the smallest element in R is bigger
than this, so this is a contradiction and x cannot exist.



Theorem 1 proves that Algorithm 1 always finds the correct
set of elements. We now show that the set of elements that
need to be considered is small when factors follow common
power-law distributions. We assume a and b follow power-
laws of the form (α− 1)x−α for x ≥ 1 and α > 1.

Lemma 1. If factor vectors a and b follow power-laws with
exponents αa and αb, then a randomly drawn element from
any rank-1 frontal slice created as Ckf = a◦b asymptotically
follows a power-law

pC(z) = (α− 1)z−α

where α = min(αa, αb).

Proof. Let X and Y follow power-law distributions of the
form

pX(x) = (αa − 1)x−αa

pY (y) = (αb − 1)y−αb

Then Z = XY has probability distribution [30, p. 109]:

pZ(z) =

∫ z

1

pX(w)pY

( z
w

) 1

w
dw =

=
(αa − 1)(αb − 1)

αa − αb
(z−αa − z−αb)

which tends to a power-law with exponent −min(αa, αb).

Lemma 1 shows that elements randomly drawn from any
rank-1 frontal slice follow a power-law distribution. However,
please note that Algorithm 1 iterates over these elements in
decreasing order, i.e., deterministically. Therefore, any uncer-
tainty is not related to sampling from the distribution, but
rather to the skewness of the factor vectors - how well the
power-law assumption holds. Refer back to II-C for further
details and both theoretical and empirical evidence.

Theorem 2. Algorithm 1 needs to check at most KSF 1+ 1
α

elements if every frontal slice af ◦ bf follows a power-law.

Proof. We’ll consider the frontal slices one at a time and show
that one only needs to check KF 1+ 1

α elements to find the K
biggest values of each slice. Let α1..F be the exponents of the
power-law of each of the F factor matrices af ◦bf of a given
frontal slice and let αm = minα.

The K-th biggest element of
∑
f af ◦bf is at least K−αm , as

that is the Kth biggest value of the slowest decreasing power-
law3. Given the iterative nature of Algorithm 1, we will prove
an upper-bound for the maximum position (i.e., how deep in
one of the factors) an element can be, while still having a
reconstruction value greater than K−αm . Let x be the position
of such element4, then

K−αm ≤
∑
f

x−αf ≤ Fx−αm =⇒ x ≤ KF
1
αm

3Remember that A and B are non-negative matrices. In the worst-case,
the score of the Kth biggest element is taken from a single power-law and
the contribution of the rest of the factors is 0, hence K−αm is a lower-bound
for the Kth biggest value.

4In the worst case scenario, this element is at position x in every of the
factors.

This means that any top-k element needs to be in a position
smaller than KF

1
αm in at least one of the factors, which

implies that, in the worst case, Algorithm 1 only needs to
check KF

1
αm F = KF 1+ 1

αm elements to find the K biggest
elements on each frontal slice. Therefore, we can upper-bound
the total number of elements checked by KSF 1+ 1

α .

Note that TENSORCAST is linear on the number of elements
we want to obtain times the number of time-steps forecasted.
Furthermore, note that this result agrees with intuition: sharper
(i.e., quickly decreasing, higher exponent) power-laws require
less elements to be checked, while near-clique factors imply
lower exponents and more elements to be analyzed.

Figure 5 provides further empirical evidence of the linear
growth on the number of values we need to check. We plot
the number of positions evaluated as K is increased, on a
synthetic network, when forecasting one time-step (S = 1),
using 8 factors and varying the power-law exponents from 1.5
to 2.2.
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Fig. 5. TENSORCAST only checks a linear number of elements of the
tensor.

D. Complexity Analysis.

Observation 1. TENSORCAST requires time linear on the
number of non-zeros of its input tensors.

Rationale. TENSORCAST’s time complexity is a sum of its
three stages:

1) The coupled-factorization requires linear time on the
number of non-zeros.

2) Forecasting is typically linear on the number of timesteps,
although it depends on the algorithm selected.

3) As shown in the previous section, identifying the top-K
elements is linear on K and sub-quadratic on the number
of factors.

V. EXPERIMENTS

We report experiments to answer the following questions:
Q1. Scalability: How fast is TENSORCAST?
Q2. Effectiveness and Context-awareness: How does TEN-

SORCAST’s precision compare with its alternatives? How
much improvement does contextual data bring?

Q3. Trend Following: How capable is TENSORCAST of
detecting and following trends?



TABLE III
SUMMARY OF REAL-WORLD NETWORKS USED.

Users Groups Timesteps Memberships Interactions Description
1 734 902 5 476 79 8 049 559 21 423 244 DBLP - venues published

and co-authorships.
12 426 133 2 326 843 31 30 281 817 282 280 158 TWITTER - hashtags used

and retweets.

Q4. Precision over Time: How does TENSORCAST’s preci-
sion decrease as we forecast farther to the future?

TENSORCAST is tested on two big datasets detailed in
Table III. In the DBLP dataset, the tensor to be forecasted
consists of authors and venues in which they published from
1970 to 2014, while the co-authorship tensor is used as
contextual information. Evaluation is performed on the 2015
author × venue data. In the TWITTER dataset, the tensor of
interest relates users and hashtags (#) they used from June
to December 2009, while the auxiliary tensor represents user
interactions through re-tweets. Tweets are grouped by week
and evaluation is performed on week 51.

Unless otherwise specified, every factorization approach
uses 10 factors. On the TWITTER dataset, we weighted the
reconstruction of the tensor of interest as 20 times more
relevant that the context tensor. On DBLP, we weighted
non-zeros of the tensor of interest 2.66 times higher than
in the tensor of interest (so that both tensors have the same
reconstruction error when considering empty factors).

Q1 - Scalability

We start by evaluating our method’s scalability when chang-
ing the number of non-zeros in the TWITTER dataset5. By
changing the number of weeks under consideration, we create
a sequence of pairs of tensors that increase in size. For each
pair, we measure wall-clock time when performing a rank-4
coupled tensor factorization, forecasting and identification of
the top-1000 forecasted non-zeros. Figure 1b shows TENSOR-
CAST’s linear scalability.

Q2 - Effectiveness and Context-awareness

Figures 1a and 6 showcase TENSORCAST’s accuracy on
the task of predicting relations on future time steps. While
Figure 1a shows TENSORCAST’s superior precision as we
increase K on the DBLP dataset, Figure 6 focus particularly
on forecasting novel relations on TWITTER. We would like
to highlight the difficulty of this task, as we are predicting
whether a given user is going to start using a new hashtag on
the next week. Nevertheless, TENSORCAST achieves double
the precision of competing methods6.

Furthermore, note the importance of TENSORCAST’s ability
of being simultaneously contextual and time-aware, as the

5We consider the sum of the non-zeros of both tensors.
6Note that the quality of absolute precision numbers is affected by 1)

how imbalanced the two classes are and 2) the cost of false positives. An
improvement from 2% to 5% precision might imply that 1 out of 20 phone-
calls we make target a potential customer versus every 1 in 50.

precision of the current state-of-the-art is limited due to
ignoring either one of these aspects.

The competing CP Forecasting [26] method was run using
Holt forecasting, given the lack of seasonality of the data.
The results of the other competitor, Coupled Matrices, were
obtained by finding non-negative factors that minimize the
reconstruction error of the collapsed tensors, weighted for the
same importance. For fairness, all appropriate methods use 10
as the number of factors.
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Q3 - Trend Following

We evaluate TENSORCAST’s ability of predicting an in-
crease or decrease in the activity around a given topic or
between a group of users over time. We created a synthetic
dataset with 5 hyperbolic communities (i.e., with power-law
internal degree distribution) of 100 users over 11 days (10
days are used for the factorization and 1 for evaluation). The
average density over the first 10 days equals 15% for all
communities, but their density changes differently over time:
two communities have their densities increasing at 1% and
2% per day, one has constant density and the other have their
density decreasing by 1% and 2% per day.

Figure 7 shows the scores of the 5 columns of the T matrix
after factorization, one per line. We can see that linear changes
in density correspond to linear changes of the scores and
that TENSORCAST correctly forecasts a similar change in the
future.

Q4 - Precision over Time

We evaluate TENSORCAST’s precision as the forecasting
horizon is increased. We use the DBLP dataset, doing five
runs with each method when considering different “training”
periods (i.e., the first run considered every publication before
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Fig. 7. TENSORCAST correctly forecasts growth and decay of groups in
synthetic data. [dashed - forecast; solid - real]

2010, while the last run considered every publication before
2015). For each run, we obtained the 1000 most likely non-
zeros for each of the next 5 years and calculated TEN-
SORCAST’s precision. Figure 8 shows, for each method, the
average precision for each forecasting horizon.
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Discoveries - TensorCast at work

In addition to the forecast of new relations, groups found by
TENSORCAST are interpretable due to the non-negativeness
of the factors. We highlight two groups we identified on
the TWITTER dataset with their most used hashtags (#) on
Figure 10 (word size corresponds to importance on factor).
The first group corresponds to a group of users who typically
use hashtags that show a conservative political orientation:
references to the tea party and critics of the healthcare reform.
Users in the second group use hashtags related to the Iranian
election and human-rights protests, such as #iranelection or
#neda, the name of a student who was killed during the
protests.

Figure 9 shows TENSORCAST’s ability to predict user
interactions based on current interest on a topic. Note that,
on the Iranian group, the factorization highlights the week of
the elections and the protests (in June), but interest clearly
fades in the second-half of the year. On the other hand, we
can see that political tags are still used by the same group of
users for several months.
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Fig. 9. Increased precision is achieved by grouping interactions. [A-Start of
2009 election protests; B-President Obama references Neda Soltan, killed in
the protests; C-Taxpayer March in Washington]

Implementation details and Reproducibility. Similarly to
its logical steps, TENSORCAST was implemented as three
different modules run in succession:

1) The non-negative coupled factorization was implemented
on Matlab using its Tensor Toolbox [31].

2) Forecasts were done using Gnu’s Regression, Economet-
rics and Time-series Library (GNU gretl) [32].

3) Tensor top-K elements’ algorithm was implemented in
Scala as a stand-alone tool.

TENSORCAST can be obtained at www.dcc.fc.up.pt/
∼pribeiro/tensorcast/.

VI. CONCLUSIONS

We presented TensorCast, a method which addresses the
forecasting problem on big time-evolving datasets when con-
textual information is available. We leverage typical graph
properties in order to create a linearithmic algorithm that can
find novel relations in very big datasets efficiently.

The main advantages of our method are:
1) Effectiveness: TensorCast achieves over 20% higher pre-

cision in top-1000 queries and double the precision when
finding new releations than comparable alternatives.

2) Scalability : TENSORCAST scales linearithmically with
the input size and is tested in datasets with over three
hundred million non-zeros.

3) Context-awareness: we show how different data sources
can be included in a principled way.

4) Tensor Top-K: we show how to quickly find the K
biggest elements of sums of three-way vector outer prod-
ucts under realistic assumptions.
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APPENDIX
MULTIPLICATIVE UPDATES OF COUPLED TENSORS

FACTORIZATION

The non-negative coupled tensor factorization problem

min
A,B,C,T

∥∥∥∥∥∥X −
∑
f

af ◦ bf ◦ tf

∥∥∥∥∥∥
2

F

+α

∥∥∥∥∥∥Y −
∑
f

af ◦ cf ◦ tf

∥∥∥∥∥∥
2

F

is well studied and its multiplicative update equations have
been previously described in the literature (e.g., considering
the dispersion parameter α [10]). The solution can be found
by iteratively updating

A ← A⊗
X (1)(B � T ) + αY(1)(C � T )

A(B � T )t(B � T ) + αA(C � T )t(C � T )

B ← B ⊗
X (2)(A� T )

B(A� T )t(A� T )

C ← C ⊗
Y(2)(A� T )

C(A� T )t(A� T )

T ← T ⊗
X (3)(A�B) + αY(3)(A�C)

T (A�B)t(A�B) + αT (A�C)t(A�C)

The problem is not as well understood when one of the
factorizations is symmetric, e.g., Ŷ =

∑
f

af ◦af ◦tf , as this

is no longer a linear problem.
Welling and Weber [8] note the need for a scaling exponent

(for the simple, non-coupled case):

A← A⊗
( X (1)(A� T )
A(A� T )t(A� T )

)1/d

which should be at least 1/2 for the matrix case, although
no proof is provided. To the best of our knowledge, the best
theoretical bound is 1/3 when the matrix is semi-definite
positive [33]. Empirical results (for the coupled case) indicate
that removing the exponent (d = 1) might eliminate the
convergence guarantees, but even small perturbations converge
(e.g., 0.98 in [34]).

We recommend an exponent of 1/3, as convergence is
exponentially fast in any case.


