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Abstract. Complex networks are ubiquitous in real-world and represent
a multitude of natural and artificial systems. Some of these networks are
inherently dynamic and their structure changes over time, but only re-
cently has the research community been trying to better characterize
them. In this paper we propose a novel general methodology to charac-
terize time evolving networks, analyzing the dynamics of their structure
by labeling the nodes and tracking how these labels evolve. Node label-
ing is formulated as a clustering task that assigns a classification to each
node according to its local properties. Association rule mining is then
applied to sequences of nodes’ labels to extract useful rules that best
describe changes in the network. We evaluate our method using two dif-
ferent networks, a real-world network of the world annual trades and a
synthetic scale-free network, in order to uncover evolution patterns. The
results show that our approach is valid and gives insights into the dy-
namics of the network. As an example, the derived rules for the scale-free
network capture the properties of preferential node attachment.

Keywords: Network Characterization, Node labeling, Clustering, As-
sociation Rules

1 Introduction

Advances in information technology led the world activity to become very much
centered on information data. The explosive growth in data that we are wit-
nessing naturally opens an enormous opportunity for researchers to develop new
methodologies to dynamically extract useful information and knowledge from
the data. Real life data inherently contains structural information on objects
and their relationships. This structure can be modeled with networks, or graphs,
that are abstract representations of a set of nodes and the connections between
them.

Most real world networks are complex, in the sense that they present non
trivial topological features. Research on complex network data analysis has been
very prolific and a large variety of characterization methodologies emerged, such
as node classification [23], graph clustering [13, 25], frequent subgraph mining [32,
16] or network motifs discovery [24]. These approaches treat the network as a
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static object. However, many networks are intrinsically dynamic and change over
time. Only recently has the research community started to analyze the temporal
evolution of networks [22,4,21,7,6]. Most of these studies have characterized
network structure by directly examining the topology of the network. Never-
theless, more indirect methods that use network measurements such as degree
centrality or clustering coefficient can be a rich source of information [9]. Our aim
is precisely to use the evolution of these kind of metrics to study the dynamics
of networks that change over time.

We propose a novel two-phase general methodology designed to character-
ize time evolving networks. First we group and classify nodes based on their
role in the network, and then we track changes and find patterns on how this
classification evolves.

The first phase involves looking at the network from a static point of view
and creating a node classification. We can either use a predefined label for each
node, or an automated classification of nodes based on their local properties,
such as degree or betweenness, which have been shown to be very fruitful in node
characterization [9]. It is however not an easy task to choose a set of these kind
of metrics that best generally describes and distinguishes nodes. Costa et al. [10]
presented a node label acquisition methodology based on these metrics, but they
only identify outliers, that is, singular nodes that are the most different from the
others. Instead, we apply these measurements to all nodes in the networks and
then employ clustering techniques to group nodes and attribute them labels.

The second phase involves tracking the evolution of node labels over time.
We mine association rules using the apriori algorithm [2], characterizing the
dynamics of the networks in order to uncover emerging patterns that show the
appearance, change and disappearance of groups of nodes.

We apply our methodology on a real and on a synthetic complex network in
order to demonstrate the validity and usefulness of our approach. We show that
our method can discover interesting insights in dynamic networks.

In the remainder of the paper, we start by presenting recent and state of the
art work regarding network evolution. After, we describe the proposed method-
ology in section 3, with all intermediate steps and techniques used. Then, we
evaluate our approach in section 4, by applying it to two network datasets. Fi-
nally, we draw some conclusions.

2 Related Work

2.1 Graph clustering

Graph clustering is the task of grouping the nodes of the graph into clusters
taking into consideration the edge structure of the graph in such a way that
there should be many edges within each cluster and relatively few between the
clusters [25].
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2.2 Label acquisition

Label acquisition, as most commonly defined in the literature, involves deter-
mining the label for a node in a network that is partially labeled. Normally, it
is assumed that at least some of the nodes have a predefined label and only the
labels for remaining nodes are predicted using relational classifiers [30].

With networked data, the label of a node may influence the label of a related
node. Furthermore, nodes not directly connected may be related through chains
of links. This complex dependencies thus suggest that it may be beneficial to
predict the label of all nodes simultaneously. Regarding the values of an attribute
or attributes for multiple connected nodes for which some attribute values are
unknown, a simultaneous statistical assessment is required and this can be done
by using collective inferencing [17]. Networked data allow collective inference,
meaning that various interrelated values can be derived simultaneously [23].
Macskassy et al. [12] used another source of information in networks that is in-
dependent of the available node labels and improved the accuracy of node’s label
by adding label independent features which include nodes local measurements
like degree and betweenness.

All the mentioned studies aim to find the label of a node in a partial labeled
network and rely mainly on the available information about label of some of the
nodes, they predict labels of nodes instead of assigning the labels. Our work in
label acquisition follows the work by Costa et. al. [10], but differs in that we
consider all the nodes in the network instead of just the singular node-motifs.

2.3 Node evolution

Different approaches for explaining network evolution have been reported in the
literature. Some have focused on the global evolution of networks by an ex-
ploratory point of view. Leskovec et al. [22] discovered the shrinking diameter
phenomena on time-evolving networks. Backstrom et al. [4] studied the evolu-
tion of communities in social networks. Still from an exploratory perspective,
Leskovec et al. [21] studied the evolution of networks but at a more local level.
Using a methodology based on the maximum-likelihood principle, they investi-
gate a wide variety of network formation strategies, and show that edge locality
plays a critical role in evolution of networks|6].

Braha and Bar-Yam [7] described node’s centrality changes over time and
showed that hubs do not remain a hub for the all time. They use nodes degree
over time to computes correlation between pairs of daily networks.

Other recent papers, present algorithmic tools for the analysis of evolving
networks. Tantipathananandh et al. [29] focus on assessing the community affili-
ation of users and how this changes over time. Sun et al. [27], apply the minimum
description length (MDL) principle to the discovery of communities in dynamic
networks, developing a parameter-free framework. This is the main difference to
previous work such as [1,28]. However, as in [31], the focus lies on identifying
approximate clusters of users and their temporal change. No exact patterns are
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found, nor is time part of the results obtained with these approaches. Ferlez et
al. [11] use the MDL principle for monitoring the evolution of a network.

Network motifs as small subgraphs that show the topological properties of
the network have also been used in [19] to monitor temporal changes in the
structure of an email communication network. They considered z-score of motif
as its significance in the network and trace it over time. The dynamics of network
is studied in [7] by calculating the network motifs frequency over the time.

3 Methodology

We address the characterization of network dynamics by tracking the evolution of
groups of nodes over time, and deriving rules that explain that evolution. We do
this in two phases: one deals with node label acquisition, and the other deals with
node evolution pattern discovery. The first phase has multiple steps, as illustrated
in figure 1, that include measuring local properties of nodes, determining the
proper number of clusters in the network, clustering the nodes, coordinating
the clusters of nodes in the network time span and assigning labels to groups
of nodes. The second phase comprises defining a time granularity for network
pattern detection and mining association rules.

Node label acquisition

Determining Coordinating
Measuring number of Clustering clustersover | Assigninglabel
clusters time

NS

Node label patterns

Define time granularity Mining associationrules

Fig. 1: Proposed methodology

3.1 Node label acquisition

The label of a node is determined based on its properties in the network. The
same label is assigned to the nodes that have similar properties. Therefore, first
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we select a set of local measurements that best characterize nodes in the net-
work structure, and then we determine the groups of nodes that have similar
properties. The same metrics as introduced by Costa et al. [10] are employed as
“feature vector” for nodes. This feature vector measures the connectivity of a
node in the neighborhood structure. It includes:

— the normalized average degree (1),

— the coefficient variation of the degrees of the immediate neighbors of a node
(cv),

— the clustering coefficient (cc),

— the locality index (loc), which is an extension of the matching index and takes
into account all the immediate neighbors of each node, instead of individual
edges, and

— the normalized node degree (K).

Label assignment requires the grouping of identical nodes, that is, nodes that
share the same feature vector. We use multivariate statistics and pattern recog-
nition [18] techniques to find these identical nodes. Clustering is a method widely
used for finding groups of objects, called clusters, in the dataset such that the
objects in the same group are more similar to each other than they are to objects
of other groups. We use the well known k-means clustering algorithm [15], which
bases its operation on the euclidean distance between nodes. If two nodes have
similar feature vectors, they are clustered into the same group. After clustering
the nodes, coherent groups of nodes are derived and, therefore, can be said to
have the same role or label in the network.

The number of potential groups of nodes in the network is equal to the
number of clusters in the dataset. Determining the actual number of groups in
a dataset is a fundamental and largely unsolved problem in cluster analysis. We
employ the method by Sugar and James [26], since it does not require parametric
assumptions, is independent of the method of clustering, and was shown to
achieve excellent results. This method uses a theoretic information approach that
considers the transformed distortion curve d” /2 [26]. “Distortion” is a measure
of within cluster dispersion which is a kind of average Mahalanobis distance
between the data and the set of cluster centers as a function of the number of
clusters, K. This method is called the “jump method”. First, it runs the k-means
algorithm for different numbers of clusters, K, and calculates the corresponding
distortions, CZK. Then it transforms the distortion by power transformation of
Y = p/2, where p is the number of dimensions in the dataset. The “jumps”
in the transformed distortion are calculated by Jj = d;{y — d;{y_l Finally, the
appropriate number of clusters for the data is equal to K* = argmaxyJi.

We use the jump method to determine the groups of nodes in the network
at each time instance. The nodes that are members of the same cluster hold the
label of that cluster. The labels can be the numbers of the cluster or be defined
manually by the domain expert, based on the properties of the cluster’s center.

After labeling the nodes in the network over time, we are left with a series of
networks whose nodes are independently labeled. For example, it may be the case
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that group number one at time ¢ includes nodes with low degree, low clustering
coefficient and high neighborhood degree, but at time ¢ 4+ 1 it may be that it
is group number two that includes nodes with this feature vector. That is, the
same feature vector might appear in different groups of nodes at different times.
Therefore, a coordination is required for the labels. For the coordination, we use
the centers of the detected clusters at each time. We assign the same label to
the nodes belonging to two clusters whose centers are close to each other. By
considering the Mahalanobis distance of the centers, we can derive an universal
label for the nodes of the network for all the time instances.

At the end of this phase, coherent groups of nodes at each time instance
are derived and labeled. Therefore, a sequence of labels is generated for each
node over time. In the next phase, we attempt to extract from these sequences
patterns that explain nodes evolution.

3.2 Node evolution patterns

Having a time-evolving network with labeled nodes is a requirement for deter-
mining evolution patterns. Our goal is to find rules that explain transitions of
nodes between groups over time. We consider the labels of nodes as items, and
thus an itemset in our case is the sequence of node’s labels over the time. Fre-
quent itemsets are the sequences or subsequences which have minimum support.
Therefore, the patterns of node evolution are the extracted frequent itemsets
and association rules.

The Apriori algorithm is a powerful tool for mining associations, correlations,
causality and sequential patterns [2,3,8,20]. Association rules mining has two
main steps [2]:

1. Finding all sets of items (itemsets) whose transaction support is above a
minimum support threshold. The support for an itemset is the number of
transactions that contain the itemset. Itemsets with minimum support are
called large itemsets, and all others small itemsets.

2. Use the large itemsets to generate the desired rules for every large itemset
[ and all non-empty subsets of [. For every such subset [,, output a rule of
the form I, = (I —I,) if the ratio of support (I) to support (I,) is at least
minimum confidence. We need to consider all subsets of [ to generate rules
with multiple consequents.

The apriori algorithm generates the frequent itemsets with different time
granularity. Patterns of evolutions are generated using a sliding window method
that enable us to detect changes at different stages of network lifetime. At each
time window, rules with different time granularity are extracted.

4 Experiments

The proposed methodology for automatically assigning labels to nodes and track
their evolution over time was implemented in R. We evaluated it on two different
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datasets, a network of the world countries’ global trade (GDP data) [14], and a
synthetic scale free network. We start by describing these datasets in some detail
and then present our evaluation results.

4.1 Datasets

The first data set is created from the publicly available Expanded Trade and
GDP Data [14]. The data represents the yearly imports and exports, total trade
and gross domestic product (GDP) of 196 countries spanning the 52 years from
1948 till 2000. The time series for each country is the proportion of its share
in the global economy according to its GDP for that year. The time series for
GDP-Norm is the normalized value of each individual annual GDP, divided by
the total GDP for all countries during that year. The topology for the graph
was created by comparing the yearly total trade for each country and its trade
with each of the other countries. If the trade between country A and country B
in any given year accounts for more than 10% of either country’s total trade for
that year, an edge is created between the two countries.

The second dataset is a synthetic scale-free network generated based on the
Barabasi-Albert model for graph generation [5]. It is a model of network growth
that is based on two basic parameters: growth and preferential attachment. The
basic idea is that in the network nodes with high degrees acquire new edges
at higher rates than low-degree nodes. An undirected graph is constructed as
follows. Starting with mg isolated nodes, at each time step t =1,2,..., N a new
node j with m < myq links is added to the network. The probability that a link
will connect j to an existing node ¢ is linearly proportional to the actual degree
of node i given by

P(k;) = ki/ij (1)

4.2 Results

Table 1 provides details on the networks used in our experiments, namely the
number of nodes in each network, the number of time instances of network
evolution, and the number of labels produced with the application of the first
step of our method for node label acquisition.

Dataset |# nodes|# times|# labels
GDP 171 52 4
Scale-Free| 200 100 7
Table 1: Statistics of used networks

Figures 2 and 3 show the profile of the groups found in each network. The
profile depicts the values of the feature vector of each group in the network.
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As explained earlier, the feature vector includes the metrics normalized average
degree (r), coefficient variation of the degrees of immediate neighbors (cv), the
clustering coefficient (cc), the locality index (loc), and the normalized node

degree (K).
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Fig.2: Profile of feature vector in groups of nodes in the GDP network. The
feature of r is depicted in the right side of the vertical axis.

GDP network: in this global trade network of countries, our method found four
distinguishable groups of nodes. Each group has a different feature vector as
illustrated in Figure 2. The first group includes nodes that represent countries
with very high degree and many low degree nodes connected to them. Neighbors
of these nodes have low degree since the normalized average degree of the im-
mediate neighbors of a node for this group is very low. This means that nodes
of group one behave as hubs in the network, that is, as hub countries in global
trade, with commercial transactions with many other countries that have a high
variation of degree in neighborhood (cv). According to the value of loc and cc,
respectively, the locality index and the clustering coefficient, nodes of this group
are highly connected in their neighborhood. United States of America, Canada
and France are members of this group.

Figure 4 depicts the evolution on the frequency of each label over time in
each network. At the initial stages of network evolution, groups with label 1
and 3 are rather common, but they become rare as the network evolves. These
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Fig. 3: Profile of feature vector in groups of nodes in the Scale-Free network.

groups have different sizes (number of nodes) at each time step, but they never
vanish. Over time, one can notice a transition from group 3 to group 2. After
the initial stages of network lifetime, a new group emerges, in this case group
number four.

The changes over time in the role of the nodes of certain groups is described
by the extracted patterns of node’s evolution. Table 2 shows the stronger rules,
in terms of support and level of confidence, that are extracted from the label
sequence of nodes in GDP network. We used a sliding window to find out the
changes in the network. The sliding window (SW) parameter helps to narrow
down the search interval to find more precisely rules that describe changes of
node’s label. The size of the SW can be determined by the Fig. 4 which shows
the trend of node’s membership. With different SW size, several rules could be
found. The significant ones that characterize the appearance and disappearance
of the groups are listed in table 2.

For example group four does not exist in the network before time step 18.
This pattern of change is detected and described by rule of {t14 = 2,t17 = 2} =
{t18 = 4}. This rule says that nodes that were in the second group at time 14
and 17 are likely to change to the fourth group at time 18. The support for this
rule is 11%, but its confidence is 87%.

Scale-Free network: this network was generated with 200 nodes and we sampled
100 networks from its evolution time. Our method detected seven different groups
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Network |Rule Support|Confidence
{t1=2,t14=2,t8 =3} = {t9 =2} 18% 95%
app |14 =2.017=2} = {118 =4} 11% 87%
{t28 = 4,129 = 1} = {¢30 = 3} 16% 70%
{t40 = 2,441 = 3,142 = 3} = {t43 = 2}| 17% 75%
{t16 =7,t =18 =7} = {t20 = 5} 6% 72%
t57 =5} = {t60 =2 11% 82%
Scale Free %t75 = 6,}t76 {: 6} = J%tSO =3} 7% 81%

Table 2: Derived rules for the networks

of nodes with distinct feature vectors, as illustrated in Figure 3. The first group
of nodes in this network are those that are weakly connected such that all of
their local connectivity properties in the feature vector of this group have the
lowest values between the nodes but have a very high variation of degree in their
neighborhood (cv). A reason for this is that the neighbors of these nodes are
mostly low degree nodes that, however, are connected to a hub in the network
with very high degree. As shown in Figure 3, these groups have different numbers
in each time but never cut down in the network lifetime. Second group are
nodes with low degree. This group was formed almost at the middle of network
evolution time span (low K). They are connected to very high degree nodes (high
c and high cv). This group of nodes appears after the 50th time instance. The
third and forth group of nodes are highly connected nodes (high X and cc) with
neighborhood of low degree nodes (low r and cv). The other three groups of
nodes, 5, 6 and 7, are low degree nodes, but the nodes in fifth group are also
connected to a hub, which does not happen with the others groups. The sixth
group emerges at the beginning stage of the network development and becomes
more frequent as time goes on.

Extracted rules in table 2 describe the stronger trends in nodes’ transitions
between groups. For example {¢t57 = 5} = {t60 = 2} shows that nodes in fifth
group, after a while, change to the second group. This rule also shows that as
time goes on, regarding the generation model of the scale-free network, although
the neighborhood of the nodes get more crowded (r and cv increases), their
degree remains low. Nodes in the fifth group have low degree, thus they can not
absorb new connections and their degree does not increase.

5 Conclusions

Many networks are intrinsically dynamic and evolve over time. Discovering topo-
logical features in these networks is far from an easy task. In this work, we
proposed a network characterization method that considers both, a static and a
dynamic point of view. It is a two phase methodology that automatically assigns
labels to nodes of the network based on their local properties and extracts pat-
terns of nodes evolution. The static view provides a general description of the
network through label assignment to groups of nodes. Each group in the net-
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work is well characterized by the corresponding feature vector profiling. From a
dynamic point of view, the methodology discovers patterns of network evolution
at node level. Extracted patterns are general rules that describe how one node’s
label changes from time to time.

We applied our method to two networks to demonstrate and assess its capa-
bilities. It successfully clusters nodes in groups performing a similar role in the
network, labels the groups and, through association rule mining, derives rules
that explain, with high confidence, patterns of network evolution. The rules show
node transitions between groups as time evolves.

Future research will be pursued to extend this methodology, so that we do
not just look at individual nodes but subgraphs in the network. In particular,
given our prior work on efficient methods for motifs discovery, we are specially
concerned with using subgraph motifs as a metric for network characterization,
and then studying network evolution based on such larger entities.
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