
Next Higher Point: two Novel Approaches for
Computing Natural Visibility Graphs

Patrick Daniel1, Vanessa Freitas Silva2, and Pedro Ribeiro2

1 Faculdade de Ciências, Universidade do Porto, Porto, Portugal,
2 CRACS-INESC TEC, Faculdade de Ciências, Universidade do Porto,

Porto, Portugal

Abstract. With the huge amount of data that has been collected over
time, many methods are being developed to allow better understanding
and forecasting in several domains. Time series analysis is a powerful
tool to achieve this goal. Despite being a well-established area, there are
some gaps, and new methods are emerging to overcome these limitations,
such as visibility graphs. Visibility graphs allow the analyses of times
series as complex networks and make possible the use of more advanced
techniques from another well-established area, network science. In this
paper, we present two new efficient approaches for computing natural
visibility graphs from times series, one for online scenarios in O(n logn)
and the other for offline scenarios in O(nm), the latter taking advantage
of the number of different values in the time series (m).

Keywords: times series, visibility graphs, online data, offline data

1 Introduction

In different fields, series of data indexed by time are recorded for different pur-
poses, and these series are known as time series. Time series analysis is used
to analyse these data, revealing hidden patterns and trends with view to fore-
casting [10]. Traditional techniques, such as those from statistical linear analysis
are commonly employed for this purpose. However, these methods have limi-
tations, particularly in capturing complex relationships in dynamic systems. In
response, Network Science offers complementary tools to enhance the analysis
of time series and uncover new insights into temporal dependencies [11].
Network science is a field that studies complex networks (or graphs) and these are
well known to be able to model real-world scenarios [2]. One popular method
for mapping time series to complex networks is the visibility graph [6]. This
approach gained interest because network science, with its advanced tools, can
uncover hidden properties in the topological structures of resulting networks. For
example, periodic series are converted into regular graphs, random series do so
into random graphs and fractal series are converted into scale-free networks [6].
Visibility graphs can be obtained using different visibility criteria such as natural
visibility, horizontal visibility, and many others [11]. Figure 1 shows a simple
illustration for the first criterion.



2 Patrick Daniel et al.

Fig. 1: Illustration of Natural Visibility Graph (NVG) for a toy time series.

In the last decade, lots of research are being conducted in time series analy-
sis through visibility graphs [11]. Unfortunately, the first faced problem during
these studies is the time complexity of the algorithms that map time series to
visibility graphs, since all known methods are still quadratic in worst-case for
the natural visibility graph. Motivated by this, in this paper, we presented a
brief overview of existing algorithms and proposed two new efficient methods for
computing Natural Visibility Graphs (NVG). One method is designed for online
data scenarios, and other for offline scenarios, both using a simple data struc-
ture known as Monotonic Stack. We also compared the time complexity of the
proposed NVG algorithms with existing ones in the literature and we conducted
experiments to analyze the results.

2 Background
2.1 Visibility Graphs

The Visibility Graph (VG) in time series analysis is the resulting graph of the
mapping process based on a geometric criterion. This graph is defined as follows:

1. The vertices of the graph are labeled according to the timestamps, with a
one-to-one correspondence between data points and graph vertices.

2. There is an edge between two nodes in the graph if, and only if, the corre-
sponding data points ”see” each other based on a visibility criterion.

The chosen visibility criterion defines the type of VG. In this work, we focus
specifically on the Natural Visibility Graph (NVG).
According to the natural visibility criterion, two data points (xl, yl) and (xr, yr)
(assuming xl < xr without loss of generality) in the time series are mutually
visible if, and only if, every intermediate data point (xm, ym) with xl < xm < xr

meets the following condition:
ym − yl
xm − xl

<
yr − yl
xr − xl

. (1)

This means that the maximum slope of any line connecting data point (xl, yl)
and any intermediate data point (xm, ym) is less than the slope of the line con-
necting (xl, yl) and (xr, yr), as can be observed in Figure 1.
NVG is undirected and always connected, as adjacent data are naively visible to
each other. Moreover, NVG doesn’t change under affine transformations of the
time series, as the visibility criterion is invariant to such transformations [6].



NHP: two Novel Approaches for Computing NVG 3

2.2 Natural Visibility Graph Algorithms Review

Since the proposal of the concept by Lacasa et al. [6], many algorithms for
mapping times series to NVGs have been proposed. In this section, we will briefly
list the existing methods and their respective time and space complexities.

Method
Name

Auxiliary

Space
Offline Scenario
(Balanced TS)

Offline Scenario
(worst-case)

Online Scenario
(Balanced TS)

Online Scenario
(worst-case)

Basic [7] O(1) O(n2) O(n2) — —
DC [8] O(1) O(n logn) O(n2) — —
SC [4] O(n) O(n logn) O(n2) — —
BST [3] O(n) O(n logn) O(n2) O(n logn) O(n2)
LOT [5] O(1) O(n logn)1 O(n2) O(n) O(n)

Table 1: NVG algorithms summary

Given a time series [(x1, y1), (x2, y2), .., (xn, yn)], the naive mapping algorithm
for VG enumerates all possible triples of data points ((xl, yl), (xm, ym), (xr, yr))
with 1 ≤ l < m < r ≤ n, checks the visibility criterion and adds the edge
(l, r) to the resulting VG, if the visibility criterion is satisfied, leading to a time
complexity of O(n3). In order to speed up the mapping process, the methods
presented in Table 1 have been proposed. These methods approach the problem
using different algorithmic strategies (e.g. Divide and Conquer (DC) [8], Sort and
Conquer (SC) [4] or Backward Iteration (e.g. LOT [5])) and data structures (e.g.
Binary Search Tree (BST) [3]) to take advantage of the time series structures,
including the slopes of the lines or even the balance 2.

2.3 Monotonic Stack

Monotonic Stack is a common data structure in computer science. It functions
like a standard stack but maintains a key invariant : at any time, all the elements
in the stack are monotonically increasing (or decreasing). This invariant enables
faster solutions in many algorithms, such as the state-of-the-art algorithm for
horizontal visibility graphs proposed in [9].
Given a sequence of values [a1, a2, .., an], we aim to find, for each index 1 ≤ i ≤ n,
the next element to the left that is greater than ai. A naive two-nested loop
solution takes O(n2), but a Monotonic Stack reduces the complexity to O(n).
Starting with an empty stack, we process the sequence from left to right (a1 to
an). For each element ai, if the stack is empty, no greater element exists to the
left of ai. Otherwise, we check the top of the stack and while the top is smaller
than or equal to ai, we pop the top. If the stack becomes empty, no greater
element exists to the left of ai; otherwise, the element on the top of the stack is
the next greater element. Then, we push ai onto the stack (empty or not).
Since each element is pushed once in the stack and popped at most once, sum-
ming up two operations for each element in the worst-case, this results in a linear
time, O(n). The key point of this approach is that, when a new element an+1 is
added, the overall complexity is still O(n), since that an update costs O(1).

1 Depends on the used algorithm.
2 A time series is called balanced when the highest point divides the series into two
sub-series of (almost) equal size and the same happens in both sub-series.



4 Patrick Daniel et al.

3 Next Higher Point : two Novel Approaches

In this section, we present two novel approaches for computing an NVG from a
time series, called Next Higher Point (NHP) algorithms.

The first, Online NHP, is designed for online scenarios (i.e., data streaming),
handling new data in a different way, that guarantees an average time of O(log n)
for each update in balanced series and faster than O(n) for a generic time series
in practice (as show in Section 4), outperforming state-of-the-art approaches.

The second, Offline NHP, is designed for offline scenarios and leverages the
number of distinct values in the time series. As far as we know, this is the
first NVG method with complexity based on the number of distinct values (m),
achieving O(nm) time. This makes our algorithm ideal for real-world cases where
few distinct values are usually present [1].

3.1 Approach 1: Online Next Higher Point

Online NHP is designed to work in online fashion. We can assume that we
have n existing time series data points and their corresponding NVG is already
computed (without loss of generality, as it can be empty if we consider n = 0).
Suppose a new data point arrives, as illustrated in Figure 2a, and we want
to insert it into the NVG and build the corresponding edges. The proposed
algorithm involves two main stages, which we describe below.

(a) Arrival of a new data point

(b) First stage (c) Second stage

Fig. 2: Illustration of the Online NHP algorithm. The top figure shows a data
update in an existing NVG and the bottom figures depict the first and second
stages of Online NHP, respectively. Dashed blue lines represent added edges, and
red represent lines those not added.



NHP: two Novel Approaches for Computing NVG 5

First Stage: Iterate through the existing (past) data points and check the
visibility criterion (adding edges to the graph if Equation 1 is satisfied) while
the height of the new data is greater than the iterated data. Figure 2b illustrates
this process. After finding the first higher data, go to the second stage.

Second Stage: In this stage, it keeps iterating but in a slightly different fashion.
Instead of going naively to the next past data point, we jump to the next point on
the left of the currently iterated point that is higher than it (and always checking
the visibility criterion to establish the connections if necessary), as there cannot
be visibility between two points if there is a point between them that is higher
than or equal to the highest of the two. This process is illustrated in Figure 2c.

Online NHP can be efficiently implemented using a Monotonic Stack and an
array to store the position of the next greater element (see Algorithm 1). Since
this is online, we have an existing time series, a Monotonic Stack, a Next Greater
Array, and a graph (which can be empty if n = 0). To insert a new data point,
these data structures are passed by reference to avoid overhead, and the method
modifies them directly without returning anything.

Algorithm 1 Online NHP

Require: A time series TS := (X,Y ), where X and Y are 1-indexed arrays of length
N , the Monotonic Stack S, the Next Greater Array A, the graph G and the new
data point (x, y), all passed by reference, except the new data point

Ensure: (empty)
1: while S is not empty and Y [S.top()] ≤ y do S.pop()

2: if S is not empty then A[N + 1]← S.top()
3: elseA[N + 1]← −1 ▷ there is no point on the left that is greater than y

4: S.push(N + 1)
5: TS.addPoint((x, y))
6: G.addNode(N + 1)
7: l← N
8: minSlope← +∞
9: while l ≥ 1 do
10: lineSlope← slope((X[l], Y [l]), (x, y))
11: if lineSlope < minSlope then
12: G.addEdge(l, N + 1)
13: minSlope← lineSlope

14: if Y [l] ≥ y then l← A[l]
15: elsel← l − 1

Complexity. The use of the Monotonic Stack and the Next Greater Array of
past data points, requires an O(n) space. On the other side, note that for very
unbalanced cases (e.g. monotone increasing or decreasing time series), the time
complexity reaches its worst-case, O(n2), since each of the stages may cost O(n)
time for each new data. But, these cases are not common in practice. However,
in balanced cases, after n updates, starting from an empty series, both stages of
the algorithm have an overall time complexity of O(n log n), as proven next.



6 Patrick Daniel et al.

Proof (First Stage in a Balanced Time Series). in a balanced time series of
length n, the midpoint performs n

2 visibility checks, the midpoints of each half
perform n

4 checks, and this pattern continues for the remaining data points, as
shown in Figure 3. Formally, the expected number of visibility checks for each
point in a balanced times series of length n is given by:

E(Tn) =
1

n
· n
2
+

2

n
· n
4
+

4

n
· n
8
+ .. +

2h

n
· n

2h+1

=

h∑
i=0

1

2
= (h+ 1) · 1

2
=

1

2
· log2(n+ 1),

(2)

where n = 1+ 2+ 4+ ..+ 2h and h is the number of levels of height in the time
series, i.e., the height of the recursion tree of the splitting process (if we consider
that, recursively, each data point is dividing into equal parts the sub-series where
it is the highest). This implies n = 2h+1 − 1 (without loss of generality, as n can
always be approximated to the predecessor of the nearest greater power of two
without changing the asymptotic order of the number of checks), and therefore,
h = log2 (n+ 1) − 1. Thus, each data point performs log2 n visibility checks on
average in the first stage.

Fig. 3: Visibility checks made by each point in a balanced time series.

Proof (Second Stage in a Balanced Time Series). since each point splits a range
into (almost) equal parts in balanced series, whenever we move from a point
r to a higher point l, the range divided by point l is at least twice the range
divided by r, as point r belongs to one of the parts divided by l. Thus, starting
in any point, we can jump at most log n times to higher points in the second
stage, since jumping more than log n times implies reaching a point that divides
a range greater than n.

Thereby, each update costs O(log n) on average (since each data point per-
forms log n checks per stage) and the overall time complexity for n updates is
O(n log n), for balanced cases.



NHP: two Novel Approaches for Computing NVG 7

3.2 Approach 2: Offline Next Higher Point

The second proposed approach is for offline scenarios. The Offline NHP uses a
constructive strategy, building the NVG by connecting the data points to higher
points (see Figure 4). Note that:
1. Any point never needs to check visibility with points that are lower than

it, as if the visibility criterion is satisfied with a point lower than it, the
connection will be established when this lower point is under consideration.

2. Considering a single point, if we focus only on one of its sides (left or right),
the data heights satisfying the visibility criterion with it are strictly increas-
ing. This suggests that for each data point we can apply the strategy used
in Online NHP (separately) on its both sides, jumping to the next higher
point instead of iterating through each point.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Fig. 4: Illustration of the first steps of Offline NHP algorithm in a toy time series.

This algorithm also uses Monotonic Stacks, but uses two arrays instead of one:
one to store the position of the next greater point on the left and one for the
right. Unlike the first approach, this algorithm first calculates the position of the
next greater point for every data point and then tries to establish connections,
that’s why it is offline. Furthermore, the connections on the left and right side
of each data point are handled separately, as can be seen in Algorithm 2. A
corner-case arises with points of equal height, handled during the next greater
computation (see Algorithm 2, lines 5 - 7). Since we are considering only next
greater points, two points of equal height would not be connected. Therefore, we
have to deal with this individually. A point can only be connected to at most
one point of its height on each side, and we only need to handle this in one of
the sides, since the graph is undirected.

Complexity. Like the Online NHP, the space used by Offline NHP is O(n),
because of the two stacks and the two arrays. However, the interesting part of
this algorithm is the time complexity, that is O(nm), where m is the number of
distinct values in the time series. The proof of this lies in the fact that, since for
each point, we only jump to higher and higher points, we can not jump more
than m times (on each side), since with each jump the height increases (i.e.
changes to a higher value) and we have only m distinct values, so the total cost
is O(nm). Furthermore, as Offline NHP is very similar to the second stage of
Online NHP, the time complexity for a balanced time series is also O(n log n)
because for each of the n data points we cannot jump more than log2 n times on
each of its sides, as the range divided by the next higher point is at least twice



8 Patrick Daniel et al.

of the range divided by the current point (as seen in 3.1). However, Offline NHP
may degenerate into O(n2) in very unbalanced time series with n distinct values
(e.g. m = n), but it can never be worst than this since the number of distinct
values is always bounded by the length of the time series.

Algorithm 2 Offline NHP

Require: A time series (X,Y ), where X and Y are 1-indexed arrays of length N
Ensure: The Natural Visibility Graph G
1: Let Sl and Sr be two empty stacks and Al and Ar be two empty arrays of size N
2: for i← 1 to N do
3: equalHeightConnections← 0
4: while Sl is not empty and Y [Sl.top()] ≤ Y [i] do
5: if Y [Sl.top()] = Y [i] and equalHeightConnections = 0 then
6: G.addEdge(Sl.top(), i)
7: equalHeightConnections← equalHeightConnections+ 1

8: Sl.pop()

9: if Sl is not empty then Al[i]← Sl.top()
10: elseAl[i]← −1 ▷ there is no point on the left that is greater than Y [i]

11: j ← N − i+ 1
12: while Sr is not empty and Y [Sr.top()] ≤ Y [j] do Sr.pop()

13: if Sr is not empty then Ar[j]← Sr.top()
14: elseAr[j]← N + 1 ▷ there is no point on the right that is greater than Y [j]

15: for m← 1 to N do
16: l← Al[m]
17: minSlope← +∞
18: while l ≥ 1 do
19: lineSlope← slope((X[l], Y [l]), (X[m], Y [m]))
20: if lineSlope < minSlope then
21: G.addEdge(l,m)
22: minSlope← lineSlope

23: l← Al[l]

24: r ← Ar[m]
25: maxSlope← −∞
26: while r ≤ N do
27: lineSlope← slope((X[m], Y [m]), (X[r], Y [r]))
28: if lineSlope > maxSlope then
29: G.addEdge(m, r)
30: maxSlope← lineSlope

31: r ← Ar[r]

4 Experimental Results

4.1 Environment and Datasets

For a fair comparison, all algorithms were implemented in C++11 and all exper-
iments were conducted in the same environment, using an i7-7500U Intel CPU
with 16GB of RAM and running Windows 11 Home.



NHP: two Novel Approaches for Computing NVG 9

To ensure confidence and understand algorithms performances, we used six syn-
thetic datasets generated from time series models proposed in [12], representing
six distinct types of time series (see Figure 5). Each dataset contains 100 time
series, each with 105 points. We also performed two types of experiments.

(a) AR(2)
Yt = 1.5Yt−1 − 0.75Yt−2 + ϵt

(b) ARIMA(1,1,0)
Yt = 0.7Yt−1 + θ1ϵt−1 + ϵt

(c) GARCH(1,1)
σ2
t = 10−6 + 0.8σ2

t−1 + 0.1ϵ2t−1

(d) INAR(1)
Yt = 0.5 ∗ Yt−1 + ϵt, ϵt ∼ Po(1)

(e) White Noise
ϵt ∼ N(0, 1)

(f) Random walk
Yt = Tt−1 + ϵt

Fig. 5: Illustration of one instance of each simulated time series model (with
only 103 data points for presentation purposes). Mathematical formulation of
the datasets are included. See [12] for more details.

Offline experiment: we assume that we have all data points of the time series
beforehand and then we run the algorithm to build the NVG. Each time pre-
sented in Section 4.2 is the mean of ten repetitions for the respective size and
each size is a multiple of 2500. For this experiment, only DC, SC, BST, and our
two approaches were considered. LOT Framework wasn’t considered because it
uses any of the previous algorithms in its offline mode. Although Online NHP
and BST Method are online, they were considered in this comparison, since an
offline scenario is just a special case of an online scenario.

Online experiment: we simulate what we expect to happen in some real-life ap-
plications and we assume that there is an existing time series and the respective
NVG is already computed (as well as auxiliary data structures of each algorithm
i.e., the Binary Search Tree for the BST Method and Monotonic Stack and Next
Greater Array for Online NHP) and data points arrive one after the other. We
measured the time each algorithm takes to perform consecutive updates on the
NVG. To fairness, only BST, LOT Framework, and Online NHP were considered
in this experiment since they are the only known online algorithms for NVG.

4.2 Results

Offline Experiment As can be seen in Figure 6, our two approaches perform
very well in all 6 datasets. The Offline NHP consistently outperforms all state-of-
the-art methods regardless of the model, which suggests that the used strategy



10 Patrick Daniel et al.

is good. As we expected, the most significant difference in terms of computation
time, between Offline NHP and state-of-the-art methods lies in INAR model (see
Figure 6d), which is a model with integer values, meaning that the number of
distinct values is small compared to the other five models.

(a) AR(2) (b) ARIMA(1,1,0) (c) GARCH(1,1)

(d) INAR(1) (e) White Noise (f) Random Walk

Fig. 6: Comparison between algorithms according to different time series models
in offline scenario. All times are in seconds.

Even Online NHP, which was specially designed for online scenarios, also out-
performs state-of-the-art methods in 4 out of 6 datasets that we have. Carefully
analyzing the 2 datasets in which Online NHP loses to SC, i.e, ARIMA(1,1,0)
(Figure 6b) and Random Walk (Figure 6f), we found out that the observed re-
sults are due to the first stage of Online NHP since it iterates naively on the
left-hand side until it finds the first higher point, and in these models, it can
take longer to find a higher point due to the distance between the peaks of the
hill-shaped structures of these models, as can be seen in Figures 5b and 5f. Fur-
thermore, it’s clearly evident that our two approaches behave similarly on AR
(Figure 6a), GARCH (Figure 6c), INAR (Figure 6d) and White Noise models
(Figure 6e), because the structure of these models allows to quickly find a higher
point, which consequently makes the Online NHP to easily switch to the second
stage and start jumping to higher and higher points as the Offline NHP does.

Online Experiment In this experiment, we started with a time series of length
2500 and performed some consecutive updates. The aim behind this was to
understand the algorithm’s behavior in data stream scenarios.
The times presented in Table 2 show how BST Method is slow compared to LOT
Framework and Online NHP. These results were predictable since BST Method
rebuilds the whole NVG for each update, which is quadratic in the worst case,
while LOT Framework and Online NHP work in an incremental fashion, only
establishing the new connections. From Table 2 we can see that Online NHP is
also faster than LOT Framework but the difference between them becomes more



NHP: two Novel Approaches for Computing NVG 11

evident in Figure 7. Remember that the LOT Framework always takes linear
time for each update (regardless of the time series structure), while Online NHP
varies from logarithmic to linear time for each update (according to the time
series structure), that’s why our proposed method is faster.

BST Method LOT Framework Online NHP

AR(2) 48.422 0.293 0.010
ARIMA(1,1,0) 172.191 0.377 0.055
GARCH(1,1) 34.4885 0.323 0.012
INAR(1) 55.428 0.501 0.014

White Noise 56.840 0.404 0.012
Random Walk 123.517 0.356 0.034

Table 2: Comparison between algorithms according to different time series mod-
els in online scenario with 5000 consecutive updates. All times are in seconds.

(a) AR(2) (b) ARIMA(1,1,0) (c) GARCH(1,1)

(d) INAR(1) (e) White Noise (f) Random Walk

Fig. 7: Comparison between LOT Framework and Online NHP for different time
series models in online scenario. BST Method is excluded due to its significantly
larger time scale (see Table 2). All times are in seconds.

5 Conclusion

In this paper, we have given a brief overview of existing NVG algorithms and pre-
sented two new efficient approaches, one for online data and another for offline.
We also made an experimental analysis, comparing the proposed approaches with
the existing algorithms. The experiments show that both proposed approaches
end up outperforming state-of-the-art methods in their respective scenarios.
Online NHP was designed to tackle the NVG construction in data stream sce-
narios. Theoretically, we proved that it is O(n log n) for balanced time series and
O(n2) in the worst-case. Conducted experiments show that our method is faster
than the competing methods.



12 Patrick Daniel et al.

Offline NHP was designed for offline scenarios. To the best of our knowledge,
it’s the first proposed method to compute NVG that depends on the number
of distinct values in the time series (m), which guarantees O(nm) time but it
may degenerate into O(n2) when m = n. However, the carried out experiments,
illustrate that the used strategy makes Offline NHP faster than existing methods.
Furthermore, since both methods are based on the same data structures (to
store exactly the same information), Monotonic Stack and Next Greater Array,
we realized that both can be joined in a single algorithm to get a powerful hybrid
algorithm that can compute efficiently NVG in both offline and online scenarios.

References

1. Adhi, M., Hasan, R., Noman, F., Mahmood, S.F., Naqvi, A., Rizv, A.u.H., et al.:
Range for normal body temperature in the general population of pakistan. JPMA.
The Journal of the Pakistan Medical Association 58(10), 580 (2008)

2. Costa, L.d.F., Oliveira Jr, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R.,
Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-
world phenomena with complex networks: a survey of applications. Advances in
Physics 60(3), 329–412 (2011)

3. Fano Yela, D., Thalmann, F., Nicosia, V., Stowell, D., Sandler, M.: Online visibility
graphs: Encoding visibility in a binary search tree. Physical Review Research 2(2),
023,069 (2020)

4. Ghosh, S., Dutta, A.: An efficient non-recursive algorithm for transforming time
series to visibility graph. Physica A: Statistical Mechanics and its Applications
514, 189–202 (2019)

5. Huang, Y., Deng, Y.: Linear-time online visibility graph transformation algorithm:
for both natural and horizontal visibility criteria. arXiv preprint arXiv:2311.12389
(2023)

6. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to
complex networks: The visibility graph. Proceedings of the National Academy of
Sciences 105(13), 4972–4975 (2008)

7. Lacasa, L., Luque, B., Luque, J., Nuno, J.C.: The visibility graph: A new method
for estimating the hurst exponent of fractional brownian motion. Europhysics
Letters 86(3), 30,001 (2009)

8. Lan, X., Mo, H., Chen, S., Liu, Q., Deng, Y.: Fast transformation from time series
to visibility graphs. Chaos: An Interdisciplinary Journal of Nonlinear Science 25(8)
(2015)

9. Schmidt, J., Köhne, D.: A simple scalable linear time algorithm for horizontal vis-
ibility graphs. Physica A: Statistical Mechanics and its Applications 616, 128,601
(2023)

10. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications, 4 edn.
1431-875X. Springer (2017)

11. Silva, V.F., Silva, M.E., Ribeiro, P., Silva, F.: Time series analysis via network
science: Concepts and algorithms. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 11(3), e1404 (2021)

12. Silva, V.F., Silva, M.E., Ribeiro, P., Silva, F.: Novel features for time series analysis:
a complex networks approach. Data Mining and Knowledge Discovery 36(3), 1062–
1101 (2022)


	Next Higher Point: two Novel Approaches for Computing Natural Visibility Graphs

