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Abstract—Comparing scientific production across different
fields of knowledge is commonly controversial and subject to
disagreement. Such comparisons are often based on quantitative
indicators, such as papers per researcher, and data normalization
is very difficult to accomplish. Different approaches can provide
new insight and in this paper we focus on the comparison
of different scientific fields based on their research collabo-
ration networks. We use co-authorship networks where nodes
are researchers and the edges show the existing co-authorship
relations between them. Our comparison methodology is based
on network motifs, which are over represented patterns, or
subgraphs. We derive motif fingerprints for 22 scientific fields
based on 29 different small motifs found in the corresponding
co-authorship networks. These fingerprints provide a metric
for assessing similarity among scientific fields, and our analysis
shows that the discrimination power of the 29 motif types is not
identical. We use a co-authorship dataset built from over 15,361
publications inducing a co-authorship network with over 32,842
researchers. Our results also show that we can group different
fields according to their fingerprints, supporting the notion that
some fields present higher similarity and can be more easily
compared.

Keywords-network comparison; co-authorship network; collab-
oration pattern; network motifs; motif profile;

I. INTRODUCTION

Understanding the similarities and differences in the process
of scientific production of different fields of knowledge is
one of the traditional debates in science [1]. Co-authorship
networks emerge as a powerful concept to gain a new insight
in this area. They are one of the most active and well studied
form of social networks and their statistical properties were
already being studied in the mid-1970s [2]. We believe that the
analysis and comparison of co-authorship networks, specific to
each scientific field, can help in understanding the differences
in research production across different fields.

Network comparison can be defined as the process of
contrasting two or more networks, and is a common approach
in complex networks analysis. The main goal is to find topo-
logical similarities that might explain, for example, equivalent
functionality. Another possible goal is to “align” networks, by
finding groups of nodes or edges that are likely to have a
similar “position” or function in different networks. Most of
the existing network comparison and alignment methods were
designed for biological data, and make use of the biological
context in order to analyze the data [3], [4]. A survey of the

existing network comparison methodologies from a biological
perspective can be found in [5].

Regarding more specific topological comparison method-
ologies, the most frequent and traditional approach is to use
global graph metrics such as degree distribution. This is
the approach considered, for example, by Newman [6]. He
analyzes three different scientific fields using properties such
as the number of co-authors per paper, shortest path between
two authors, or clustering coefficient. Recently, local properties
have been gaining increasing attention, and this is precisely the
approach we take in this paper, by looking for characteristic
collaboration patterns in the form of different subgraphs.

There are several possible methodologies for incorporating
subgraphs in a network comparison framework. Pržulj intro-
duced “graphlet degree distributions” (GDD) [7], by defining
graphlets as small, connected, induced subgraphs. GDD counts
the number of graphlets in which the node participates, trying
to generalize the degree distribution definition. Kuchaiev et
al. used graphlets to propose a new global network alignment
algorithm relying solely on topology [8]. They define graphlet
degrees signatures for each node, by counting its participa-
tion in k-sized graphlets, for a varying k. Milenković et al.
further improved this alignment approach by using a greedy
“seed-and-extend” approach, leading to an optimal alignment
algorithm [9] by using the Hungarian algorithm [10].

Network motifs are another possible angle, and can be
defined as small subgraphs that appear in a network at sig-
nificantly higher frequencies than what would be expected in
randomized networks [11]. They can really encapsulate and
characterize the structure of networks, and motif profiles have
been shown to be a very powerful measurement [12]. The
correlation of small network motifs (of sizes 3 and 4) with
citation frequencies in co-authorship networks has already
been the subject of a study [13].

In this paper, we compare co-authorship networks in differ-
ent scientific fields based on their motif profiles. Our goal is
to discover the set of network motifs that best characterize
and discriminate a certain scientific domain. Motif shapes
are correlated to the collaboration patterns found in a co-
authorship network, and we divide and group the networks
based on their similar collaboration patterns. Our results show
that this approach can identify relevant patterns and that we
are able to distinguish different models of collaboration across
the scientific fields. We are also able to discover the motifs
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TABLE I: Statistical properties of the considered co-authorship networks.

Network name Num Edges Num Nodes Avg Degree Clustering Coefficient
Agricultural Sciences 2099 1086 3.866 0.706
Biology & Biochemistry 6242 3029 4.121 0.734
Chemistry 8409 3284 5.121 0.796
Clinical Medicine 31751 5884 10.792 0.867
Computer Science 2806 1731 3.242 0.717
Economics & Business 945 292 6.473 0.784
Engineering 7069 3294 4.292 0.756
Environment/Ecology 3269 1740 3.757 0.762
Geosciences 2379 1082 4.397 0.785
Immunology 9984 2393 8.344 0.776
Materials Science 3727 1707 4.367 0.727
Mathematics 1171 911 2.571 0.626
Microbiology 3561 1819 3.915 0.767
Molecular Biology & Genetics 13205 3879 6.808 0.819
Multidisciplinary 3297 1229 5.365 0.771
Neuroscience & Behavior 4295 1896 4.531 0.781
Pharmacology & Toxicology 3550 1815 3.912 0.665
Physics 6107 2226 5.487 0.789
Plant & Animal Science 12010 4166 5.766 0.814
Psychiatry/Psychology 5717 1203 9.505 0.800
Social Sciences, general 6549 2078 6.303 0.732
Space Science 42609 1680 50.725 0.916

with more discriminating power, whose combination in the
right proportion constitutes a fingerprint of the network, that
could can be used to infer the scientific field based on its
co-authorship network.

II. COMPARISON OF CO-AUTHORSHIP NETWORKS
ACROSS SCIENTIFIC FIELDS

A. Data

In this paper, we use a set of 15,361 publications authored
by researchers from the University of Porto, ranging from 2003
to 2011. These are publications drawn from ISI Thompson
Web of Knowledge and they induce a co-authorship network
with 32,842 nodes (researchers). The association between
publication authors and researchers at the university is done
automatically by a specialized name identification system built
by our group [14].

There are many possible categorizations for academic sci-
entific fields. In the present study, we use the ISI categories 1

that divides science domains into 22 subjects or fields. An
undirected co-authorship network is built for each field in
which nodes are the authors of publications in that field, and
edges are created whenever two different researchers appear
as co-authors of the same publication.

Table I shows the statistical properties of the 22 co-
authorship networks created for each field, including number
of edges, nodes, average degree and clustering coefficient.

B. Network Motif Mining

We use g-tries [15] to find the motif profiles of each
network. G-tries are a tree-shaped data structure designed to
store collections of subgraphs and to find their frequency on a

1http://sciencewatch.com/about/met/fielddef/

larger graph. By encapsulating and identifying common sub-
substructures, and by using symmetry breaking conditions, g-
tries give us a very efficient subgraph counting algorithm.

For the purposes of this work, we consider all possible
undirected subgraphs of sizes 3 to 5. We apply the same
process, as described next, for each scientific field. We start
by computing the frequency of the subgraph set in the original
co-authorship network. We then produce a large set of similar
random networks and compute the frequency of the subgraphs
in these networks. These randomized networks keep the exact
same degree sequence of the original network, with each
node preserving its degree, but with different connections. For
that purpose, we use a Markov-Chain methodology in which
we start with the original network and repeatedly swap the
endpoints of edges, preserving their degree.

We use 100 random networks for each scientific field and
compute the significance of each subgraph by comparing its
frequency in the original network and in the randomized net-
works. The significance of a subgraph Gk is measured in terms
of a z-score, as depicted next, where frandom and σ(frandom)
are respectively the average and standard deviation of the
frequency in the randomized networks.

z-scorek =
foriginal(Gk)−frandom(Gk)

σ(frandom(Gk))

The motif profile of a network consists of the values of the
z-score for each subgraph type.

C. Significance analysis of Motifs

Before comparing the networks, we first assess if all the
motif types from size 3 to 5 have the same importance
in terms of differentiating co-authorship networks. In other
words, the question is to know which subgraphs (or motifs)
are more particular and can better differentiate scientific fields.
To answer this, we examine the discrimination power of each
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Fig. 1: Coefficients of network motifs in the two first principal
components.

motif. We use principle component analysis (PCA) [16] to rank
the motifs according to their significance in co-authorship net-
works. PCA is a simple, non-parametric method for revealing
hidden information in the data. The primary benefit of this
method is dimension reduction. However, it is also useful for
measuring the importance of each dimension in explaining the
variability of a data set.

Our PCA analysis over motif profiles of co-authorship
networks shows that two principle components can capture
100 percent of variation in the motif profiles of the networks.
The coefficients along each component provide the relative
importance of each motif. The higher the coefficient, the more
important the motif is. Fig. 1 shows these coefficients for the
two first components. We ordered the motif types regarding
their importance as depicted in Fig. 2. The measure for the
importance of a motif is the squared sum of its coefficients,
for the first and the second principle components. The first five
most distinguishing motifs are (5-21), (4-2), (5-9), (5-20) and
(4-6), highlighted in red color in the figures. Motifs having
comparable importance are depicted in the same color.

D. Network Comparison

We compare co-authorship networks from different sci-
entific fields to determine similarity among fields in terms
of collaboration patterns. Co-authorship analysis enables the
identification of groups of scientists and their model of col-
laboration across research disciplines. In order to be able to
compare the networks, we determine the fingerprint of each
co-authorship network, one for each scientific field, as a motif
profile [12], which basically is a vector of the normalized z-
scores of the motifs of sizes 3 to 5.

The networks are then compared against their motif profiles
and for the purpose of this comparison, the distance of two
networks i and j is calculated as:
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Fig. 2: Network motifs ranked by their importance in collab-
oration models.

D(i, j) =
√∑

k(Si,k − Sj,k)2 .

In our calculation, we use normalized values of motif
significance to remove the effect of high values, by dividing
them by their averages:

Si,k = z-scorei,k/z-scorei

The distance metrics of networks are used to group them. A
suitable approach is to use hierarchical clustering, since it has
the advantage of providing a general picture of all possible
groupings for the objects at different distance level over other
clustering methods. Therefore, the desired grouping can be
derived by using the similarity, or distance, between networks.
We use agglomerative hierarchical clustering methods [17]
to divide networks into homogeneous groups holding similar
patterns of collaboration. This method begins with as many
clusters as objects. Two clusters are separated by the smallest
distance and are successively merged until only one cluster
remains.

E. Results

Fig. 3 shows the overall results of the hierarchical clustering
process for co-authorship networks. Networks are grouped
together if they have a similar motif profile, meaning that the
same subgraphs are more significant in these networks.

In section II-C, we found that the most important motif
types have five nodes, mostly revealing the variation in the
motif profiles of co-authorship networks. To further confirm
this result, cluster analysis is done for different combination
of motif sizes, by discarding one size at a time. In this
way, we also compare networks against motif sets {3, 4},
{3, 5}, and {4, 5}, and the results can be seen in Fig. 3. By
leaving out motifs of size 5 (Fig. 3b), almost no grouping is
derived, meaning that the structure of networks is not different
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(b) Motifs of sizes 3 and 4.
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(c) Motifs of sizes 3 and 5.
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Fig. 3: Similarity matrix of scientific fields.

regarding motif types from size 3 and 4. By incorporating
the motifs of size 5 in the comparison as depicted in Fig. 3c
and Fig. 3d, the groupings appear. This shows that going for
larger motif sizes does indeed provide more information and
that even going for a small increment in the number of nodes
may result in new and insightful information. In this case the
difference between sizes 4 and 5 is highly significant.

To have a comprehensive comparison of co-authorship
networks, we included all 29 motif types in the hierarchical
analysis. Four groups of scientific fields are more distinct
in this clustering, depicted in Fig. 3a. Drilling down to the

motif profiles for the four identified groups, as depicted in
Fig. 4, we can observe that the patterns of collaboration vary
across the fields. Clearly, the motif profile distinguishes the
networks from each other, and research communities in each
group follow different models of collaboration.

More specifically, we can see that in the first group, in-
cluding Chemistry and Physics, the most significant pattern
of collaboration is in the form of a clique (5-21), meaning
that there exists a large number of “clusters” in which every
author has a publication with the others, and also that the
size of co-authorship communities is larger than in the other
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Fig. 4: Motif profile of co-authorship networks from different scientific fields.

fields. The second significant model in this group is also a
clique, but of size 4, and the third is a triangle, which is a
clique of size 3. This shows that in this group, authors tend
to publish in highly connected communities. The most rare
models of collaborations in this group are motifs of (3-1), (4-
2) and (5-9), showing that it is uncommon that two co-authors
of an author do not collaborate. In other words, we can say
that in these fields, co-authors of an author are tipically also
co-authors.

The second group of scientific fields includes Computer

Science, Engineering, Materials Science and Pharmacology &
Toxicology. In opposition to the first group, the clique motif of
size 5 is not the most significant collaboration pattern here, but
we still have a dense subgraph of size 5, motif (5-20), as the
main pattern. This means that researchers in this group also
publish in highly connected communities, but not so dense as
in the first group.

The most different field of study is Economics & Business,
where other types of motifs are also important models of
collaboration. Motifs of (5-7), (5-8) are even more common
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than the clique patterns of 4 and motifs of (4-5), (4-4) are more
important than clique of size 3. In this field, the co-authors are
indirectly connected. We should point out this field exhibits an
uncharacteristic paper with 36 authors, that creates a 36 node
clique that functions as an “outlier” that can somehow skew
the results.

Finally, the last group includes Mathematics and, surpris-
ingly to us, Microbiology, where the building blocks of the
co-authorship network are motifs of (4-2) and (5-9). In this
group, the co-authors are not necessarily directly related as
co-authors.

III. CONCLUSION

The ability to compare scientific production across different
fields is important, specially in the view of a research assess-
ment by science funding organizations. Most of the studies
in this domain rely mainly on statistical properties of co-
authorship networks either at the level of individual authors or
at the level of the entire network. In this paper, we presented
an approach for comparison of co-authorship networks at the
subgraph level. Network motifs, defined as overrepresented
subgraphs, are here used to build a fingerprint for the compar-
ison of collaboration patterns in different scientific fields.

Based on a large set of publications authored by researchers
at the University of Porto, we built co-authorship networks for
each of the 22 ISI scientific fields. With our approach, we were
able to determine four distinct groups of fields, holding dif-
ferent collaboration patterns with different significance levels.
Whilst in Chemistry and Physics, researchers publish in large
collaboration groups, in the form of motif (5-21), a clique
of size 5, in other fields, such as Mathematics, researchers
exhibit a less dense collaboration pattern, in the form of motifs
(4-2) and (5-9), with co-authors rarely publishing between
themselves.

Although being limited to the University of Porto in terms
of raw data used, the derived results are comprehensive in
terms of analyzed fields and they are consistent with the
results of previous research studies on different data sets, such
as the one made by Newman [6], which used more typical
global statistical properties. We were able to identify a list of
frequently occurring subgraphs in the network of each field,
and this can be used as a fingerprint for the purpose of network
comparison.

The motif based comparison can be further enhanced by
incorporating weight for edges or nodes. Social networks
represent human interactions and these are more complex than
simple binary links. In real networks, a connection holds more
information if the weight is also considered. In future work,
we intend to consider more information about the connections,
such as the weight of edges, which can in our case be defined
as the number of co-authored publications, or citation rate of
co-authored papers. In addition to adding weight to motifs
to improve comparison precision, we believe there is also
information to be gained by also involving more traditional
statistical properties of networks such as degree distribution,
in an hybrid approach. We will also try to increase the size

of the considered motifs, by resorting to high performance
computing to achieve reasonable computation times.
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