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Abstract

Can we forecast future connections in a social net-
work? Can we predict who will start using a given
hashtag in Twitter, leveraging contextual informa-
tion such as who follows or retweets whom to im-
prove our predictions? In this paper we present
an abridged report of TENSORCAST, a method for
forecasting time-evolving networks, that uses cou-
pled tensors to incorporate multiple information
sources. TENSORCAST is scalable (linearithmic on
the number of connections), effective (more precise
than competing methods) and general (applicable
to any data source representable by a tensor). We
also showcase our method when applied to forecast
two large scale heterogeneous real world temporal
networks, namely Twitter and DBLP.

1 Introduction
If a group has been discussing the #elections on Twitter, can
we predict who is going to join the discussion next week?
Intuitively, we should take into account not only other used
hashtags (#), but also user to user interactions such as follow-
ers and retweets. Similarly, can we forecast who is going to
publish on a given conference next year? We should consider
not only previous conferences where the author published,
but also user to user information such as co-authorships.

Today’s data sources are often heterogeneous, character-
ized by different types of entities and relations that we should
leverage in order to enrich our datasets. We propose to model
these heterogeneous evolving graphs as Coupled Tensors that,
jointly, generate better predictions than when considered in-
dependently. In particular, we will show how the evolution of
user to user connections can be leveraged to forecast user to
entity relations, e.g. information about who retweets whom
improves the prediction of who is going to use a given hash-
tag, and co-authorship information improves the prediction of
who is going to publish at a given venue.

Using a naive approach, one would have to individually
forecast every pair of users and entities - a prohibitively big
number that quadratically explodes. How can we avoid this?
How can we obtain the top most likely interactions without
iterating trough them all?

We propose TENSORCAST, a tensor forecasting method
that is able to merge multiple data sources in order to predict
future membership relations. Our method combines a non-
negative coupled factorization of generalized tensors with an
efficient algorithm that is able to obtain the top-K records
from an existing factorization, without reconstructing the full
tensor. We achieve over 20% higher precision in top-1000
queries and double the precision when finding new relations
than comparable alternatives and our method scales well (lin-
earithmically) with the input size (we show experimental re-
sults in graphs with over 300M connections).

TENSORCAST is open-source and can be obtained at
http://www.dcc.fc.up.pt/˜pribeiro/tensorcast/
This is abridged version of a longer paper which got the
ICDM’2017 best paper award [Araujo et al., 2017].

2 Background and Related Work
Notation. As commonly used, we denote vectors by bold-
face lowercase letters (e.g., a), matrices by boldface upper-
case letters (e.g., A) and tensors by boldface caligraphic let-
ters (e.g., X ). We refer to the f -th column of A as af and to
the (i, j, k) entry of 3-mode tensorX asX ijk. M t denotes a
mtriz transpoe, ‖X‖F denotes the Frobenius norm of tensor
X , andX its mode-k matricization. The vector outer product
is denoted by ◦ and the Khatri-rao product by �.

2.1 Tensor Factorizations
Tensors are multidimensional arrays that generalize the con-
cept of matrices, and are a popular choice when representing
time-evolving relations, such as Facebook interactions [Pa-
palexakis et al., 2012] or sensor networks [Sun et al., 2006].
When properly applied, tensor factorizations identify the un-
derlying low-dimensional latent structure of the data, which
can be used for tasks such as identifying anomalies or es-
timate missing values. The PARAFAC [Harshman, 1970]
(also called CP) decomposition is one of the most popu-
lar among the many tensor factorizations flavors [Kolda and
Bader, 2009], as it factorizes a tensor into a sum of rank-
1 tensors. In three modes, the problem is usually framed
as finding factor matrices A , B and C that minimize
the squared error between X and the reconstructed tensor:

minA,B,C

∥∥∥X −∑f af ◦ bf ◦ cf
∥∥∥2
F

.

http://www.dcc.fc.up.pt/~pribeiro/tensorcast/


2.2 Coupled Factorizations
We are often interested in analyzing real-world tensors when
additional information is available from distinct sources. For
example, in a simple recommendation task with user×movie
ratings, we might have user demographics data available
which we wish to incorporate when predicting future ratings.

Coupled Matrix-Tensor Factorizations and Coupled
Tensor-Tensor Factorizations are a natural extension to the
standard tensor factorization formulation. For instance, the
factorization of a third-order tensor X coupled with a matrix
M on its first mode can be obtained by minimizing

min
A,B,C,D

∥∥∥X − X̂∥∥∥2
F
+ α

∥∥∥M − M̂
∥∥∥2
F

(1)

where α is a parameter representing the strength of the cou-
pling, i.e., how important M is to improve the prediction.
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Figure 1: A simple Coupled Matrix-Tensor Factorization.

The matrix part of the Coupled Matrix-Tensor Factoriza-
tion depicted in Fig. 1 is useful to model additional static in-
formation about one of the modes of the tensor of interest.
Whenever the side information available is time-evolving, a
model where two tensors are coupled along one of the dimen-
sions is more appropriate, preserving the time component:

min
A,B,C,T

∥∥∥X − X̂∥∥∥2
F
+ α

∥∥∥Y − Ŷ∥∥∥2
F

(2)

where X̂ =
∑

f af ◦ bf ◦ tf and Ŷ =
∑

f af ◦ cf ◦ tf
Many techniques have been proposed to solve this non-

negative optimization problem, such as projected Stochastic
Gradient Descent (SGD) [Beutel et al., 2014] (i.e., additive
update rules) and multiplicative update rules. Most of this
work extends Lee and Seung’s multiplicative matrix updates
formulae [Lee and Seung, 2001] for matrices, notably the
simple extension for tensors [Welling and Weber, 2001] and
the many coupled extensions, e.g. Generalized Tensor Fac-
torization [Yılmaz, 2012; Şimşekli et al., 2013].

2.3 Skewed Building Blocks
When factorizing real-life graphs, non-negative factors scores
are not uniformly distributed but decrease sharply. For in-
stance, it has been shown that the internal degree distribution
of big communities can be well approximated by a power-
law [Araujo et al., 2014] and that eigenvectors of Kronecker
graphs exhibit a multinomial distribution [Leskovec et al.,
2005]. TENSORCAST leverages this property in order to
speed-up its computation of Top-K elements without recon-
structing the forecasted tensor.

2.4 Top-K Elements in Matrix Products
Given the widespread applications of matrix factorizations,
finding the top-K elements of a matrix product is an impor-
tant problem which can be stated as: given matrices A and B

of sizes N×F and M×F , find the top-K (i, j) pairs of the
ABt matrix product. A naive solution requires O(NMF )
operations, iterating over the (originally) implicitly defined
reconstruction matrix. Some attention has been given to this
problem, since Ram and Gray [Ram and Gray, 2012] pro-
posed the use of Cone Trees to speed-up this search,but this
is a non-convex optimization problem in general.

2.5 Link Prediction
In the classical structural link prediction problem [Liben-
Nowell and Kleinberg, 2007] the goal is to predict which
links are more likely to appear, assuming that links are never
or seldom removed. With time-evolving graphs, temporal
link prediction methods have been developed to predict fu-
ture snapshots, where links are not guaranteed to persist over
time. In this setting we distinguish methods that rely on col-
lapsing (matricizing) the input data (e.g., exponential decay
of edge weights [Sharan and Neville, 2008]) from methods
that deal directly with the increased dimensionality, such as
tensor-based methods. CP Forecasting [Dunlavy et al., 2011]
finds a low-rank PARAFAC factorization and forecasts the
time-component. TriMine [Matsubara et al., 2012] similarly
factorizes the input tensor, but then applies probabilistic infer-
ence in order to identify hidden topics. These methods are not
able to integrate contextual information. Other approaches in-
tegrate structure and content in the same prediction task, e.g.
Gao et al [Gao et al., 2011] suggest a coupled matrix factor-
ization and graph regularization technique to obtain the latent
factors after an exponential decay of the temporal network.
Another approach is to use time series analysis and regression
based methods such as VAR [Zellner, 1962] or ARIMA [Box
and Pierce, 1970].

However, none of these methods fulfills all the require-
ments for forecasting when contextual information is consid-
ered. Table 1 contrasts TENSORCAST against the state of
the art competitors on key specs: (a) linear scalability with
sparse data; (b) interpretability of the underlying model; (c)
time-awareness for forecasting periodic, growing and/or de-
caying relations; (d) ability to deal with additional contextual
information; (e) the ability to forecast the disappearance of
existing relations; and (f) the ability of providing an ordered
ranking of future events by likelihood of occurrence.
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Table 1: TENSORCAST integrates context and time-awareness.
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Figure 2: Overview of TENSORCAST.

3 Proposed Approach: TENSORCAST
We assume a coupled-tensors setting where multiple tensors
are related by a common mode. One of these tensors should
be a 3-dimensional binary tensor, with one mode correspond-
ing to a time component which we would like to forecast.
There are many scenarios that fall under this setting. For ex-
ample, we could have a tensor of membership records (user,
topic, time) and an additional collection of user interaction
records (user, user, time), with a possible forecasting prob-
lem of predicting which users will interact with which topics,
taking advantage of the both sources of information.

We tackle the following general tensor forecasting prob-
lem: given coupled tensors (X and Y), a number of K re-
lations and S time-steps, forecast the ranked list of K most
likely non-zero elements of X in the next S time-steps .

Overview. TENSORCAST is comprised of three successive
steps, described in more detail in the following subsections:
(1) Non-negative Coupled Factorization: the factorization
will tie together the various input tensors and identify their
rank-1 components.; (2) Forecasting: given the low dimen-
sional space identified, we use standard techniques to fore-
cast the time component; (3) Top-K elements: we exploit
the factorization structure and identify the top elements with-
out having to reconstruct the prohibitively big future tensor.
Figure 2 illustrates the intuition of our method.

3.1 Non-negative Coupled Factorization
Consider that the tensor of interest, X , is a 3-dimensional
N×M×T dataset and that the time component corresponds
to the last index of the tensor. Then, naively, the number of
elements to be forecasted (S×N×M ) is a prohibitive number
when we consider X to be big and sparse. Factorizing the
input data reduces the number of elements to be forecasted,
but also, and more importantly, it co-clusters similar elements
together enabling generalization. A careful factorization will
allow the forecast of previously unseen relations. We opted
for a non-negative coupled factorization in order to improve
the interpretability of the model.

We explore how user interactions can be leveraged to im-
prove forecasting of user-entity relations. We model the prob-
lem as two coupled tensors where tensor Y is a N×N×T
symmetric tensor. In order to guarantee convergence, we
modify the update of the symmetric factor matrix to:

A← A⊗ 3

√
X (1)(B � T ) + αY(1)(A� T )

A(B � T )t(B � T ) + αA(A� T )t(A� T )

3.2 Forecasting
Let T be the T×F factor matrix (time component) obtained
from the previous step. It consists of a small set of F dense
factor vectors, hence easy to forecast, that will provide an ap-
proximation X̂ of the next time-step. The most appropriate
forecasting mechanism is data-dependent. We forecast us-
ing basic exponential smoothing (Holt’s method), but other
methods can be applied, e.g. Holt-Winters double exponen-
tial smoothing when seasonality is present.

3.3 Tensor Top-K elements
The forecast of the next time-step is aN×M×S tensor repre-
sented as

∑
af ◦bf ◦sf where A isN×F , B isM×F and

S is S×F . We extend the literature on the retrieval of maxi-
mum entries in a matrix product to the tensor case, leveraging
the fact that the factorization was performed on non-random
graph that follows typical properties. The goal is to identify
the K (i, j, k) positions with highest value

∑
AifBjfSkf .

Top-K of a single factor. We start by creating a data struc-
ture to get the next biggest element in O(log(SM)) time,
withO(S logS+M logM+N logN+SM) preprocessing.
Firstly, we sort the vectors (s, a and b) in decreasing order.
We now know that the biggest element is given by a1b1s1,
and that an element aibjsk only needs to be considered af-
ter ai−1bjsk, aibj−1sk and aibjsk−1 have all been identi-
fied as one of the biggest K. Hence, we can create a priority
queue which holds, at most, O(SM) elements at a time.
Combining multiple factors. The major hurdle is han-
dling the interaction between multiple factors. We propose a
greedy Top-K selection algorithm that is efficient under real-
istic scenarios. We keep a list (R) of the K biggest positions
evaluated so far. In each iteration, we consider the element
with the highest score in one of the factors and add it to the
list after evaluating it across all the factors. We terminate
when the sum of the next best scores on each factor becomes
smaller than the Kth biggest element in R.

With this, we check at most KSF 1+ 1
α elements if every

frontal slice af ◦ bf follows a power-law (see [Araujo et
al., 2017] for a detailed description of the algorithm and re-
spective proofs). This means TENSORCAST is linear on the
number of elements we want to obtain times the number of
time-steps forecasted and agrees with intuition: sharper (i.e.,
quickly decreasing, higher exponent) power-laws require less
elements to be checked, while near-clique factors imply lower
exponents and more elements to be analyzed. Empirical eval-
uation on real datasets confirmed our bounds.



Users Groups Timesteps Memberships Interactions Description
1 734 902 5 476 79 8 049 559 21 423 244 DBLP - venues published and co-authorships.

12 426 133 2 326 843 31 30 281 817 282 280 158 TWITTER - hashtags used and retweets.

Table 2: Summary of real-world networks used.

4 Experiments
TENSORCAST is tested on two big datasets detailed in Table 2
In DBLP we have a tensor of authors and venues in which
they published from 1970 to 2014, while the co-authorship
tensor is used as contextual information. Evaluation is per-
formed on the 2015 data. In TWITTER, the main tensor re-
lates users and hashtags they used from June to December
2009, while retweets are used as the auxiliary tensor. Tweets
are grouped weekly and evaluation is performed on week 51.

Every factorization uses 10 factors (both ours and compet-
ing methods). In TWITTER, we weighted the reconstruction
of the main tensor 20x more relevant than the context ten-
sor, and in DBLP 2.66x higher (so that both tensors have the
same reconstruction error when considering empty factors).

How fast is TENSORCAST? We start by evaluating our
method’s scalability in TWITTER when changing the num-
ber of non-zeros in both tensors. By changing the number
of weeks under consideration, we create a sequence of pairs
of tensors that increase in size. For each pair, we measure
wall-clock time when performing a rank-4 coupled tensor
factorization, forecasting and identification of the top-1000
forecasted non-zeros. Figure 3 shows TENSORCAST’s linear
scalability. Similar results were obtained for DBLP.
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Figure 3: TENSORCAST scales linearly with the number of non-
zeros in the TWITTER dataset.

How effective is TENSORCAST? Figure 4 showcases
TENSORCAST’s accuracy on the task of predicting top-K re-
lations on future time steps, as we increase K on the DBLP
dataset (similar results were obtained for TWITTER).

Note the importance of TENSORCAST’s ability of being
simultaneously contextual and time-aware (competing state-
of-the-art is limited due to ignoring either one of these as-
pects). The competing CP Forecasting was run using Holt
forecasting, given the lack of data seasonality. The results
of Coupled Matrices were obtained by finding non-negative
factors that minimize the reconstruction error of the collapsed
tensors, weighted for the same importance.

Considering only the harder problem of predicting new re-
lationships (that didn’t exist on any previous time step), the
overall precision decreases, but the advantage over the com-
peting methods is even higher (we double their precision).
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Figure 4: Higher precision vs competing methods when forecasting
(author, venue) relations in the DBLP dataset.

Precision over Time. We evaluate TENSORCAST’s preci-
sion as the forecasting horizon is increased. We use the
DBLP dataset, doing five runs with each method when con-
sidering different “training” periods (i.e., the first run consid-
ered every publication before 2010, while the last run con-
sidered every publication before 2015). For each run, we ob-
tained the 1000 most likely non-zeros for each of the next 5
years and calculated each method’s precision. Figure 5 shows
the average precision for each forecasting horizon.

In addition to forecasting, the groups found by TENSOR-
CAST are interpretable due to the non-negativeness of the fac-
tors (ex: in TWITTER one of the groups we found was char-
acterized by conservative political hashtags, and another one
was related to human rights and the iranian elections).

5 Conclusions
We presented TENSORCAST, a method which addresses the
forecasting problem on big time-evolving datasets when con-
textual information is available. We leverage typical graph
properties in order to create a precise algorithm that can find
novel relations in very big datasets efficiently.
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